blob: 0ba87ddc8e2e5d1e3fc1403455c19d66e7d75931 [file] [log] [blame]
/*
* Copyright (c) 2012, Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/******************************************************************************
* AMD Generic Encapsulated Software Architecture
*
* $Workfile:: GccCar.inc $Revision:: 32932 $
*
* Description: GccCar.inc - AGESA cache-as-RAM setup Include File for GCC complier
*
******************************************************************************/
.altmacro
BSP_STACK_BASE_ADDR = 0x30000 /* Base address for primary cores stack */
BSP_STACK_SIZE = 0x10000 /* 64KB for BSP core */
BSP_STACK_SIZE_64K = 0x10000 /*64KB for BSP core */
BSP_STACK_SIZE_32K = 0x8000 /*32KB for BSP core*/
CORE0_STACK_BASE_ADDR = 0x80000 /* Base address for primary cores stack */
CORE0_STACK_SIZE = 0x4000 /* 16KB for primary cores */
CORE1_STACK_BASE_ADDR = 0x40000 /* Base address for AP cores */
CORE1_STACK_SIZE = 0x1000 /* 4KB for each AP cores */
APIC_BASE_ADDRESS = 0x0000001B
APIC_BSC = 8 /* Boot Strap Core */
APIC_MSG_REG = 0x380 # Location of BSC message
APIC_MSG = 0x00DE00AD # Message data
APIC_CMD_LO_REG = 0x300 # APIC command low
APIC_CMD_HI_REG = 0x310 # APIC command high
CMD_REG_TO_READ_DATA = 0x00000338 # APIC command for remote read of APIC_MSG_REG
REMOTE_READ_STS = 0x00030000 # Remote read status mask
REMOTE_DELIVERY_PEND = 0x00010000 # Remote read is pending
REMOTE_DELIVERY_DONE = 0x00020000 # Remote read is complete
DELIVERY_STS_BIT = 12 #Delivery status valid bit
APIC_ID_REG = 0x0020 # Local APIC ID offset
APIC20_APICID = 24
APIC_REMOTE_READ_REG = 0x00C0 # Remote read offset
# Flags can only run from bits 31 to 24. Bits 23:0 are in use.
AMD_CU_NEED_TO_WAIT = 31
AMD_CU_SEND_INVD_MSG = 30
AMD_CU_RESTORE_ES = 29
AMD_MTRR_VARIABLE_BASE0 = 0x0200
AMD_MTRR_VARIABLE_BASE6 = 0x020C
AMD_MTRR_VARIABLE_BASE7 = 0x020E
VMTRR_VALID = 11
MTRR_TYPE_WB = 0x06
MTRR_TYPE_WP = 0x05
MTRR_TYPE_WT = 0x04
MTRR_TYPE_UC = 0x00
AMD_MTRR_VARIABLE_MASK7 = 0x020F
AMD_MTRR_FIX64k_00000 = 0x0250
AMD_MTRR_FIX16k_80000 = 0x0258
AMD_MTRR_FIX16k_A0000 = 0x0259
AMD_MTRR_FIX4k_C0000 = 0x0268
AMD_MTRR_FIX4k_C8000 = 0x0269
AMD_MTRR_FIX4k_D0000 = 0x026A
AMD_MTRR_FIX4k_D8000 = 0x026B
AMD_MTRR_FIX4k_E0000 = 0x026C
AMD_MTRR_FIX4k_E8000 = 0x026D
AMD_MTRR_FIX4k_F0000 = 0x026E
AMD_MTRR_FIX4k_F8000 = 0x026F
/* Reproduced from AGESA.h */
AMD_AP_MTRR_FIX64k_00000 = 0x00000250
AMD_AP_MTRR_FIX16k_80000 = 0x00000258
AMD_AP_MTRR_FIX16k_A0000 = 0x00000259
AMD_AP_MTRR_FIX4k_C0000 = 0x00000268
AMD_AP_MTRR_FIX4k_C8000 = 0x00000269
AMD_AP_MTRR_FIX4k_D0000 = 0x0000026A
AMD_AP_MTRR_FIX4k_D8000 = 0x0000026B
AMD_AP_MTRR_FIX4k_E0000 = 0x0000026C
AMD_AP_MTRR_FIX4k_E8000 = 0x0000026D
AMD_AP_MTRR_FIX4k_F0000 = 0x0000026E
AMD_AP_MTRR_FIX4k_F8000 = 0x0000026F
CPU_LIST_TERMINAL = 0xFFFFFFFF
AMD_MTRR_DEFTYPE = 0x02FF
WB_DRAM_TYPE = 0x1E /* MemType - memory type */
MTRR_DEF_TYPE_EN = 11 /* MtrrDefTypeEn - variable and fixed MTRRs default enabled */
MTRR_DEF_TYPE_FIX_EN = 10 /* MtrrDefTypeEn - fixed MTRRs default enabled */
HWCR = 0x0C0010015 /* Hardware Configuration */
INVD_WBINVD = 0x04 /* INVD to WBINVD conversion */
IORR_BASE = 0x0C0010016 /* IO Range Regusters Base/Mask, 2 pairs */
/* uses 16h - 19h */
TOP_MEM = 0x0C001001A /* Top of Memory */
TOP_MEM2 = 0x0C001001D /* Top of Memory2 */
LS_CFG3 = 0x0C001101C /* Load-Store Configuration 3 */
DIS_SS_F15CZ = 7 /* Disable Streaming Store functionality*/
DC_DIS_SPEC_TLB_RLD_F15CZ = 20 /* Disable speculative TLB reloads*/
DC_DIS_HW_PF_F15CZ = 23 /* Hardware prefetches bit*/
LS_CFG = 0x0C0011020 /* Load-Store Configuration */
DIS_SS = 28 /* Family 10h,12h,15h:Disable Streng Store functionality */
DIS_STREAM_ST = 28 /* Family 14h:DisStreamSt - Disable Streaming Store functionality */
IC_CFG = 0x0C0011021 /* Instruction Cache Config Register */
IC_DIS_SPEC_TLB_RLD = 9 /* Disable speculative TLB reloads */
DIS_IND = 14 /* Family 10-14h:Disable Indirect Branch Predictor */
DIS_I_CACHE = 14 /* Family 15h:DisICache - Disable Indirect Branch Predictor */
DC_CFG = 0x0C0011022 /* Data Cache Configuration */
DC_DIS_SPEC_TLB_RLD = 4 /* Disable speculative TLB reloads */
DIS_CLR_WBTOL2_SMC_HIT = 8 /* self modifying code check buffer bit */
DIS_HW_PF = 13 /* Hardware prefetches bit */
CU_CFG = 0x0C0011023 /* Family 15h: Combined Unit Configuration */
L2_WAY_LOCK_EN = 23 /* L2WayLock - L2 way lock enable */
L2_FIRST_LOCKED_WAY = 19 /* L2FirstLockedWay - first L2 way lockedh */
L2_FIRST_LOCKED_WAY_OR_MASK = 0x000780000
DE_CFG = 0x0C0011029 /* Decode Configuration */
CL_FLUSH_SERIALIZE = 23 /* Family 12h,15h: CL Flush Serialization */
BU_CFG2 = 0x0C001102A /* Family 10h: Bus Unit Configuration 2 */
CU_CFG2 = 0x0C001102A /* Family 15h: Combined Unit Configuration 2 */
