blob: ef231c4567b44657f01f88c103dc21113b3f558d [file] [log] [blame]
/* Copyright 2015 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __CROS_EC_USB_HW_H
#define __CROS_EC_USB_HW_H
#if defined(CHIP_FAMILY_STM32F4)
#include "usb_dwc_hw.h"
#else
/*
* The STM32 has dedicated USB RAM visible on the APB1 bus (so all reads &
* writes are 16-bits wide). The endpoint tables and the data buffers live in
* this RAM.
*/
/* Primitive to access the words in USB RAM */
typedef CONFIG_USB_RAM_ACCESS_TYPE usb_uint;
/* Linker symbol for start of USB RAM */
extern usb_uint __usb_ram_start[];
/* Attribute to define a buffer variable in USB RAM */
#define __usb_ram __attribute__((section(".usb_ram.data")))
struct stm32_endpoint {
volatile usb_uint tx_addr;
volatile usb_uint tx_count;
volatile usb_uint rx_addr;
volatile usb_uint rx_count;
};
extern struct stm32_endpoint btable_ep[];
/* Attribute to put the endpoint table in USB RAM */
#define __usb_btable __attribute__((section(".usb_ram.btable")))
/* Read from USB RAM into a usb_setup_packet struct */
struct usb_setup_packet;
void usb_read_setup_packet(usb_uint *buffer, struct usb_setup_packet *packet);
/*
* Copy data to and from the USB dedicated RAM and take care of the weird
* addressing. These functions correctly handle unaligned accesses to the USB
* memory. They have the same prototype as memcpy, allowing them to be used
* in places that expect memcpy. The void pointer used to represent a location
* in the USB dedicated RAM should be the offset in that address space, not the
* AHB address space.
*
* The USB packet RAM is attached to the processor via the AHB2APB bridge. This
* bridge performs manipulations of read and write accesses as per the note in
* section 2.1 of RM0091. The upshot is that custom memcpy-like routines need
* to be employed.
*/
void *memcpy_to_usbram(void *dest, const void *src, size_t n);
void *memcpy_from_usbram(void *dest, const void *src, size_t n);
/* Compute the address inside dedicate SRAM for the USB controller */
#define usb_sram_addr(x) ((x - __usb_ram_start) * sizeof(uint16_t))
/* Helpers for endpoint declaration */
#define _EP_HANDLER2(num, suffix) CONCAT3(ep_, num, suffix)
#define _EP_TX_HANDLER(num) _EP_HANDLER2(num, _tx)
#define _EP_RX_HANDLER(num) _EP_HANDLER2(num, _rx)
#define _EP_RESET_HANDLER(num) _EP_HANDLER2(num, _rst)
#define USB_DECLARE_EP(num, tx_handler, rx_handler, rst_handler) \
void _EP_TX_HANDLER(num)(void) \
__attribute__ ((alias(STRINGIFY(tx_handler)))); \
void _EP_RX_HANDLER(num)(void) \
__attribute__ ((alias(STRINGIFY(rx_handler)))); \
void _EP_RESET_HANDLER(num)(void) \
__attribute__ ((alias(STRINGIFY(rst_handler))));
/* arrays with all endpoint callbacks */
extern void (*usb_ep_tx[]) (void);
extern void (*usb_ep_rx[]) (void);
extern void (*usb_ep_reset[]) (void);
/* array with interface-specific control request callbacks */
extern int (*usb_iface_request[]) (usb_uint *ep0_buf_rx, usb_uint *ep0_buf_tx);
/*
* Interface handler returns -1 on error, 0 if it wrote the last chunk of data,
* or 1 if more data needs to be transferred on the next control request.
*/
#define _IFACE_HANDLER(num) CONCAT3(iface_, num, _request)
#define USB_DECLARE_IFACE(num, handler) \
int _IFACE_HANDLER(num)(usb_uint *ep0_buf_rx, \
usb_uint *epo_buf_tx) \
__attribute__ ((alias(STRINGIFY(handler))));
#endif
#endif /* __CROS_EC_USB_HW_H */