blob: 30c1ecd638bb72379c3776a3f41c36b03b57d31b [file] [log] [blame]
/*
* dhcpcd - DHCP client daemon
* Copyright (c) 2006-2013 Roy Marples <roy@marples.name>
* All rights reserved
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#ifdef __linux__
# include <asm/types.h> /* for systems with broken headers */
# include <linux/rtnetlink.h>
#endif
#include <arpa/inet.h>
#include <net/route.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#define __FAVOR_BSD /* Nasty glibc hack so we can use BSD semantics for UDP */
#include <netinet/udp.h>
#undef __FAVOR_BSD
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>
#include "arp.h"
#include "config.h"
#include "common.h"
#include "dhcp.h"
#include "dhcpcd.h"
#include "dhcp-common.h"
#include "duid.h"
#include "eloop.h"
#include "ipv4.h"
#include "ipv4ll.h"
#include "script.h"
#define DAD "Duplicate address detected"
#define DHCP_MIN_LEASE 20
static uint8_t *packet;
/* Our aggregate option buffer.
* We ONLY use this when options are split, which for most purposes is
* practically never. See RFC3396 for details. */
static uint8_t *opt_buffer;
#define IPV4A ADDRIPV4 | ARRAY
#define IPV4R ADDRIPV4 | REQUEST
/* We should define a maximum for the NAK exponential backoff */
#define NAKOFF_MAX 60
/* Wait N nanoseconds between sending a RELEASE and dropping the address.
* This gives the kernel enough time to actually send it. */
#define RELEASE_DELAY_S 0
#define RELEASE_DELAY_NS 10000000
struct dhcp_op {
uint8_t value;
const char *name;
};
static const struct dhcp_op dhcp_ops[] = {
{ DHCP_DISCOVER, "DISCOVER" },
{ DHCP_OFFER, "OFFER" },
{ DHCP_REQUEST, "REQUEST" },
{ DHCP_DECLINE, "DECLINE" },
{ DHCP_ACK, "ACK" },
{ DHCP_NAK, "NAK" },
{ DHCP_RELEASE, "RELEASE" },
{ DHCP_INFORM, "INFORM" },
{ 0, NULL }
};
const struct dhcp_opt dhcp_opts[] = {
{ 1, ADDRIPV4 | REQUEST, "subnet_mask" },
/* RFC 3442 states that the CSR has to come before all other
* routes. For completeness, we also specify static routes,
* then routers. */
{ 121, RFC3442, "classless_static_routes" },
{ 249, RFC3442, "ms_classless_static_routes" },
{ 33, IPV4A | REQUEST, "static_routes" },
{ 3, IPV4A | REQUEST, "routers" },
{ 2, UINT32, "time_offset" },
{ 4, IPV4A, "time_servers" },
{ 5, IPV4A, "ien116_name_servers" },
{ 6, IPV4A, "domain_name_servers" },
{ 7, IPV4A, "log_servers" },
{ 8, IPV4A, "cookie_servers" },
{ 9, IPV4A, "lpr_servers" },
{ 10, IPV4A, "impress_servers" },
{ 11, IPV4A, "resource_location_servers" },
{ 12, STRING, "host_name" },
{ 13, UINT16, "boot_size" },
{ 14, STRING, "merit_dump" },
{ 15, STRING, "domain_name" },
{ 16, ADDRIPV4, "swap_server" },
{ 17, STRING, "root_path" },
{ 18, STRING, "extensions_path" },
{ 19, UINT8, "ip_forwarding" },
{ 20, UINT8, "non_local_source_routing" },
{ 21, IPV4A, "policy_filter" },
