blob: 1a98102ff36ec4c04d329bd47699c18b1efc5bdd [file] [log] [blame]
// Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "update_engine/delta_performer.h"
#include <endian.h>
#include <errno.h>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <base/scoped_ptr.h>
#include <base/string_util.h>
#include <google/protobuf/repeated_field.h>
#include "update_engine/bzip_extent_writer.h"
#include "update_engine/delta_diff_generator.h"
#include "update_engine/extent_ranges.h"
#include "update_engine/extent_writer.h"
#include "update_engine/graph_types.h"
#include "update_engine/payload_signer.h"
#include "update_engine/prefs_interface.h"
#include "update_engine/subprocess.h"
#include "update_engine/terminator.h"
using std::min;
using std::string;
using std::vector;
using google::protobuf::RepeatedPtrField;
namespace chromeos_update_engine {
const char DeltaPerformer::kUpdatePayloadPublicKeyPath[] =
"/usr/share/update_engine/update-payload-key.pub.pem";
namespace {
const int kDeltaVersionLength = 8;
const int kDeltaProtobufLengthLength = 8;
const int kUpdateStateOperationInvalid = -1;
const int kMaxResumedUpdateFailures = 10;
// Converts extents to a human-readable string, for use by DumpUpdateProto().
string ExtentsToString(const RepeatedPtrField<Extent>& extents) {
string ret;
for (int i = 0; i < extents.size(); i++) {
const Extent& extent = extents.Get(i);
if (extent.start_block() == kSparseHole) {
ret += StringPrintf("{kSparseHole, %" PRIu64 "}, ", extent.num_blocks());
} else {
ret += StringPrintf("{%" PRIu64 ", %" PRIu64 "}, ",
extent.start_block(), extent.num_blocks());
}
}
if (!ret.empty()) {
DCHECK_GT(ret.size(), static_cast<size_t>(1));
ret.resize(ret.size() - 2);
}
return ret;
}
// LOGs a DeltaArchiveManifest object. Useful for debugging.
void DumpUpdateProto(const DeltaArchiveManifest& manifest) {
LOG(INFO) << "Update Proto:";
LOG(INFO) << " block_size: " << manifest.block_size();
for (int i = 0; i < (manifest.install_operations_size() +
manifest.kernel_install_operations_size()); i++) {
const DeltaArchiveManifest_InstallOperation& op =
i < manifest.install_operations_size() ?
manifest.install_operations(i) :
manifest.kernel_install_operations(
i - manifest.install_operations_size());
if (i == 0)
LOG(INFO) << " Rootfs ops:";
else if (i == manifest.install_operations_size())
LOG(INFO) << " Kernel ops:";
LOG(INFO) << " operation(" << i << ")";
LOG(INFO) << " type: "
<< DeltaArchiveManifest_InstallOperation_Type_Name(op.type());
if (op.has_data_offset())
LOG(INFO) << " data_offset: " << op.data_offset();
if (op.has_data_length())
LOG(INFO) << " data_length: " << op.data_length();
LOG(INFO) << " src_extents: " << ExtentsToString(op.src_extents());
if (op.has_src_length())
LOG(INFO) << " src_length: " << op.src_length();
LOG(INFO) << " dst_extents: " << ExtentsToString(op.dst_extents());
if (op.has_dst_length())
LOG(INFO) << " dst_length: " << op.dst_length();
}
}
// Opens path for read/write, put the fd into *fd. On success returns true
// and sets *err to 0. On failure, returns false and sets *err to errno.
bool OpenFile(const char* path, int* fd, int* err) {
if (*fd != -1) {
LOG(ERROR) << "Can't open(" << path << "), *fd != -1 (it's " << *fd << ")";
*err = EINVAL;
return false;
}
*fd = open(path, O_RDWR, 000);
if (*fd < 0) {
*err = errno;
PLOG(ERROR) << "Unable to open file " << path;
return false;
}
*err = 0;
return true;
}
} // namespace {}
// Returns true if |op| is idempotent -- i.e., if we can interrupt it and repeat
// it safely. Returns false otherwise.
bool DeltaPerformer::IsIdempotentOperation(
const DeltaArchiveManifest_InstallOperation& op) {
if (op.src_extents_size() == 0) {
return true;
}
// When in doubt, it's safe to declare an op non-idempotent. Note that we
// could detect other types of idempotent operations here such as a MOVE that
// moves blocks onto themselves. However, we rely on the server to not send
// such operations at all.