F10_CL_LINES_TO_NB_DIS = 15 /* ClLinesToNbDis - allows WP code to be cached in L2 */
IC_DIS_SPEC_TLB_WR = 35 /* IcDisSpecTlbWr - ITLB speculative writes */
CU_CFG3 = 0x0C001102B /* Combined Unit Configuration 3 */
COMBINE_CR0_CD = 49 /* Combine CR0.CD for both cores of a compute unit */
CR0_PE = 0 # Protection Enable
CR0_NW = 29 # Not Write-through
CR0_CD = 30 # Cache Disable
CR0_PG = 31 # Paging Enable
/* CPUID Functions */
CPUID_MODEL = 1
AMD_CPUID_FMF = 0x80000001 /* Family Model Features information */
AMD_CPUID_L2Cache = 0X80000006 /* L2/L3 cache info */
AMD_CPUID_APIC = 0x80000008 /* Long Mode and APIC info., core count */
APIC_ID_CORE_ID_SIZE = 12 /* ApicIdCoreIdSize bit position */
NB_CFG = 0x0C001001F /* Northbridge Configuration Register */
INIT_APIC_ID_CPU_ID_LO = 54 /* InitApicIdCpuIdLo - is core# in high or low half of APIC ID? */
ENABLE_CF8_EXT_CFG = 46 /* EnableCf8ExtCfg - enable CF8 extended configuration cycles */
MTRR_SYS_CFG = 0x0C0010010 /* System Configuration Register */
CHX_TO_DIRTY_DIS = 16 /* ChxToDirtyDis Change to dirty disable */
SYS_UC_LOCK_EN = 17 /* SysUcLockEn System lock command enable */
MTRR_FIX_DRAM_EN = 18 /* MtrrFixDramEn MTRR fixed RdDram and WrDram attributes enable */
MTRR_FIX_DRAM_MOD_EN = 19 /* MtrrFixDramModEn MTRR fixed RdDram and WrDram modification enable */
MTRR_VAR_DRAM_EN = 20 /* MtrrVarDramEn MTRR variable DRAM enable */
MTRR_TOM2_EN = 21 /* MtrrTom2En MTRR top of memory 2 enable */
PERF_CONTROL3 = 0x0C0010003 /* Performance event control three */
PERF_CONTROL3_RESERVE_L = 0x00200000 /* Preserve the reserved bits */
PERF_CONTROL3_RESERVE_H = 0x0FCF0 /* Preserve the reserved bits */
CONFIG_EVENT_L = 0x0F0E2 /* All cores with level detection */
CONFIG_EVENT_H = 4 /* Increment count by number of event */
/* occured in clock cycle */
EVENT_ENABLE = 22 /* Enable the event */
PERF_COUNTER3 = 0x0C0010007 /* Performance event counter three */
FUNC_3 = 3
MCA_NB_CFG = 0x44 /* MCA NB Configuration */
CPU_ERR_DIS = 6 /* CPU error response disable */
PRODUCT_INFO_REG1 = 0x1FC /* Product Information Register 1 */
# Local use flags, in upper most byte if ESI
FLAG_UNKNOWN_FAMILY = 24 # Signals that the family# of the installed processor is not recognized
FLAG_STACK_REENTRY = 25 # Signals that the environment has made a re-entry (2nd) call to set up the stack
FLAG_IS_PRIMARY = 26 # Signals that this core is the primary within the comoute unit
FLAG_CORE_NOT_IDENTIFIED = 27 # Signals that the cores/compute units of the installed processor is not recognized
FLAG_FORCE_32K_STACK = 28 # Signals that to force 32KB stack size for BSP core
CR0_MASK = ((1 << CR0_CD) | (1 << CR0_NW))
MSR_MASK = ((1 << MTRR_DEF_TYPE_EN)+(1 << MTRR_DEF_TYPE_FIX_EN))
/****************************************************************************
*
* CPU MACROS - PUBLIC
*
****************************************************************************/
.macro _WRMSR
.byte 0x0f, 0x30
.endm
.macro _RDMSR
.byte 0x0F, 0x32
.endm
.macro AMD_CPUID arg0
.ifb \arg0
mov $0x1, %eax
.byte 0x0F, 0x0A2 /* Execute instruction */
bswap %eax
xchg %ah, %al /* Ext model in al now */
rol $0x08, %eax /* Ext model in ah, model in al */
and $0x0FFCF, ax /* Keep 23:16, 7:6, 3:0 */
.else
mov \arg0, %eax
.byte 0x0F, 0x0A2
.endif
.endm
.macro MAKE_EXT_PCI_ADDR Seg, Bus, Dev, Func, Offset
mov $(1 << 31 | (Seg) << 28 | (((Offset) & (0x0F00)) >> 8) << 24 | (Bus) << 16 | (Dev) << 11 | (Func) << 8) | ((Offset) & (0xFC)), %eax
.endm
/****************************************************************************
*
* AMD_ENABLE_STACK_FAMILY_HOOK Macro - Stackless
*
* Set any family specific controls needed to enable the use of
* cache as general storage before main memory is available.
*
* Inputs:
* none
* Outputs:
* none
****************************************************************************/
.macro AMD_ENABLE_STACK_FAMILY_HOOK
// AMD_ENABLE_STACK_FAMILY_HOOK_F10
// AMD_ENABLE_STACK_FAMILY_HOOK_F12
// AMD_ENABLE_STACK_FAMILY_HOOK_F14
AMD_ENABLE_STACK_FAMILY_HOOK_F15
.endm
/****************************************************************************
*
* AMD_DISABLE_STACK_FAMILY_HOOK Macro - Stackless
*
* Return any family specific controls to their 'standard'
* settings for using cache with main memory.
*
* Inputs:
* none
* Outputs:
* none
****************************************************************************/
.macro AMD_DISABLE_STACK_FAMILY_HOOK
//AMD_DISABLE_STACK_FAMILY_HOOK_F10
//AMD_DISABLE_STACK_FAMILY_HOOK_F12
//AMD_DISABLE_STACK_FAMILY_HOOK_F14
AMD_DISABLE_STACK_FAMILY_HOOK_F15
.endm
/****************************************************************************
*
* GET_NODE_ID_CORE_ID Macro - Stackless
*
* Read family specific values to determine the node and core
* numbers for the core executing this code.