{ 22, SINT16, "max_dgram_reassembly" },
{ 23, UINT16, "default_ip_ttl" },
{ 24, UINT32, "path_mtu_aging_timeout" },
{ 25, UINT16 | ARRAY, "path_mtu_plateau_table" },
{ 26, UINT16, "interface_mtu" },
{ 27, UINT8, "all_subnets_local" },
{ 28, ADDRIPV4 | REQUEST, "broadcast_address" },
{ 29, UINT8, "perform_mask_discovery" },
{ 30, UINT8, "mask_supplier" },
{ 31, UINT8, "router_discovery" },
{ 32, ADDRIPV4, "router_solicitation_address" },
{ 34, UINT8, "trailer_encapsulation" },
{ 35, UINT32, "arp_cache_timeout" },
{ 36, UINT16, "ieee802_3_encapsulation" },
{ 37, UINT8, "default_tcp_ttl" },
{ 38, UINT32, "tcp_keepalive_interval" },
{ 39, UINT8, "tcp_keepalive_garbage" },
{ 40, STRING, "nis_domain" },
{ 41, IPV4A, "nis_servers" },
{ 42, IPV4A, "ntp_servers" },
{ 43, STRING, "vendor_encapsulated_options" },
{ 44, IPV4A, "netbios_name_servers" },
{ 45, ADDRIPV4, "netbios_dd_server" },
{ 46, UINT8, "netbios_node_type" },
{ 47, STRING, "netbios_scope" },
{ 48, IPV4A, "font_servers" },
{ 49, IPV4A, "x_display_manager" },
{ 50, ADDRIPV4, "dhcp_requested_address" },
{ 51, UINT32 | REQUEST, "dhcp_lease_time" },
{ 52, UINT8, "dhcp_option_overload" },
{ 53, UINT8, "dhcp_message_type" },
{ 54, ADDRIPV4, "dhcp_server_identifier" },
{ 55, UINT8 | ARRAY, "dhcp_parameter_request_list" },
{ 56, STRING, "dhcp_message" },
{ 57, UINT16, "dhcp_max_message_size" },
{ 58, UINT32 | REQUEST, "dhcp_renewal_time" },
{ 59, UINT32 | REQUEST, "dhcp_rebinding_time" },
{ 64, STRING, "nisplus_domain" },
{ 65, IPV4A, "nisplus_servers" },
{ 66, STRING, "tftp_server_name" },
{ 67, STRING, "bootfile_name" },
{ 68, IPV4A, "mobile_ip_home_agent" },
{ 69, IPV4A, "smtp_server" },
{ 70, IPV4A, "pop_server" },
{ 71, IPV4A, "nntp_server" },
{ 72, IPV4A, "www_server" },
{ 73, IPV4A, "finger_server" },
{ 74, IPV4A, "irc_server" },
{ 75, IPV4A, "streettalk_server" },
{ 76, IPV4A, "streettalk_directory_assistance_server" },
{ 77, STRING, "user_class" },
{ 80, FLAG | NOREQ, "rapid_commit" },
{ 81, STRING | RFC3397, "fqdn" },
{ 85, IPV4A, "nds_servers" },
{ 86, STRING, "nds_tree_name" },
{ 87, STRING, "nds_context" },
{ 88, STRING | RFC3397, "bcms_controller_names" },
{ 89, IPV4A, "bcms_controller_address" },
{ 91, UINT32, "client_last_transaction_time" },
{ 92, IPV4A, "associated_ip" },
{ 98, STRING, "uap_servers" },
{ 100, STRING, "posix_timezone" },
{ 101, STRING, "tzdb_timezone" },
{ 112, IPV4A, "netinfo_server_address" },
{ 113, STRING, "netinfo_server_tag" },
{ 114, STRING, "default_url" },
{ 118, ADDRIPV4, "subnet_selection" },
{ 119, STRING | RFC3397, "domain_search" },
{ 120, STRING | RFC3361, "sip_server" },
{ 212, RFC5969, "sixrd" },
{ 0, 0, NULL }
};
static const char *dhcp_params[] = {
"ip_address",
"subnet_cidr",
"network_number",
"filename",
"server_name",
NULL
};
struct udp_dhcp_packet
{
struct ip ip;