ExtentRanges src_ranges;
src_ranges.AddRepeatedExtents(op.src_extents());
const uint64_t block_count = src_ranges.blocks();
src_ranges.SubtractRepeatedExtents(op.dst_extents());
return block_count == src_ranges.blocks();
}
int DeltaPerformer::Open(const char* path, int flags, mode_t mode) {
int err;
if (OpenFile(path, &fd_, &err))
path_ = path;
return -err;
}
bool DeltaPerformer::OpenKernel(const char* kernel_path) {
int err;
bool success = OpenFile(kernel_path, &kernel_fd_, &err);
if (success)
kernel_path_ = kernel_path;
return success;
}
int DeltaPerformer::Close() {
int err = 0;
if (close(kernel_fd_) == -1) {
err = errno;
PLOG(ERROR) << "Unable to close kernel fd:";
}
if (close(fd_) == -1) {
err = errno;
PLOG(ERROR) << "Unable to close rootfs fd:";
}
LOG_IF(ERROR, !hash_calculator_.Finalize()) << "Unable to finalize the hash.";
fd_ = -2; // Set to invalid so that calls to Open() will fail.
path_ = "";
if (!buffer_.empty()) {
LOG(ERROR) << "Called Close() while buffer not empty!";
if (err >= 0) {
err = 1;
}
}
return -err;
}
namespace {
void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
string sha256;
if (OmahaHashCalculator::Base64Encode(info.hash().data(),
info.hash().size(),
&sha256)) {
LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
<< " size: " << info.size();
} else {
LOG(ERROR) << "Base64Encode failed for tag: " << tag;
}
}
void LogPartitionInfo(const DeltaArchiveManifest& manifest) {
if (manifest.has_old_kernel_info())
LogPartitionInfoHash(manifest.old_kernel_info(), "old_kernel_info");
if (manifest.has_old_rootfs_info())
LogPartitionInfoHash(manifest.old_rootfs_info(), "old_rootfs_info");
if (manifest.has_new_kernel_info())
LogPartitionInfoHash(manifest.new_kernel_info(), "new_kernel_info");
if (manifest.has_new_rootfs_info())
LogPartitionInfoHash(manifest.new_rootfs_info(), "new_rootfs_info");
}
} // namespace {}
DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
const std::vector<char>& payload,
DeltaArchiveManifest* manifest,
uint64_t* metadata_size) {
if (payload.size() < strlen(kDeltaMagic) +
kDeltaVersionLength + kDeltaProtobufLengthLength) {
// Don't have enough bytes to know the protobuf length.
return kMetadataParseInsufficientData;
}
if (memcmp(payload.data(), kDeltaMagic, strlen(kDeltaMagic)) != 0) {
LOG(ERROR) << "Bad payload format -- invalid delta magic.";
return kMetadataParseError;
}
uint64_t protobuf_length;
COMPILE_ASSERT(sizeof(protobuf_length) == kDeltaProtobufLengthLength,
protobuf_length_size_mismatch);
memcpy(&protobuf_length,
&payload[strlen(kDeltaMagic) + kDeltaVersionLength],
kDeltaProtobufLengthLength);
protobuf_length = be64toh(protobuf_length); // switch big endian to host
if (payload.size() < strlen(kDeltaMagic) + kDeltaVersionLength +
kDeltaProtobufLengthLength + protobuf_length) {
return kMetadataParseInsufficientData;
}
// We have the full proto buffer in |payload|. Parse it.