*
* Inputs:
* none
* Outputs:
* SI[7:0] = Core# (0..N, relative to node)
* SI[15:8]= Node# (0..N)
* SI[23:16]= reserved
* SI[24]= flag: 1=Family Unrecognized
* SI[25]= flag: 1=Interface re-entry call
* SI[26]= flag: 1=Core is primary of compute unit
* SI[31:27]= reserved, =0
****************************************************************************/
.macro GET_NODE_ID_CORE_ID
LOCAL node_core_exit
mov $-1, %si
//GET_NODE_ID_CORE_ID_F10
//GET_NODE_ID_CORE_ID_F12
//GET_NODE_ID_CORE_ID_F14
GET_NODE_ID_CORE_ID_F15
/*
* Check for unrecognized Family
*/
cmp $-1, %si # Has family (node/core) already been discovered?
jnz node_core_exit # Br if yes
mov $((1 << FLAG_UNKNOWN_FAMILY)+(1 << FLAG_IS_PRIMARY)), %esi # No, Set error code, Only let BSP continue
mov $APIC_BASE_ADDRESS, %ecx # MSR:0000_001B
_RDMSR
bt $APIC_BSC, %eax # Is this the BSC?
jc node_core_exit # Br if yes
hlt # Kill APs
node_core_exit:
.endm
/*****************************************************************************
** Family 15h MACROS
*****************************************************************************/
/*****************************************************************************
*
* AMD_ENABLE_STACK_FAMILY_HOOK_F15 Macro - Stackless
*
* Set any family specific controls needed to enable the use of
* cache as general storage before main memory is available.
*
* Inputs:
* ESI - node#, core#, flags from GET_NODE_ID_CORE_ID
* Outputs:
* none
*
* Family 15h requirements (BKDG #42301 section 2.3.3):
* * Paging must be disabled.
* * MSRC001_0015[INVD_WBINVD]=0
* * MSRC001_1020[DisSS]=1
* * MSRC001_1021[DIS_SPEC_TLB_RLD]=1
* * MSRC001_1022[DIS_SPEC_TLB_RLD]=1
* * MSRC001_1022[DisHwPf]=1
* * No INVD or WBINVD, no exceptions, page faults or interrupts
*****************************************************************************/
.macro AMD_ENABLE_STACK_FAMILY_HOOK_F15
LOCAL fam15_enable_stack_hook_exit
AMD_CPUID $CPUID_MODEL
mov %eax, %ebx # Save revision info to EBX
shr $20, %eax # AL = cpu extended family
cmp $0x06, %al # Is this family 15h?
jnz fam15_enable_stack_hook_exit # Br if no
bt $FLAG_STACK_REENTRY , %esi # Check if stack has already been set
jc fam15_skipClearingBit4
mov $HWCR, %ecx # MSR C001_0015
_RDMSR
btr $INVD_WBINVD, %eax # disable INVD -> WBINVD conversion
_WRMSR
fam15_skipClearingBit4:
#cz
mov $LS_CFG3, %ecx # MSR:C001_101C
_RDMSR
bts $DIS_SS_F15CZ, %eax # Turn on Streaming store functionality disabled bit
_WRMSR
mov $IC_CFG, %ecx # MSR:C001_1021
_RDMSR
bts $IC_DIS_SPEC_TLB_RLD, %eax # Turn on Disable speculative IC-TLB reloads bit
_WRMSR
mov $LS_CFG3, %ecx # MSR:C001_101C
_RDMSR
bts $DC_DIS_SPEC_TLB_RLD_F15CZ, %eax # Turn on Disable speculative DC-TLB reloads bit
bts $DC_DIS_HW_PF_F15CZ, %eax
_WRMSR
# Do CZ enable stack special
mov $CU_CFG, %ecx #MSR:C001_1023
_RDMSR
bt $L2_WAY_LOCK_EN, %eax
#.if (!carry?)
jc dofamily15w
bts $L2_WAY_LOCK_EN, %eax
or $L2_FIRST_LOCKED_WAY_OR_MASK, %eax
_WRMSR
#.endif
dofamily15w: # Do Standard Family 15 work
mov $CU_CFG3, %ecx # MSR:C001_102B
_RDMSR
btr $(COMBINE_CR0_CD - 32), %edx # Clear CombineCr0Cd bit
_WRMSR
fam15_enable_stack_hook_exit:
.endm
/*****************************************************************************
*
* AMD_DISABLE_STACK_FAMILY_HOOK_F15 Macro - Stackless
*
* Return any family specific controls to their 'standard'
* settings for using cache with main memory.
*
* Inputs:
* ESI - [31:24] flags; [15,8]= Node#; [7,0]= core#
* Outputs:
* none
*
* Family 15h requirements:
* * INVD or WBINVD
* * MSRC001_0015[INVD_WBINVD]=1
* * MSRC001_1020[DisSS]=0
* * MSRC001_1021[DIS_SPEC_TLB_RLD]=0
* * MSRC001_1022[DIS_SPEC_TLB_RLD]=0
* * MSRC001_1022[DIS_HW_PF]=0
*****************************************************************************/
.macro AMD_DISABLE_STACK_FAMILY_HOOK_F15
LOCAL fam15_disable_stack_hook_exit
LOCAL fam15_disable_stack_remote_read_exit
AMD_CPUID $CPUID_MODEL
mov %eax, %ebx # Save revision info to EBX
shr $20, %eax # AL = cpu extended family
cmp $0x06, %al # Is this family 15h?
jnz fam15_disable_stack_hook_exit # Br if no
mov %ebx, %edi # Save revision info to EDI
AMD_CPUID $AMD_CPUID_APIC
mov %cl, %al # AL = number of cores - 1
shr $APIC_ID_CORE_ID_SIZE, %cx # CL = ApicIdCoreIdSize
mov $1, %bx
shl %cl, %bl # BL = theoretical number of cores on socket
dec %bx # BL = core number on socket mask
mov %bl, %ah # AH = core number on socket mask
mov %edi, %ebx # Restore revision info to EBX
mov %ax, %di # DI[15:8] = core number mask, DI[7:0] = number of cores - 1
and $0x0F00FF, %ebx
mov %ebx, %eax
shr $8, %eax
or %ax, %bx # Save Extended Model, Model and Stepping to BX
# [11:8] = Extended Model, [7:4] = Model, [3:0] = Stepping (bx=0000000000010100, ok)
mov $APIC_BASE_ADDRESS, %ecx
_RDMSR # dx=0 ax=fee00800
mov %bx, %dx # Save Extended Model, Model and Stepping to DX
shl $16, %edx #EDX[31:16] = Extended Model, Model and Stepping
mov %eax ,%ebx # EBX = LAPIC base
xor %ecx ,%ecx # Zero out CU flags
bts $AMD_CU_NEED_TO_WAIT, %ecx # Default to waiting
bts $AMD_CU_SEND_INVD_MSG, %ecx # Default to signaling
mov %cr0, %eax
bt $CR0_PE, %ax # Are we in protected mode?