struct udphdr udp;
struct dhcp_message dhcp;
};
static const size_t udp_dhcp_len = sizeof(struct udp_dhcp_packet);
static int dhcp_open(struct interface *);
void
dhcp_printoptions(void)
{
const struct dhcp_opt *opt;
const char **p;
for (p = dhcp_params; *p; p++)
printf(" %s\n", *p);
for (opt = dhcp_opts; opt->option; opt++)
if (opt->var)
printf("%03d %s\n", opt->option, opt->var);
}
static int
validate_length(uint8_t option, int dl, int *type)
{
const struct dhcp_opt *opt;
ssize_t sz;
if (dl == 0)
return -1;
for (opt = dhcp_opts; opt->option; opt++) {
if (opt->option != option)
continue;
if (type)
*type = opt->type;
if (opt->type == 0 ||
opt->type & (STRING | RFC3442 | RFC5969))
return dl;
if (opt->type & ADDRIPV4 && opt->type & ARRAY) {
if (dl < (int)sizeof(uint32_t))
return -1;
return dl - (dl % sizeof(uint32_t));
}
sz = 0;
if (opt->type & (UINT32 | ADDRIPV4))
sz = sizeof(uint32_t);
if (opt->type & UINT16)
sz = sizeof(uint16_t);
if (opt->type & UINT8)
sz = sizeof(uint8_t);
/* If we don't know the size, assume it's valid */
if (sz == 0)
return dl;
return (dl < sz ? -1 : sz);
}
/* unknown option, so let it pass */
return dl;
}
#ifdef DEBUG_MEMORY
static void
free_option_buffer(void)
{
free(packet);
free(opt_buffer);
}
#endif
#define get_option_raw(dhcp, opt) get_option(dhcp, opt, NULL, NULL)
static const uint8_t *
get_option(const struct dhcp_message *dhcp, uint8_t opt, int *len, int *type)
{
const uint8_t *p = dhcp->options;
const uint8_t *e = p + sizeof(dhcp->options);
uint8_t l, ol = 0;
uint8_t o = 0;
uint8_t overl = 0;
uint8_t *bp = NULL;
const uint8_t *op = NULL;
ssize_t bl = 0;
while (p < e) {
o = *p++;
if (o == opt) {
if (op) {
if (!opt_buffer) {
opt_buffer = malloc(sizeof(*dhcp));
if (opt_buffer == NULL)
return NULL;
#ifdef DEBUG_MEMORY
atexit(free_option_buffer);
#endif
}
if (!bp)
bp = opt_buffer;
memcpy(bp, op, ol);
bp += ol;
}
ol = *p;
op = p + 1;
bl += ol;
}
switch (o) {
case DHO_PAD:
continue;
case DHO_END:
if (overl & 1) {
/* bit 1 set means parse boot file */
overl &= ~1;
p = dhcp->bootfile;
e = p + sizeof(dhcp->bootfile);
} else if (overl & 2) {
/* bit 2 set means parse server name */
overl &= ~2;
p = dhcp->servername;
e = p + sizeof(dhcp->servername);
} else
goto exit;
break;
case DHO_OPTIONSOVERLOADED:
/* Ensure we only get this option once */
if (!overl)
overl = p[1];
break;
}
l = *p++;
p += l;
}
exit:
bl = validate_length(opt, bl, type);
if (bl == -1) {
errno = EINVAL;
return NULL;
}
if (len)
*len = bl;
if (bp) {
memcpy(bp, op, ol);
return (const uint8_t *)opt_buffer;
}
if (op)
return op;
errno = ENOENT;
return NULL;
}
int
get_option_addr(struct in_addr *a, const struct dhcp_message *dhcp,
uint8_t option)
{
const uint8_t *p = get_option_raw(dhcp, option);
if (!p)
return -1;
memcpy(&a->s_addr, p, sizeof(a->s_addr));
return 0;
}