const int offset = strlen(kDeltaMagic) + kDeltaVersionLength +
kDeltaProtobufLengthLength;
if (!manifest->ParseFromArray(&payload[offset], protobuf_length)) {
LOG(ERROR) << "Unable to parse manifest in update file.";
return kMetadataParseError;
}
*metadata_size = strlen(kDeltaMagic) + kDeltaVersionLength +
kDeltaProtobufLengthLength + protobuf_length;
return kMetadataParseSuccess;
}
// Wrapper around write. Returns bytes written on success or
// -errno on error.
// This function performs as many actions as it can, given the amount of
// data received thus far.
ssize_t DeltaPerformer::Write(const void* bytes, size_t count) {
const char* c_bytes = reinterpret_cast<const char*>(bytes);
buffer_.insert(buffer_.end(), c_bytes, c_bytes + count);
if (!manifest_valid_) {
MetadataParseResult result = ParsePayloadMetadata(buffer_,
&manifest_,
&manifest_metadata_size_);
if (result == kMetadataParseError) {
return -EINVAL;
}
if (result == kMetadataParseInsufficientData) {
return count;
}
// Remove protobuf and header info from buffer_, so buffer_ contains
// just data blobs
DiscardBufferHeadBytes(manifest_metadata_size_);
LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
manifest_metadata_size_))
<< "Unable to save the manifest metadata size.";
manifest_valid_ = true;
LogPartitionInfo(manifest_);
if (!PrimeUpdateState()) {
LOG(ERROR) << "Unable to prime the update state.";
return -EINVAL;
}
}
ssize_t total_operations = manifest_.install_operations_size() +
manifest_.kernel_install_operations_size();
while (next_operation_num_ < total_operations) {
const DeltaArchiveManifest_InstallOperation &op =
next_operation_num_ < manifest_.install_operations_size() ?
manifest_.install_operations(next_operation_num_) :
manifest_.kernel_install_operations(
next_operation_num_ - manifest_.install_operations_size());
if (!CanPerformInstallOperation(op))
break;
// Makes sure we unblock exit when this operation completes.
ScopedTerminatorExitUnblocker exit_unblocker =
ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug.
// Log every thousandth operation, and also the first and last ones
if ((next_operation_num_ % 1000 == 0) ||
(next_operation_num_ + 1 == total_operations)) {
LOG(INFO) << "Performing operation " << (next_operation_num_ + 1) << "/"
<< total_operations;
}
bool is_kernel_partition =
(next_operation_num_ >= manifest_.install_operations_size());
if (op.type() == DeltaArchiveManifest_InstallOperation_Type_REPLACE ||
op.type() == DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ) {
if (!PerformReplaceOperation(op, is_kernel_partition)) {
LOG(ERROR) << "Failed to perform replace operation "
<< next_operation_num_;
return -EINVAL;
}
} else if (op.type() == DeltaArchiveManifest_InstallOperation_Type_MOVE) {
if (!PerformMoveOperation(op, is_kernel_partition)) {
LOG(ERROR) << "Failed to perform move operation "
<< next_operation_num_;
return -EINVAL;
}
} else if (op.type() == DeltaArchiveManifest_InstallOperation_Type_BSDIFF) {
if (!PerformBsdiffOperation(op, is_kernel_partition)) {
LOG(ERROR) << "Failed to perform bsdiff operation "
<< next_operation_num_;
return -EINVAL;
}
}
next_operation_num_++;
CheckpointUpdateProgress();
}
return count;
}
bool DeltaPerformer::CanPerformInstallOperation(
const chromeos_update_engine::DeltaArchiveManifest_InstallOperation&
operation) {
// Move operations don't require any data blob, so they can always
// be performed
if (operation.type() == DeltaArchiveManifest_InstallOperation_Type_MOVE)
return true;
// See if we have the entire data blob in the buffer
if (operation.data_offset() < buffer_offset_) {
LOG(ERROR) << "we threw away data it seems?";
return false;
}
return (operation.data_offset() + operation.data_length()) <=
(buffer_offset_ + buffer_.size());
}
bool DeltaPerformer::PerformReplaceOperation(
const DeltaArchiveManifest_InstallOperation& operation,
bool is_kernel_partition) {
CHECK(operation.type() == \
DeltaArchiveManifest_InstallOperation_Type_REPLACE || \
operation.type() == \
DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ);
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
// Extract the signature message if it's in this operation.