# .if (!carry?)
jc 1f
bts $AMD_CU_RESTORE_ES, %ecx # Indicate ES restore is required
mov %es, %cx # Save ES segment register to CX
xor %ax, %ax
mov %ax, %es # Set ES to big real mode selector for 4GB access
# .endif
1:
and $0x0F000, %bx # EBX = LAPIC base, offset 0
or $APIC_ID_REG, %bl #
mov %es:(%ebx), %eax # EAX[31:24] = APIC ID
shr $APIC20_APICID, %eax # AL = APIC ID
mov %al, %ah # AH = APIC ID
mov %di, %dx # DH = core mask
and %dh, %ah # AH = core number # ax=111 dx=01000F03
//1: jmp 1b
# .if (zero?)
jnz 1f
# Core 0 of a socket
btr $AMD_CU_SEND_INVD_MSG, %ecx # No need to signal after INVD
#.if (dl != 0)
cmp $0, %dl
jz 2f
# This socket has multiple cores
and $0xf000, %bx # EBX = LAPIC base, offset 0
or $APIC_MSG_REG, %bx
mov $APIC_MSG, %edi
mov %edi, %es:(%ebx) # Signal for non core 0s to complete CAR breakdown
jmp 1f
#.else
2: btr $AMD_CU_NEED_TO_WAIT, %ecx # No need to wait on a single core CPU
#.endif
# .endif
1:
bt $AMD_CU_NEED_TO_WAIT, %ecx #cx = c0000000
#.if (carry?)
jnc 1f
#.if (ah == dl)
cmp %dl, %ah
jnz 2f
# This is the highest numbered core on this socket -- wait on core 0
not %dh # Flip the mask to determine local core 0's APID ID
and %dh, %al # AL = target APIC ID # ax=310
jmp 3f
2: #.else
# All other cores (including core 0) wait on the next highest core.
# In this way, cores will halt in a cascading fashion down to 0.
inc %al
#.endif
3:
shl $APIC20_APICID, %eax
and $0x0F000, %bx
or $APIC_CMD_HI_REG, %bx
mov %eax, %es:(%ebx) # Set target APIC ID
# Use bits 23:16 as a timeout for unresponsive cores
ror $8, %ecx
mov $0xFF, %ch
stc
#.while (carry?)
5: jnc 4f
and $0xF000, %bx #EBX = LAPIC base, offset 0
or $APIC_CMD_LO_REG, %bx # bx = 00000000FEE00300
mov $CMD_REG_TO_READ_DATA, %eax
mov %eax, %es:(%ebx) #Fire remove read IPI
inc %ch #Pre increment the timeout
stc
#.while (carry?)
7: jnc 6f
dec %ch #Check the timeout
jz fam15_disable_stack_remote_read_exit
mov %es:(%ebx), %eax # ax = 0000000000020338
bt $DELIVERY_STS_BIT, %eax
jmp 7b
6: #.endw
stc
#.while (carry?)
7: jnc 6f
mov %es:(%ebx), %eax
and $REMOTE_READ_STS, %eax
#.if (eax == REMOTE_DELIVERY_PEND)
cmp $REMOTE_DELIVERY_PEND, %eax
jnz 8f
dec %ch # Check the timeout
jz fam15_disable_stack_hook_exit # Branch if there is an unreponsive core
stc
jmp 9f
8: #.else
clc
9: #.endif
jmp 7b
6: #.endw
#.if (eax == REMOTE_DELIVERY_DONE)
cmp $REMOTE_DELIVERY_DONE, %eax
jnz 6f
and $0x0F000, %bx #EBX = LAPIC base, offset 0
or $APIC_REMOTE_READ_REG, %bl
mov %es:(%ebx), %eax
#.if (eax == APIC_MSG)
cmp $APIC_MSG, %eax # ax=00000000FFC5BBB2
jnz 8f
clc
jmp 9f
#.else
8: stc
9: #.endif
jmp 7f
6: #.else
dec %ch
jz fam15_disable_stack_remote_read_exit
stc
7: #.endif
jmp 5b
4: #.endw
fam15_disable_stack_remote_read_exit:
rol $8, %ecx # Restore ECX
1: #.endif
# jmp 1b
bt $AMD_CU_RESTORE_ES, %ecx
#.if (carry?)
jnc 1f
mov %cx, %es
1:
mov %ecx, %edi
shr $16, %edx
//mov %dx, %bx
#Handshaking complete. Continue tearing down CAR.
#cz
mov $LS_CFG3, %ecx # MSR:C001_101C
_RDMSR
btr $DIS_SS_F15CZ, %eax # Turn on Streaming store functionality
_WRMSR
mov $IC_CFG, %ecx # MSR:C001_1021
_RDMSR
btr $IC_DIS_SPEC_TLB_RLD, %eax # Turn on speculative TLB reloads
_WRMSR
mov $LS_CFG3, %ecx # MSR:C001_101C
_RDMSR
btr $DC_DIS_SPEC_TLB_RLD_F15CZ, %eax # Turn on speculative TLB reloads
btr $DC_DIS_HW_PF_F15CZ, %eax # Turn on hardware prefetches
_WRMSR
#not cz
// mov $LS_CFG, %ecx # MSR:C001_1020
// #.if (bx != 0) ; Is this OR A0?
// cmp $0x0, %bx
// jz 0f
// _RDMSR
// btr $DIS_SS, %eax # Turn on Streaming store functionality
// _WRMSR
// #.endif
//0: # End workaround for errata 495 and 496
//
// inc %ecx #IC_CFG # MSR:C001_1021
// _RDMSR
// btr $IC_DIS_SPEC_TLB_RLD, %eax # Turn on speculative TLB reloads
// _WRMSR
//
// inc %ecx #DC_CFG # MSR:C001_1022
// _RDMSR
// btr $DC_DIS_SPEC_TLB_RLD, %eax # Turn on speculative TLB reloads
// #.if (bx != 0) # Is this rev A0?