int
get_option_uint32(uint32_t *i, const struct dhcp_message *dhcp, uint8_t option)
{
const uint8_t *p = get_option_raw(dhcp, option);
uint32_t d;
if (!p)
return -1;
memcpy(&d, p, sizeof(d));
*i = ntohl(d);
return 0;
}
int
get_option_uint16(uint16_t *i, const struct dhcp_message *dhcp, uint8_t option)
{
const uint8_t *p = get_option_raw(dhcp, option);
uint16_t d;
if (!p)
return -1;
memcpy(&d, p, sizeof(d));
*i = ntohs(d);
return 0;
}
int
get_option_uint8(uint8_t *i, const struct dhcp_message *dhcp, uint8_t option)
{
const uint8_t *p = get_option_raw(dhcp, option);
if (!p)
return -1;
if (i)
*i = *(p);
return 0;
}
ssize_t
decode_rfc3442(char *out, ssize_t len, int pl, const uint8_t *p)
{
const uint8_t *e;
ssize_t b, bytes = 0, ocets;
uint8_t cidr;
struct in_addr addr;
char *o = out;
/* Minimum is 5 -first is CIDR and a router length of 4 */
if (pl < 5) {
errno = EINVAL;
return -1;
}
e = p + pl;
while (p < e) {
cidr = *p++;
if (cidr > 32) {
errno = EINVAL;
return -1;
}
ocets = (cidr + 7) / 8;
if (!out) {
p += 4 + ocets;
bytes += ((4 * 4) * 2) + 4;
continue;
}
if ((((4 * 4) * 2) + 4) > len) {
errno = ENOBUFS;
return -1;
}
if (o != out) {
*o++ = ' ';
len--;
}
/* If we have ocets then we have a destination and netmask */
if (ocets > 0) {
addr.s_addr = 0;
memcpy(&addr.s_addr, p, ocets);
b = snprintf(o, len, "%s/%d", inet_ntoa(addr), cidr);
p += ocets;
} else
b = snprintf(o, len, "0.0.0.0/0");
o += b;
len -= b;
/* Finally, snag the router */
memcpy(&addr.s_addr, p, 4);
p += 4;
b = snprintf(o, len, " %s", inet_ntoa(addr));
o += b;
len -= b;
}
if (out)
return o - out;
return bytes;
}
static struct rt_head *
decode_rfc3442_rt(int dl, const uint8_t *data)
{
const uint8_t *p = data;
const uint8_t *e;
uint8_t cidr;
size_t ocets;
struct rt_head *routes;
struct rt *rt = NULL;
/* Minimum is 5 -first is CIDR and a router length of 4 */
if (dl < 5)
return NULL;
routes = malloc(sizeof(*routes));
TAILQ_INIT(routes);
e = p + dl;
while (p < e) {
cidr = *p++;
if (cidr > 32) {
ipv4_freeroutes(routes);
errno = EINVAL;
return NULL;
}
rt = calloc(1, sizeof(*rt));
if (rt == NULL) {
syslog(LOG_ERR, "%s: %m", __func__);
ipv4_freeroutes(routes);
return NULL;
}
TAILQ_INSERT_TAIL(routes, rt, next);
ocets = (cidr + 7) / 8;
/* If we have ocets then we have a destination and netmask */
if (ocets > 0) {
memcpy(&rt->dest.s_addr, p, ocets);
p += ocets;
rt->net.s_addr = htonl(~0U << (32 - cidr));
}
/* Finally, snag the router */
memcpy(&rt->gate.s_addr, p, 4);
p += 4;
}
return routes;
}
char *
decode_rfc3361(int dl, const uint8_t *data)
{
uint8_t enc;
unsigned int l;
char *sip = NULL;
struct in_addr addr;
char *p;
if (dl < 2) {
errno = EINVAL;
return 0;
}
enc = *data++;
dl--;
switch (enc) {
case 0:
if ((l = decode_rfc3397(NULL, 0, dl, data)) > 0) {
sip = malloc(l);
if (sip == NULL)
return 0;