ExtractSignatureMessage(operation);
DirectExtentWriter direct_writer;
ZeroPadExtentWriter zero_pad_writer(&direct_writer);
scoped_ptr<BzipExtentWriter> bzip_writer;
// Since bzip decompression is optional, we have a variable writer that will
// point to one of the ExtentWriter objects above.
ExtentWriter* writer = NULL;
if (operation.type() == DeltaArchiveManifest_InstallOperation_Type_REPLACE) {
writer = &zero_pad_writer;
} else if (operation.type() ==
DeltaArchiveManifest_InstallOperation_Type_REPLACE_BZ) {
bzip_writer.reset(new BzipExtentWriter(&zero_pad_writer));
writer = bzip_writer.get();
} else {
NOTREACHED();
}
// Create a vector of extents to pass to the ExtentWriter.
vector<Extent> extents;
for (int i = 0; i < operation.dst_extents_size(); i++) {
extents.push_back(operation.dst_extents(i));
}
int fd = is_kernel_partition ? kernel_fd_ : fd_;
TEST_AND_RETURN_FALSE(writer->Init(fd, extents, block_size_));
TEST_AND_RETURN_FALSE(writer->Write(&buffer_[0], operation.data_length()));
TEST_AND_RETURN_FALSE(writer->End());
// Update buffer
buffer_offset_ += operation.data_length();
DiscardBufferHeadBytes(operation.data_length());
return true;
}
bool DeltaPerformer::PerformMoveOperation(
const DeltaArchiveManifest_InstallOperation& operation,
bool is_kernel_partition) {
// Calculate buffer size. Note, this function doesn't do a sliding
// window to copy in case the source and destination blocks overlap.
// If we wanted to do a sliding window, we could program the server
// to generate deltas that effectively did a sliding window.
uint64_t blocks_to_read = 0;
for (int i = 0; i < operation.src_extents_size(); i++)
blocks_to_read += operation.src_extents(i).num_blocks();
uint64_t blocks_to_write = 0;
for (int i = 0; i < operation.dst_extents_size(); i++)
blocks_to_write += operation.dst_extents(i).num_blocks();
DCHECK_EQ(blocks_to_write, blocks_to_read);
vector<char> buf(blocks_to_write * block_size_);
int fd = is_kernel_partition ? kernel_fd_ : fd_;
// Read in bytes.
ssize_t bytes_read = 0;
for (int i = 0; i < operation.src_extents_size(); i++) {
ssize_t bytes_read_this_iteration = 0;
const Extent& extent = operation.src_extents(i);
TEST_AND_RETURN_FALSE(utils::PReadAll(fd,
&buf[bytes_read],
extent.num_blocks() * block_size_,
extent.start_block() * block_size_,
&bytes_read_this_iteration));
TEST_AND_RETURN_FALSE(
bytes_read_this_iteration ==
static_cast<ssize_t>(extent.num_blocks() * block_size_));
bytes_read += bytes_read_this_iteration;
}
// If this is a non-idempotent operation, request a delayed exit and clear the
// update state in case the operation gets interrupted. Do this as late as
// possible.
if (!IsIdempotentOperation(operation)) {
Terminator::set_exit_blocked(true);
ResetUpdateProgress(prefs_, true);
}
// Write bytes out.