// cmp $0, %bx
// jz 0f
// btr $DIS_HW_PF, %eax # Turn on hardware prefetches
// #.endif # End workaround for erratum 498
// 0:
// _WRMSR
# end of not cz
#--------------------------------------------------------------------------
# Begin critical sequence in which EAX, BX, ECX, and EDX must be preserved.
#--------------------------------------------------------------------------
mov $HWCR, %ecx # MSR:C001_0015h
_RDMSR
btr $INVD_WBINVD, %eax # Disable INVD -> WBINVD conversion
_WRMSR
wbinvd #bao # Clear the cache tag RAMs
# #.if (bh == 01h) || (bh == 03h) ; Is this TN or KM?
# cmp $01, %bh
# jz 4f
# cmp $03, %bh
# jnz 1f
#4:
mov $CU_CFG, %ecx # MSR:C001_1023
_RDMSR
shr $L2_FIRST_LOCKED_WAY, %eax
and $0x1F, %eax
#.if (eax == 01Fh)
cmp $0x1F, %eax #Check if way 15 of the L2 needs to be reserved
jnz 3f
_RDMSR
btr $L2_WAY_LOCK_EN, %eax
_WRMSR
3: #.endif
1: #.endif
#Do Standard Family 15 work
mov $HWCR, %ecx # MSR:C001_0015h
_RDMSR
bts $INVD_WBINVD, %eax # Turn on Conversion of INVD to WBINVD
_WRMSR
#.endif # end
0:
//
// #--------------------------------------------------------------------------
// # End critical sequence in which EAX, BX, ECX, and EDX must be preserved.
// #--------------------------------------------------------------------------
//
mov $CU_CFG3, %ecx # MSR:C001_102B
_RDMSR
bts $(COMBINE_CR0_CD - 32), %edx # Set CombineCr0Cd bit
_WRMSR
bt $AMD_CU_SEND_INVD_MSG, %edi
#.if (carry?)
jnc 1f
# Non core zero needs to signal to core 0 to proceed
mov $APIC_BASE_ADDRESS, %ecx
_RDMSR
mov %eax, %ebx # EBX = LAPIC base
and $0x0F000, %bx # EBX = LAPIC base, offset 0
or $APIC_MSG_REG, %bx
mov $APIC_MSG, %eax
mov %eax, %es:(%ebx) # Signal for core 0 to complete CAR breakdown
1: #.endif
fam15_disable_stack_hook_exit:
.endm
/*****************************************************************************
*
* GET_NODE_ID_CORE_ID_F15 Macro - Stackless
*
* Read family specific values to determine the node and core
* numbers for the core executing this code.
*
* Inputs:
* none
* Outputs:
* SI = core#, node# & flags (see GET_NODE_ID_CORE_ID macro above)
*****************************************************************************/
.macro GET_NODE_ID_CORE_ID_F15
LOCAL node_core_f15_exit
LOCAL node_core_f15_AP
LOCAL node_core_f15_shared
#define F15_L2Size 512
#define F15_ShareCores 2
#define F15_AllocMem 0
#define F15_AllocExe 0
#define F15_SzAddrBus 48
#define F15_pad 0
cmp $-1, %si # Has node/core already been discovered?
jnz node_core_f15_exit # Br if yes
AMD_CPUID $CPUID_MODEL
shr $12, %eax # AL = cpu extended family
cmp $06, %ah # Is this family 15h?
jnz node_core_f15_exit # Br if no
shr $4, %al # AL = cpu extended model
shr $16, %ebx # BH = LocalApicId
mov %al, %bl # BL = cpu extended model
# LoadTableAddress(FAM15H_INFO_STRUCT)
# movd mm5, eax # load pointer to Family Info Struc
xor %esi, %esi # Assume BSC, clear local flags
mov $APIC_BASE_ADDRESS, %ecx # MSR:0000_001B
_RDMSR
bt $APIC_BSC, %eax # Is this the BSC?
jnc node_core_f15_AP # Br if no
# This is the BSP.
# Enable routing tables on BSP (just in case the HT init code has not yet enabled them)
mov $0x8000C06C, %eax # PCI address for D18F0x6C Link Initialization Control Register
mov $0x0CF8, %dx
out %eax, %dx
add $4, %dx
in %dx, %eax
btr $0, %eax # Set LinkInitializationControl[RouteTblDis] = 0
out %eax, %dx
jmp node_core_f15_shared #
node_core_f15_AP:
//1: jmp 1b # not crash
mov %bl, %al # AL = cpu extended model
shr $8, %bx # BL = CPUID Fn0000_0001_EBX[LocalApicId]
// cmp $1, %al # Is This TN?
// jz 4f
// cmp $3, %al
// jnz node_core_f15_AP_not_TN
mov %bx, %si
jmp node_core_f15_shared
#
# This is an AP. Routing tables have been enabled by the HT Init process.
# Also, the MailBox register was set by the BSP during early init
# The Mailbox register content is formatted as follows:
# UINT32 Node:4; // The node id of Core's node.
# UINT32 Socket:4; // The socket of this Core's node.
# UINT32 Module:2; // The internal module number for Core's node.
# UINT32 ModuleType:2; // Single Module = 0, Multi-module = 1.
# UINT32 :20; // Reserved
#
#node_core_f15_AP_not_TN:
# mov $0x0C0000408, %ecx # Read the family 15h mailbox
# _RDMSR # MC4_MISC1[63:32]
# mov %dx, %si # SI = raw mailbox contents (will extract node# from this)
# shr $24, %ebx # BL = CPUID Fn0000_0001_EBX[LocalApicId]
# mov %bx, %di # DI = Initial APIC ID (will extract core# from this)
#
# AMD_CPUID $AMD_CPUID_APIC #
# shr $4, %ch # CH = ApicIdSize, #bits in APIC ID that show core#
# inc %cl # CL = Number of enabled cores in the socket
# mov %cx, %bx
#
# mov $NB_CFG, %ecx
# _RDMSR # EDX has InitApicIdCpuIdLo bit
#
# mov %bh, %cl # CL = APIC ID size
# mov $1, %al # Convert APIC ID size to an AND mask
# shl %cl, %al # AL = 2^APIC ID size
# dec %al # AL = mask for relative core number
# xor %ah, %ah # AX = mask for relative core number
# bt $(INIT_APIC_ID_CPU_ID_LO-32), %edx # InitApicIdCpuIdLo == 1?
# #.if (!carry?) # Br if yes
# jc 0f
# mov $8, %ch # Calculate core number shift count
# sub %cl, %ch # CH = core shift count
# mov %ch, %cl
# shr %cl, %di # Right justify core number
# #.endif
# 0:
# and %ax, %di # DI = socket-relative core number
#
# mov %si, %cx # CX = raw mailbox value
# shr $10, %cx # CL[1:0] = ModuleType or #nodes per socket (0-SCM, 1-MCM)
# and $3, %cl # Isolate ModuleType
# xor %bh, %bh # BX = Number of enabled cores in the socket
# shr %cl, %bx # BX = Number of enabled cores per node
# xor %dx, %dx # Clear upper word for div
# mov %di, %ax # AX = socket-relative core number
# div %bx # DX = node-relative core number
# movzx %si, %eax # Prepare return value
# and $0x000F, %ax # AX = node number
# shl $8,%ax # [15:8]=node#
# mov %dl, %al # [7:0]=core# (relative to node)
# mov %eax, %esi # ESI = node-relative core number
#
#
# determine if this core shares MTRRs
#
node_core_f15_shared:
mov $0x8000C580, %eax # Compute Unit Status
mov %si, %bx
shl $3, %bh # Move node# to PCI Dev# field
add %bh, %ah # Adjust for node number
mov $0x0CF8, %dx
out %eax, %dx
add $4, %dx
in %dx, %eax # [3:0]=Enabled# [19:16]=DualCore
# BL is MyCore#
mov $0x08, %cx # Use CH as 'first of pair' core#
#.while (cl > 0)
jmp 0f
8:
bt $0, %eax # Is pair enabled?