decode_rfc3397(sip, l, dl, data);
}
break;
case 1:
if (dl == 0 || dl % 4 != 0) {
errno = EINVAL;
break;
}
addr.s_addr = INADDR_BROADCAST;
l = ((dl / sizeof(addr.s_addr)) * ((4 * 4) + 1)) + 1;
sip = p = malloc(l);
if (sip == NULL)
return 0;
while (dl != 0) {
memcpy(&addr.s_addr, data, sizeof(addr.s_addr));
data += sizeof(addr.s_addr);
p += snprintf(p, l - (p - sip), "%s ", inet_ntoa(addr));
dl -= sizeof(addr.s_addr);
}
*--p = '\0';
break;
default:
errno = EINVAL;
return 0;
}
return sip;
}
/* Decode an RFC5969 6rd order option into a space
* separated string. Returns length of string (including
* terminating zero) or zero on error. */
ssize_t
decode_rfc5969(char *out, ssize_t len, int pl, const uint8_t *p)
{
uint8_t ipv4masklen, ipv6prefixlen;
uint8_t ipv6prefix[16];
uint8_t br[4];
int i;
ssize_t b, bytes = 0;
if (pl < 22) {
errno = EINVAL;
return 0;
}
ipv4masklen = *p++;
pl--;
ipv6prefixlen = *p++;
pl--;
for (i = 0; i < 16; i++) {
ipv6prefix[i] = *p++;
pl--;
}
if (out) {
b= snprintf(out, len,
"%d %d "
"%02x%02x:%02x%02x:"
"%02x%02x:%02x%02x:"
"%02x%02x:%02x%02x:"
"%02x%02x:%02x%02x",
ipv4masklen, ipv6prefixlen,
ipv6prefix[0], ipv6prefix[1], ipv6prefix[2], ipv6prefix[3],
ipv6prefix[4], ipv6prefix[5], ipv6prefix[6], ipv6prefix[7],
ipv6prefix[8], ipv6prefix[9], ipv6prefix[10],ipv6prefix[11],
ipv6prefix[12],ipv6prefix[13],ipv6prefix[14], ipv6prefix[15]
);
len -= b;
out += b;
bytes += b;
} else {
bytes += 16 * 2 + 8 + 2 + 1 + 2;
}
while (pl >= 4) {
br[0] = *p++;
br[1] = *p++;
br[2] = *p++;
br[3] = *p++;
pl -= 4;
if (out) {
b= snprintf(out, len, " %d.%d.%d.%d",
br[0], br[1], br[2], br[3]);
len -= b;
out += b;
bytes += b;
} else {
bytes += (4 * 4);
}
}
return bytes;
}
char *
get_option_string(const struct dhcp_message *dhcp, uint8_t option)
{
int type = 0;
int len;
const uint8_t *p;
char *s;
p = get_option(dhcp, option, &len, &type);
if (!p || *p == '\0')
return NULL;
if (type & RFC3397) {
type = decode_rfc3397(NULL, 0, len, p);
if (!type) {
errno = EINVAL;
return NULL;
}
s = malloc(sizeof(char) * type);
if (s)
decode_rfc3397(s, type, len, p);
return s;
}
if (type & RFC3361)
return decode_rfc3361(len, p);
s = malloc(sizeof(char) * (len + 1));
if (s) {
memcpy(s, p, len);
s[len] = '\0';
}
return s;
}
/* This calculates the netmask that we should use for static routes.
* This IS different from the calculation used to calculate the netmask
* for an interface address. */
static uint32_t
route_netmask(uint32_t ip_in)
{
/* used to be unsigned long - check if error */
uint32_t p = ntohl(ip_in);
uint32_t t;
if (IN_CLASSA(p))
t = ~IN_CLASSA_NET;
else {
if (IN_CLASSB(p))
t = ~IN_CLASSB_NET;
else {
if (IN_CLASSC(p))
t = ~IN_CLASSC_NET;
else
t = 0;
}
}
while (t & p)
t >>= 1;
return (htonl(~t));
}
/* We need to obey routing options.
* If we have a CSR then we only use that.