ssize_t bytes_written = 0;
for (int i = 0; i < operation.dst_extents_size(); i++) {
const Extent& extent = operation.dst_extents(i);
TEST_AND_RETURN_FALSE(utils::PWriteAll(fd,
&buf[bytes_written],
extent.num_blocks() * block_size_,
extent.start_block() * block_size_));
bytes_written += extent.num_blocks() * block_size_;
}
DCHECK_EQ(bytes_written, bytes_read);
DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
return true;
}
bool DeltaPerformer::ExtentsToBsdiffPositionsString(
const RepeatedPtrField<Extent>& extents,
uint64_t block_size,
uint64_t full_length,
string* positions_string) {
string ret;
uint64_t length = 0;
for (int i = 0; i < extents.size(); i++) {
Extent extent = extents.Get(i);
int64_t start = extent.start_block();
uint64_t this_length = min(full_length - length,
extent.num_blocks() * block_size);
if (start == static_cast<int64_t>(kSparseHole))
start = -1;
else
start *= block_size;
ret += StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
length += this_length;
}
TEST_AND_RETURN_FALSE(length == full_length);
if (!ret.empty())
ret.resize(ret.size() - 1); // Strip trailing comma off
*positions_string = ret;
return true;
}
bool DeltaPerformer::PerformBsdiffOperation(
const DeltaArchiveManifest_InstallOperation& operation,
bool is_kernel_partition) {
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
string input_positions;
TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
block_size_,
operation.src_length(),
&input_positions));
string output_positions;
TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
block_size_,
operation.dst_length(),
&output_positions));
string temp_filename;
TEST_AND_RETURN_FALSE(utils::MakeTempFile("/tmp/au_patch.XXXXXX",
&temp_filename,
NULL));
ScopedPathUnlinker path_unlinker(temp_filename);
{
int fd = open(temp_filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644);
ScopedFdCloser fd_closer(&fd);
TEST_AND_RETURN_FALSE(
utils::WriteAll(fd, &buffer_[0], operation.data_length()));
}
int fd = is_kernel_partition ? kernel_fd_ : fd_;
const string& path = StringPrintf("/dev/fd/%d", fd);
// If this is a non-idempotent operation, request a delayed exit and clear the
// update state in case the operation gets interrupted. Do this as late as
// possible.
if (!IsIdempotentOperation(operation)) {
Terminator::set_exit_blocked(true);
ResetUpdateProgress(prefs_, true);
}
vector<string> cmd;
cmd.push_back(kBspatchPath);
cmd.push_back(path);
cmd.push_back(path);
cmd.push_back(temp_filename);
cmd.push_back(input_positions);
cmd.push_back(output_positions);
int return_code = 0;
TEST_AND_RETURN_FALSE(
Subprocess::SynchronousExecFlags(cmd,
&return_code,
G_SPAWN_LEAVE_DESCRIPTORS_OPEN));
TEST_AND_RETURN_FALSE(return_code == 0);
if (operation.dst_length() % block_size_) {
// Zero out rest of final block.
// TODO(adlr): build this into bspatch; it's more efficient that way.
const Extent& last_extent =
operation.dst_extents(operation.dst_extents_size() - 1);
const uint64_t end_byte =
(last_extent.start_block() + last_extent.num_blocks()) * block_size_;
const uint64_t begin_byte =
end_byte - (block_size_ - operation.dst_length() % block_size_);
vector<char> zeros(end_byte - begin_byte);
TEST_AND_RETURN_FALSE(
utils::PWriteAll(fd, &zeros[0], end_byte - begin_byte, begin_byte));
}
// Update buffer.
buffer_offset_ += operation.data_length();
DiscardBufferHeadBytes(operation.data_length());
return true;
}
bool DeltaPerformer::ExtractSignatureMessage(
const DeltaArchiveManifest_InstallOperation& operation) {
if (operation.type() != DeltaArchiveManifest_InstallOperation_Type_REPLACE ||
!manifest_.has_signatures_offset() ||
manifest_.signatures_offset() != operation.data_offset()) {
return false;
}
TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
manifest_.signatures_size() == operation.data_length());
TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
signatures_message_data_.insert(
signatures_message_data_.begin(),
buffer_.begin(),
buffer_.begin() + manifest_.signatures_size());
// The hash of all data consumed so far should be verified against the signed
// hash.