#.if (carry?) #
jnc 1f
mov $0x01, %bh # flag core as primary
bt $16, %eax # Is there a 2nd in the pair?
#.if (carry?) #
jnc 4f
#.break .if (ch == bl) # Does 1st match MyCore#?
cmp %bl, %ch
je 9f
inc %ch
xor %bh, %bh # flag core as NOT primary
#.break .if (ch == bl) # Does 2nd match MyCore#?
cmp %bl, %ch
je 9f
jmp 2f
#.else # No 2nd core
4:
#.break .if (ch == bl) # Does 1st match MyCore#?
cmp %bl, %ch
je 9f
#.endif
2:
inc %ch
#.endif
1:
shr $1, %eax
dec %cl
#.endw
0:
#.if (cl == 0)
cmp $0x0, %cl
ja 8b
9:
or %cl, %cl
jne 1f
#Error - core# didn't match Compute Unit Status content
bts $FLAG_CORE_NOT_IDENTIFIED, %esi
bts $FLAG_IS_PRIMARY, %esi # Set Is_Primary for unknowns
#.endif
1:
#.if (bh != 0) # Check state of primary for the matched core
or %bh, %bh
je 2f
bts $FLAG_IS_PRIMARY, %esi # Set shared flag into return value
#.endif
2:
node_core_f15_exit:
.endm
/*****************************************************************************
* AMD_ENABLE_STACK: Setup a stack
*
* In:
* EBX = Return address (preserved)
*
* Out:
* SS:ESP - Our new private stack location
*
* EAX = AGESA_STATUS
*
* ECX = Stack size in bytes
*
* Requirements:
* * This routine presently is limited to a max of 64 processor cores
* Preserved:
* ebx ebp
* Destroyed:
* eax, ecx, edx, edi, esi, ds, es, ss, esp
* mmx0, mmx1
*
* Description:
* Fixed MTRR address allocation to cores:
* The BSP gets 64K of stack, Core0 of each node gets 16K of stack, all other cores get 4K.
* There is a max of 1 BSP, 7 core0s and 56 other cores.
* Although each core has it's own cache storage, they share the address space. Each core must
* be assigned a private and unique address space for its stack. To support legacy systems,
* the stack needs to be within the legacy address space (1st 1Meg). Room must also be reserved
* for the other legacy elements (Interrupt vectors, BIOS ROM, video buffer, etc.)
*
* 80000h 40000h 00000h
* +----------+----------+----------+----------+----------+----------+----------+----------+
* 64K | | | | | | | | | 64K ea
* ea +----------+----------+----------+----------+----------+----------+----------+----------+
* | MTRR 0000_0250 MTRRfix64K_00000 |
* +----------+----------+----------+----------+----------+----------+----------+----------+
* | 7 , 6 | 5 , 4 | 3 , 2 | 1 , 0 | 0 | | | | <-node
* |7..1,7..1 |7..1,7..1 |7..1,7..1 |7..1,7..1 | 0 | | | | <-core
* +----------+----------+----------+----------+----------+----------+----------+----------+
*
* C0000h B0000h A0000h 90000h 80000h
* +------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+
*16K | | | | | | | | | | | | | | | | |
* ea +------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+
* | MTRR 0259 MTRRfix16K_A0000 | MTRR 0258 MTRRfix16K_80000 |
* +------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+
* | > Dis|play B|uffer | < | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | <-node
* | > T| e m |p o r |a r y | B u |f f e |r A |r e a<| 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <-core
* +------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+
*
* E0000h D0000h C0000h
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* 4K | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4K ea
* ea +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | 026B MTRRfix4K_D8000 | 026A MTRRfix4K_D0000 | 0269 MTRRfix4K_C8000 | 0268 MTRRfix4K_C0000 |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | | | | | | | | | | | | | | | | | >| V| I| D| E| O| |B |I |O |S | |A |r |e |a<|
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*
* 100000h F0000h E0000h
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4K ea
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | 026F MTRRfix4K_F8000 | 026E MTRRfix4K_F0000 | 026D MTRRfix4K_E8000 | 026C MTRRfix4K_E0000 |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | >|MA|IN| B|IO|S |RA|NG|E | | | | | | |< | >|EX|TE|ND|ED| B|IO|S |ZO|NE| | | | | |< |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*****************************************************************************/
.macro AMD_ENABLE_STACK
# These are local labels. Declared so linker doesn't cause 'redefined label' errors
LOCAL SetupStack
LOCAL Real16bMode
LOCAL Protected32Mode
LOCAL ClearTheStack
# Note that SS:ESP will be default stack. Note that this stack
# routine will not be used after memory has been initialized. Because
# of its limited lifetime, it will not conflict with typical PCI devices.
movd %ebx, %mm0 # Put return address in a safe place
movd %ebp, %mm1 # Save some other user registers
# get node id and core id of current executing core
GET_NODE_ID_CORE_ID # Sets ESI[23:16]=Shared core## SI[15,8]= Node## SI[7,0]= core# (relative to node)