* Otherwise we add static routes and then routers. */
struct rt_head *
get_option_routes(struct interface *ifp, const struct dhcp_message *dhcp)
{
struct if_options *ifo = ifp->options;
const uint8_t *p;
const uint8_t *e;
struct rt_head *routes = NULL;
struct rt *route = NULL;
int len;
const char *csr = "";
/* If we have CSR's then we MUST use these only */
if (!has_option_mask(ifo->nomask, DHO_CSR))
p = get_option(dhcp, DHO_CSR, &len, NULL);
else
p = NULL;
/* Check for crappy MS option */
if (!p && !has_option_mask(ifo->nomask, DHO_MSCSR)) {
p = get_option(dhcp, DHO_MSCSR, &len, NULL);
if (p)
csr = "MS ";
}
if (p) {
routes = decode_rfc3442_rt(len, p);
if (routes) {
if (!(ifo->options & DHCPCD_CSR_WARNED)) {
syslog(LOG_DEBUG,
"%s: using %sClassless Static Routes",
ifp->name, csr);
ifo->options |= DHCPCD_CSR_WARNED;
}
return routes;
}
}
/* OK, get our static routes first. */
routes = malloc(sizeof(*routes));
if (routes == NULL) {
syslog(LOG_ERR, "%s: %m", __func__);
return NULL;
}
TAILQ_INIT(routes);
if (!has_option_mask(ifo->nomask, DHO_STATICROUTE))
p = get_option(dhcp, DHO_STATICROUTE, &len, NULL);
else
p = NULL;
if (p) {
e = p + len;
while (p < e) {
route = calloc(1, sizeof(*route));
if (route == NULL) {
syslog(LOG_ERR, "%s: %m", __func__);
ipv4_freeroutes(routes);
return NULL;
}
memcpy(&route->dest.s_addr, p, 4);
p += 4;
memcpy(&route->gate.s_addr, p, 4);
p += 4;
route->net.s_addr = route_netmask(route->dest.s_addr);
TAILQ_INSERT_TAIL(routes, route, next);
}
}
/* Now grab our routers */
if (!has_option_mask(ifo->nomask, DHO_ROUTER))
p = get_option(dhcp, DHO_ROUTER, &len, NULL);
else
p = NULL;
if (p) {
e = p + len;
while (p < e) {
route = calloc(1, sizeof(*route));
if (route == NULL) {
syslog(LOG_ERR, "%s: %m", __func__);
ipv4_freeroutes(routes);
return NULL;
}
memcpy(&route->gate.s_addr, p, 4);
p += 4;
TAILQ_INSERT_TAIL(routes, route, next);
}
}
return routes;
}
#define PUTADDR(_type, _val) \
{ \
*p++ = _type; \
*p++ = 4; \
memcpy(p, &_val.s_addr, 4); \
p += 4; \
}
int
dhcp_message_add_addr(struct dhcp_message *dhcp,
uint8_t type, struct in_addr addr)
{
uint8_t *p;
size_t len;
p = dhcp->options;
while (*p != DHO_END) {
p++;
p += *p + 1;
}
len = p - (uint8_t *)dhcp;
if (len + 6 > sizeof(*dhcp)) {
errno = ENOMEM;
return -1;
}
PUTADDR(type, addr);
*p = DHO_END;
return 0;
}
ssize_t
make_message(struct dhcp_message **message,
const struct interface *iface,
uint8_t type)
{
struct dhcp_message *dhcp;
uint8_t *m, *lp, *p;
uint8_t *n_params = NULL;
uint32_t ul;
uint16_t sz;
size_t len;
const struct dhcp_opt *opt;
const struct if_options *ifo = iface->options;
const struct dhcp_state *state = D_CSTATE(iface);
const struct dhcp_lease *lease = &state->lease;
time_t up = uptime() - state->start_uptime;
const char *hostname;
dhcp = calloc(1, sizeof (*dhcp));
if (dhcp == NULL)
return -1;
m = (uint8_t *)dhcp;
p = dhcp->options;
if ((type == DHCP_INFORM || type == DHCP_RELEASE ||
(type == DHCP_REQUEST &&
state->net.s_addr == lease->net.s_addr &&
(state->new == NULL ||
state->new->cookie == htonl(MAGIC_COOKIE)))))
{