signed_hash_context_ = hash_calculator_.GetContext();
LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
signed_hash_context_))
<< "Unable to store the signed hash context.";
LOG(INFO) << "Extracted signature data of size "
<< manifest_.signatures_size() << " at "
<< manifest_.signatures_offset();
return true;
}
bool DeltaPerformer::VerifyPayload(
const string& public_key_path,
const std::string& update_check_response_hash,
const uint64_t update_check_response_size) {
string key_path = public_key_path;
if (key_path.empty()) {
key_path = kUpdatePayloadPublicKeyPath;
}
LOG(INFO) << "Verifying delta payload. Public key path: " << key_path;
// Verifies the download hash.
const string& download_hash_data = hash_calculator_.hash();
TEST_AND_RETURN_FALSE(!download_hash_data.empty());
TEST_AND_RETURN_FALSE(download_hash_data == update_check_response_hash);
// Verifies the download size.
TEST_AND_RETURN_FALSE(update_check_response_size ==
manifest_metadata_size_ + buffer_offset_);
// Verifies the signed payload hash.
if (!utils::FileExists(key_path.c_str())) {
LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
return true;
}
TEST_AND_RETURN_FALSE(!signatures_message_data_.empty());
vector<char> signed_hash_data;
TEST_AND_RETURN_FALSE(PayloadSigner::VerifySignature(signatures_message_data_,
key_path,
&signed_hash_data));
OmahaHashCalculator signed_hasher;
TEST_AND_RETURN_FALSE(signed_hasher.SetContext(signed_hash_context_));
TEST_AND_RETURN_FALSE(signed_hasher.Finalize());
const vector<char>& hash_data = signed_hasher.raw_hash();
TEST_AND_RETURN_FALSE(!hash_data.empty());
TEST_AND_RETURN_FALSE(hash_data == signed_hash_data);
return true;
}
bool DeltaPerformer::GetNewPartitionInfo(uint64_t* kernel_size,
vector<char>* kernel_hash,
uint64_t* rootfs_size,
vector<char>* rootfs_hash) {
TEST_AND_RETURN_FALSE(manifest_valid_ &&
manifest_.has_new_kernel_info() &&
manifest_.has_new_rootfs_info());
*kernel_size = manifest_.new_kernel_info().size();
*rootfs_size = manifest_.new_rootfs_info().size();
vector<char> new_kernel_hash(manifest_.new_kernel_info().hash().begin(),
manifest_.new_kernel_info().hash().end());
vector<char> new_rootfs_hash(manifest_.new_rootfs_info().hash().begin(),
manifest_.new_rootfs_info().hash().end());
kernel_hash->swap(new_kernel_hash);
rootfs_hash->swap(new_rootfs_hash);
return true;
}
bool DeltaPerformer::VerifySourcePartitions() {
LOG(INFO) << "Verifying source partitions.";
CHECK(manifest_valid_);
if (manifest_.has_old_kernel_info()) {
const PartitionInfo& info = manifest_.old_kernel_info();
TEST_AND_RETURN_FALSE(!current_kernel_hash_.empty() &&
current_kernel_hash_.size() == info.hash().size() &&
memcmp(current_kernel_hash_.data(),
info.hash().data(),
current_kernel_hash_.size()) == 0);
}
if (manifest_.has_old_rootfs_info()) {
const PartitionInfo& info = manifest_.old_rootfs_info();
TEST_AND_RETURN_FALSE(!current_rootfs_hash_.empty() &&
current_rootfs_hash_.size() == info.hash().size() &&
memcmp(current_rootfs_hash_.data(),
info.hash().data(),
current_rootfs_hash_.size()) == 0);
}
return true;
}
void DeltaPerformer::DiscardBufferHeadBytes(size_t count) {
hash_calculator_.Update(&buffer_[0], count);
buffer_.erase(buffer_.begin(), buffer_.begin() + count);
}
bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
string update_check_response_hash) {
int64_t next_operation = kUpdateStateOperationInvalid;
TEST_AND_RETURN_FALSE(prefs->GetInt64(kPrefsUpdateStateNextOperation,
&next_operation) &&
next_operation != kUpdateStateOperationInvalid &&
next_operation > 0);
string interrupted_hash;
TEST_AND_RETURN_FALSE(prefs->GetString(kPrefsUpdateCheckResponseHash,
&interrupted_hash) &&
!interrupted_hash.empty() &&
interrupted_hash == update_check_response_hash);
int64_t resumed_update_failures;
TEST_AND_RETURN_FALSE(!prefs->GetInt64(kPrefsResumedUpdateFailures,
&resumed_update_failures) ||
resumed_update_failures <= kMaxResumedUpdateFailures);
// Sanity check the rest.