# Note: ESI[31:24] are used for flags: Unrecognized Family, Is_Primary core, Stack already established
# determine if stack is already enabled. We are using the DefType MSR for this determination.
# It is =0 after reset; CAR setup sets it to enable the MTRRs
mov %cr0, %eax
test $CR0_MASK, %eax # Is cache disabled? (CD & NW bits)
jnz SetupStack # Jump if yes
mov $AMD_MTRR_DEFTYPE, %ecx # MSR:0000_02FF
_RDMSR
test $MSR_MASK, %eax # Are the default types enabled? (MTRR_DEF_TYPE_EN + MTRR_DEF_TYPE_FIX_EN)
jz SetupStack # Jump if no
or $FLAG_STACK_REENTRY, %esi # Bit25, indicate stack has already been initialized
SetupStack:
# Set node to map the first 16MB to node 0# 0000_0000 to 00FF_FFFF as DRAM
mov %esi, %ebx # Get my Node/Core info
xor %bl, %bl
shl $3, %bh # Isolate my node#, match alignment for PCI Dev#
mov $0x8000C144, %eax # D18F1x44:DRAM Base/Limit# N is Base, N+4 is Limit
add %bh, %ah
mov %eax, %ebx # Save PCI address for Base/Limit pair
mov $0x0CF8, %dx
out %eax, %dx
add $4, %dx
xor %eax, %eax # Least Significant bit is AD24 so 0 sets mask of 00FF_FFFF (16MB)
out %eax, %dx # DRAM Limit = node0, no interleave
mov %ebx, %eax
sub $4, %eax # Now point to the Base register
mov $0x0CF8, %dx
out %eax, %dx
add $4, %dx
mov $0x00000003, %eax # Set the read and write enable bits
out %eax, %dx # DRAM Base = 0x0000, R/W
AMD_ENABLE_STACK_FAMILY_HOOK
# Init CPU MSRs for our init routines
mov $MTRR_SYS_CFG, %ecx # SYS_CFG
_RDMSR
bts $MTRR_FIX_DRAM_MOD_EN, %eax # Turn on modification enable bit
_WRMSR
mov %esi, %eax
bt $FLAG_STACK_REENTRY, %eax # Is this a 2nd entry?
#.if (!carry?) # On a re-entry, do not clear MTRRs or reset TOM; just reset the stack SS:ESP
jc 0f
bt $FLAG_IS_PRIMARY, %eax # Is this core the primary in a compute unit?
#.if (carry?) # Families using shared groups do not need to clear the MTRRs since that is done at power-on reset
# Note: Relying on MSRs to be cleared to 0's at reset for families w/shared cores
# Clear all variable and Fixed MTRRs for non-shared cores
jnc 0f
mov $AMD_MTRR_VARIABLE_BASE0, %ecx
xor %eax, %eax
xor %edx, %edx
#.while (cl != 10h) # Variable MTRRphysBase[n] and MTRRphysMask[n]
jmp 1f
2:
_WRMSR
inc %cl
#.endw
1:
cmp $0x10, %cl
jne 2b
mov $AMD_MTRR_FIX64k_00000, %cx # MSR:0000_0250
_WRMSR
mov $AMD_MTRR_FIX16k_80000, %cx # MSR:0000_0258
_WRMSR
mov $AMD_MTRR_FIX16k_A0000, %cx # MSR:0000_0259
_WRMSR
mov $AMD_MTRR_FIX4k_C0000, %cx # Fixed 4Ks: MTRRfix4K_C0000 to MTRRfix4K_F8000
#.while (cl != 70h)
jmp 3f
4:
_WRMSR
inc %cl
#.endw
3:
cmp $0x70, %cl
jne 4b
# Set TOP_MEM (C001_001A) for non-shared cores to 16M. This will be increased at heap init.
# - not strictly needed since the FixedMTRRs take presedence.
mov $(16 * 1024 * 1024), %eax
mov $TOP_MEM, %ecx # MSR:C001_001A
_WRMSR
#.endif # End Is_Primary
#.endif # End Stack_ReEntry
0:
# Clear IORRs (C001_0016-19) and TOM2(C001_001D) for all cores
xor %eax, %eax
xor %edx, %edx
mov $IORR_BASE, %ecx # MSR:C001_0016 - 0019
#.while (cl != 1Ah)
jmp 1f
2:
_WRMSR
inc %cl
#.endw
1:
cmp $0x1A, %cl
jne 2b
mov $TOP_MEM2, %ecx # MSR:C001_001D
_WRMSR
# setup MTTRs for stacks
# A speculative read can be generated by a speculative fetch mis-aligned in a code zone
# or due to a data zone being interpreted as code. When a speculative read occurs outside a
# controlled region (intentionally used by software), it could cause an unwanted cache eviction.
# To prevent speculative reads from causing an eviction, the unused cache ranges are set
# to UC type. Only the actively used regions (stack, heap) are reflected in the MTRRs.
# Note: some core stack regions will share an MTRR since the control granularity is much
# larger than the allocated stack zone. The allocation algorithm must account for this 'extra'
# space covered by the MTRR when parseling out cache space for the various uses. In some cases
# this could reduce the amount of EXE cache available to a core. see cpuCacheInit.c
#
# Outcome of this block is that: (Note the MTRR map at the top of the file)
# ebp - start address of stack block
# ebx - [31:16] - MTRR MSR address
# - [15:8] - slot# in MTRR register
# - [7:0] - block size in #4K blocks
# review: ESI[31:24]=Flags; SI[15,8]= Node#; SI[7,0]= core# (relative to node)
#
mov %esi, %eax # Load Flags,node, core
#.if (al == 0) # Is a core 0?
or %al, %al
jne 1f
#.if (ah == 0) # Is Node 0? (BSP)
or %ah, %ah
jne 2f
# Is BSP, assign a 64K stack
mov $((AMD_MTRR_FIX64k_00000 << 16) + (3 << 8) + (BSP_STACK_SIZE / 0x1000)), %ebx
bt $FLAG_FORCE_32K_STACK, %eax
jnc w64k_here # Br if no
mov $((AMD_MTRR_FIX64k_00000 << 16) + (3 << 8) + (BSP_STACK_SIZE_32K / 0x1000)), %ebx
w64k_here:
mov $BSP_STACK_BASE_ADDR, %ebp
jmp 0f
#.else # node 1 to 7, core0
2:
# Is a Core0 of secondary node, assign 16K stacks
mov $AMD_MTRR_FIX16k_80000, %bx
shl $16, %ebx #
dec %ah #index from 0
mov %ah, %bh # Node# is used as slot#
mov $(CORE0_STACK_SIZE / 0x1000), %bl
mov %ah, %al # Base = (Node# * Size)#
mul %bl #
movzx %ax, %eax #
shl $12, %eax # Expand back to full byte count (* 4K)
add $CORE0_STACK_BASE_ADDR, %eax
mov %eax, %ebp
#.endif
jmp 0f
#.else #core 1 thru core 7
1:
# Is core 1-7 of any node, assign 4K stacks
mov $8, %al # CoreIndex = ( (Node# * 8) ...
mul %ah #
mov %si, %bx #
add %bl, %al # ... + Core#)#
mov $AMD_MTRR_FIX64k_00000, %bx
shl $16, %ebx #
mov %al, %bh # Slot# = (CoreIndex / 16) + 4#
shr $4, %bh #
add $4, %bh #
mov $(CORE1_STACK_SIZE / 0x1000), %bl
mul %bl # Base = ( (CoreIndex * Size) ...
movzx %ax, %eax #
shl $12, %eax # Expand back to full byte count (* 4K)
add $CORE1_STACK_BASE_ADDR, %eax # ... + Base_Addr)#
mov %eax, %ebp
#.endif
0:
# Now set the MTRR. Add this to already existing settings (don't clear any MTRR)
mov $WB_DRAM_TYPE, %edi # Load Cache type in 1st slot
mov %bh, %cl # ShiftCount = ((slot# ...