dhcp->ciaddr = state->addr.s_addr;
/* In-case we haven't actually configured the address yet */
if (type == DHCP_INFORM && state->addr.s_addr == 0)
dhcp->ciaddr = lease->addr.s_addr;
}
dhcp->op = DHCP_BOOTREQUEST;
dhcp->hwtype = iface->family;
switch (iface->family) {
case ARPHRD_ETHER:
case ARPHRD_IEEE802:
dhcp->hwlen = iface->hwlen;
memcpy(&dhcp->chaddr, &iface->hwaddr, iface->hwlen);
break;
}
if (ifo->options & DHCPCD_BROADCAST &&
dhcp->ciaddr == 0 &&
type != DHCP_DECLINE &&
type != DHCP_RELEASE)
dhcp->flags = htons(BROADCAST_FLAG);
if (type != DHCP_DECLINE && type != DHCP_RELEASE) {
if (up < 0 || up > (time_t)UINT16_MAX)
dhcp->secs = htons((uint16_t)UINT16_MAX);
else
dhcp->secs = htons(up);
}
dhcp->xid = htonl(state->xid);
dhcp->cookie = htonl(MAGIC_COOKIE);
*p++ = DHO_MESSAGETYPE;
*p++ = 1;
*p++ = type;
if (state->clientid) {
*p++ = DHO_CLIENTID;
memcpy(p, state->clientid, state->clientid[0] + 1);
p += state->clientid[0] + 1;
}
if (lease->addr.s_addr && lease->cookie == htonl(MAGIC_COOKIE)) {
if (type == DHCP_DECLINE ||
(type == DHCP_REQUEST &&
lease->addr.s_addr != state->addr.s_addr))
{
PUTADDR(DHO_IPADDRESS, lease->addr);
if (lease->server.s_addr)
PUTADDR(DHO_SERVERID, lease->server);
}
if (type == DHCP_RELEASE) {
if (lease->server.s_addr)
PUTADDR(DHO_SERVERID, lease->server);
}
}
if (type == DHCP_DECLINE) {
*p++ = DHO_MESSAGE;
len = strlen(DAD);
*p++ = len;
memcpy(p, DAD, len);
p += len;
}
if (type == DHCP_DISCOVER &&
!(options & DHCPCD_TEST) &&
has_option_mask(ifo->requestmask, DHO_RAPIDCOMMIT))
{
/* RFC 4039 Section 3 */
*p++ = DHO_RAPIDCOMMIT;
*p++ = 0;
}
if (type == DHCP_DISCOVER && ifo->options & DHCPCD_REQUEST)
PUTADDR(DHO_IPADDRESS, ifo->req_addr);
if (type == DHCP_DISCOVER ||
type == DHCP_INFORM ||
type == DHCP_REQUEST)
{
*p++ = DHO_MAXMESSAGESIZE;
*p++ = 2;
sz = get_mtu(iface->name);
if (sz < MTU_MIN) {
if (set_mtu(iface->name, MTU_MIN) == 0)
sz = MTU_MIN;
} else if (sz > MTU_MAX) {
/* Even though our MTU could be greater than
* MTU_MAX (1500) dhcpcd does not presently
* handle DHCP packets any bigger. */
sz = MTU_MAX;
}
sz = htons(sz);
memcpy(p, &sz, 2);
p += 2;
if (ifo->userclass[0]) {
*p++ = DHO_USERCLASS;
memcpy(p, ifo->userclass, ifo->userclass[0] + 1);
p += ifo->userclass[0] + 1;
}
if (ifo->vendorclassid[0]) {
*p++ = DHO_VENDORCLASSID;
memcpy(p, ifo->vendorclassid,
ifo->vendorclassid[0] + 1);
p += ifo->vendorclassid[0] + 1;
}
if (type != DHCP_INFORM) {
if (ifo->leasetime != 0) {
*p++ = DHO_LEASETIME;
*p++ = 4;
ul = htonl(ifo->leasetime);
memcpy(p, &ul, 4);
p += 4;
}
}
if (ifo->hostname[0] == '\0')
hostname = get_hostname(ifo->options &
DHCPCD_HOSTNAME_SHORT ? 1 : 0);
else
hostname = ifo->hostname;
if (ifo->fqdn != FQDN_DISABLE) {
/* IETF DHC-FQDN option (81), RFC4702 */
*p++ = DHO_FQDN;
lp = p;
*p++ = 3;
/*
* Flags: 0000NEOS
* S: 1 => Client requests Server to update
* a RR in DNS as well as PTR
* O: 1 => Server indicates to client that
* DNS has been updated
* E: 1 => Name data is DNS format
* N: 1 => Client requests Server to not
* update DNS
*/
if (hostname)
*p++ = (ifo->fqdn & 0x09) | 0x04;