int64_t next_data_offset = -1;
TEST_AND_RETURN_FALSE(prefs->GetInt64(kPrefsUpdateStateNextDataOffset,
&next_data_offset) &&
next_data_offset >= 0);
string sha256_context;
TEST_AND_RETURN_FALSE(
prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
!sha256_context.empty());
int64_t manifest_metadata_size = 0;
TEST_AND_RETURN_FALSE(prefs->GetInt64(kPrefsManifestMetadataSize,
&manifest_metadata_size) &&
manifest_metadata_size > 0);
return true;
}
bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
kUpdateStateOperationInvalid));
if (!quick) {
prefs->SetString(kPrefsUpdateCheckResponseHash, "");
prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
prefs->SetString(kPrefsUpdateStateSHA256Context, "");
prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
prefs->SetInt64(kPrefsManifestMetadataSize, -1);
prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
}
return true;
}
bool DeltaPerformer::CheckpointUpdateProgress() {
Terminator::set_exit_blocked(true);
if (last_updated_buffer_offset_ != buffer_offset_) {
// Resets the progress in case we die in the middle of the state update.
ResetUpdateProgress(prefs_, true);
TEST_AND_RETURN_FALSE(
prefs_->SetString(kPrefsUpdateStateSHA256Context,
hash_calculator_.GetContext()));
TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
buffer_offset_));
last_updated_buffer_offset_ = buffer_offset_;
}
TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
next_operation_num_));
return true;
}
bool DeltaPerformer::PrimeUpdateState() {
CHECK(manifest_valid_);
block_size_ = manifest_.block_size();
int64_t next_operation = kUpdateStateOperationInvalid;
if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
next_operation == kUpdateStateOperationInvalid ||
next_operation <= 0) {
// Initiating a new update, no more state needs to be initialized.
TEST_AND_RETURN_FALSE(VerifySourcePartitions());
return true;
}
next_operation_num_ = next_operation;
// Resuming an update -- load the rest of the update state.
int64_t next_data_offset = -1;
TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
&next_data_offset) &&
next_data_offset >= 0);
buffer_offset_ = next_data_offset;
// The signed hash context may be empty if the interrupted update didn't reach
// the signature blob.
prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
&signed_hash_context_);
string hash_context;
TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
&hash_context) &&
hash_calculator_.SetContext(hash_context));
int64_t manifest_metadata_size = 0;
TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
&manifest_metadata_size) &&
manifest_metadata_size > 0);
manifest_metadata_size_ = manifest_metadata_size;
// Speculatively count the resume as a failure.
int64_t resumed_update_failures;
if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
resumed_update_failures++;
} else {
resumed_update_failures = 1;
}
prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
return true;
}
} // namespace chromeos_update_engine