and $0x03, %cl # ... % 4) ...
shl $0x03, %cl # ... * 8)#
shl %cl, %edi # Cache type is now in correct position
ror $16, %ebx # Get the MTRR address
movzx %bx, %ecx #
rol $16, %ebx # Put slot# & size back in BX
_RDMSR # Read-modify-write the MSR
#.if (bh < 4) # Is value in lower or upper half of MSR?
cmp $4, %bh
jae 1f
or %edi, %eax #
jmp 0f
#.else
1: #
or %edi, %edx #
#.endif #
0:
_WRMSR #
# Enable MTRR defaults as UC type
mov $AMD_MTRR_DEFTYPE, %ecx # MSR:0000_02FF
_RDMSR # Read-modify-write the MSR
bts $MTRR_DEF_TYPE_EN, %eax # MtrrDefTypeEn
bts $MTRR_DEF_TYPE_FIX_EN, %eax # MtrrDefTypeFixEn
_WRMSR
# Close the modification window on the Fixed MTRRs
mov $MTRR_SYS_CFG, %ecx # MSR:0C001_0010
_RDMSR
bts $MTRR_FIX_DRAM_EN, %eax # MtrrFixDramEn
bts $MTRR_VAR_DRAM_EN, %eax # variable MTRR enable bit
btr $MTRR_FIX_DRAM_MOD_EN, %eax # Turn off modification enable bit
_WRMSR
# Enable caching in CR0
mov %cr0, %eax # Enable WT/WB cache
btr $CR0_PG, %eax # Make sure paging is disabled
btr $CR0_CD, %eax # Clear CR0 NW and CD
btr $CR0_NW, %eax
mov %eax, %cr0
# Use the Stack Base & size to calculate SS and ESP values
# review:
# esi[31:24]=Flags; esi[15,8]= Node#; esi[7,0]= core# (relative to node)
# ebp - start address of stack block
# ebx - [31:16] - MTRR MSR address
# - [15:8] - slot# in MTRR register
# - [7:0] - block size in #4K blocks
#
mov %ebp, %esp # Initialize the stack pointer
mov %esp, %edi # Copy the stack start to edi
movzx %bl, %bx
movzx %bx, %ebx # Clear upper ebx, don't need MSR addr anymore
shl $12, %ebx # Make size full byte count (* 4K)
add %ebx, %esp # Set the Stack Pointer as full linear address
sub $4, %esp
#
# review:
# esi[31:24]=Flags; esi[15,8]= Node#; esi[7,0]= core# (relative to node)
# edi - 32b start address of stack block
# ebx - size of stack block
# esp - 32b linear stack pointer
#
# Determine mode for SS base;
mov %cr0, %ecx # Check for 32-bit protect mode
bt $CR0_PE, %ecx #
#.if (!carry?) # PE=0 means real mode
jc Protected32Mode
mov %cs, %cx # PE=1
cmp $0x0D000, %cx # Check for CS
jb Protected32Mode # If CS < D000, it is a selector instead of a segment
# alter SS:ESP for 16b Real Mode:
Real16bMode:
mov %edi, %eax
shr $4, %eax # Create a Real Mode segment for ss, ds, es
mov %ax, %ss
mov %ax, %ds
mov %ax, %es
shl $4, %eax
sub %eax, %edi # Adjust the clearing pointer for Seg:Offset mode
mov %ebx, %esp # Make SP an offset from SS
sub $4, %esp #
# .endif # endif
# #else
# Default is to use Protected 32b Mode
#.endif
;
Protected32Mode:
#
# Clear The Stack
# Now that we have set the location and the MTRRs, initialize the cache by
# reading then writing to zero all of the stack area.
# review:
# ss - Stack base
# esp - stack pointer
# ebx - size of stack block
# esi[31:24]=Flags; esi[15,8]= Node#; esi[7,0]= core# (relative to node)
# edi - address of start of stack block
#
ClearTheStack: # Stack base is in SS, stack pointer is in ESP
shr $2, %ebx # ebx = stack block size in dwords
mov %bx, %cx #
# Check our flags - Don't clear an existing stack
#.if ( !(esi & 0FF000000h)) # Check our flags
test $(1 << FLAG_STACK_REENTRY), %esi
jne 1f
cld
mov %edi, %esi
rep lodsl (%esi) # Pre-load the range
xor %eax, %eax
mov %bx, %cx
mov %edi, %esi # Preserve base for push on stack
rep stosl (%edi) # Clear the range
movl $0x0ABCDDCBA, (%esp) # Put marker in top stack dword
shl $2, %ebx # Put stack size and base
push %ebx # in top of stack
push %esi
mov %ebx, %ecx # Return size of stack in bytes
xor %eax, %eax # eax = 0 : no error return code
jmp 0f
#.else
1:
movzx %cx, %ecx
shl $2, %ecx # Return size of stack in bytes
mov %esi, %eax
shr $24, %eax # Keep the flags as part of the error report
or $0x40000000, %eax # eax = AGESA_WARNING (Stack has already been set up)
#.endif
0:
movd %mm0, %ebx # Restore return address
movd %mm1, %ebp
.endm
/*****************************************************************************
* AMD_DISABLE_STACK: Destroy the stack inside the cache. This routine
* should only be executed on the BSP
*
* In:
* none
*
* Out:
* EAX = AGESA_SUCCESS
*
* Preserved:
* ebx
* Destroyed:
* eax, ecx, edx, esp
*****************************************************************************/
.macro AMD_DISABLE_STACK
mov %ebx, %esp # Save return address
# get node/core/flags of current executing core
GET_NODE_ID_CORE_ID # Sets ESI[15,8]= Node#; ESI[7,0]= core# (relative to node)
#1: jmp 1b
# Turn on modification enable bit
mov $MTRR_SYS_CFG, %ecx # MSR:C001_0010
_RDMSR
bts $MTRR_FIX_DRAM_MOD_EN, %eax # Enable modifications
_WRMSR
# Set lower 640K MTRRs for Write-Back memory caching
mov $AMD_MTRR_FIX64k_00000, %ecx
mov $0x1E1E1E1E, %eax
mov %eax, %edx
_WRMSR # 0 - 512K = WB Mem
mov $AMD_MTRR_FIX16k_80000, %ecx
_WRMSR # 512K - 640K = WB Mem
# Turn off modification enable bit
mov $MTRR_SYS_CFG, %ecx # MSR:C001_0010
_RDMSR
btr $MTRR_FIX_DRAM_MOD_EN, %eax # Disable modification
_WRMSR
AMD_DISABLE_STACK_FAMILY_HOOK # Re-Enable 'normal' cache operations
mov %esp, %ebx
xor %eax, %eax
.endm