else
*p++ = (FQDN_NONE & 0x09) | 0x04;
*p++ = 0; /* from server for PTR RR */
*p++ = 0; /* from server for A RR if S=1 */
if (hostname) {
ul = encode_rfc1035(hostname, p);
*lp += ul;
p += ul;
}
} else if (ifo->options & DHCPCD_HOSTNAME && hostname) {
*p++ = DHO_HOSTNAME;
len = strlen(hostname);
*p++ = len;
memcpy(p, hostname, len);
p += len;
}
/* vendor is already encoded correctly, so just add it */
if (ifo->vendor[0]) {
*p++ = DHO_VENDOR;
memcpy(p, ifo->vendor, ifo->vendor[0] + 1);
p += ifo->vendor[0] + 1;
}
*p++ = DHO_PARAMETERREQUESTLIST;
n_params = p;
*p++ = 0;
for (opt = dhcp_opts; opt->option; opt++) {
if (!(opt->type & REQUEST ||
has_option_mask(ifo->requestmask, opt->option)))
continue;
if (opt->type & NOREQ)
continue;
if (type == DHCP_INFORM &&
(opt->option == DHO_RENEWALTIME ||
opt->option == DHO_REBINDTIME))
continue;
*p++ = opt->option;
}
*n_params = p - n_params - 1;
}
*p++ = DHO_END;
#ifdef BOOTP_MESSAGE_LENTH_MIN
/* Some crappy DHCP servers think they have to obey the BOOTP minimum
* message length.
* They are wrong, but we should still cater for them. */
while (p - m < BOOTP_MESSAGE_LENTH_MIN)
*p++ = DHO_PAD;
#endif
*message = dhcp;
return p - m;
}
ssize_t
write_lease(const struct interface *ifp, const struct dhcp_message *dhcp)
{
int fd;
ssize_t bytes = sizeof(*dhcp);
const uint8_t *p = dhcp->options;
const uint8_t *e = p + sizeof(dhcp->options);
uint8_t l;
uint8_t o = 0;
const struct dhcp_state *state = D_CSTATE(ifp);
/* We don't write BOOTP leases */
if (is_bootp(dhcp)) {
unlink(state->leasefile);
return 0;
}
syslog(LOG_DEBUG, "%s: writing lease `%s'",
ifp->name, state->leasefile);
fd = open(state->leasefile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == -1)
return -1;
/* Only write as much as we need */
while (p < e) {
o = *p;
if (o == DHO_END) {
bytes = p - (const uint8_t *)dhcp;
break;
}
p++;
if (o != DHO_PAD) {
l = *p++;
p += l;
}
}
bytes = write(fd, dhcp, bytes);
close(fd);
return bytes;
}
struct dhcp_message *
read_lease(const struct interface *ifp)
{
int fd;
struct dhcp_message *dhcp;
const struct dhcp_state *state = D_CSTATE(ifp);
ssize_t bytes;
fd = open(state->leasefile, O_RDONLY);
if (fd == -1) {
if (errno != ENOENT)
syslog(LOG_ERR, "%s: open `%s': %m",
ifp->name, state->leasefile);
return NULL;
}
syslog(LOG_DEBUG, "%s: reading lease `%s'",
ifp->name, state->leasefile);
dhcp = calloc(1, sizeof(*dhcp));
if (dhcp == NULL) {
close(fd);
return NULL;
}
bytes = read(fd, dhcp, sizeof(*dhcp));
close(fd);
if (bytes < 0) {
free(dhcp);
dhcp = NULL;
}
return dhcp;
}
ssize_t
dhcp_env(char **env, const char *prefix, const struct dhcp_message *dhcp,
const struct interface *ifp)
{
const struct if_options *ifo;
const uint8_t *p;
int pl;
struct in_addr addr;
struct in_addr net;
struct in_addr brd;
char *val, *v;
const struct dhcp_opt *opt;
ssize_t len, e = 0;
char **ep;
char cidr[4];
uint8_t overl = 0;
ifo = ifp->options;
get_option_uint8(&overl, dhcp, DHO_OPTIONSOVERLOADED);
if (!env) {
for (opt = dhcp_opts; opt->option; opt++) {
if (!opt->var)
continue;
if (has_option_mask(ifo->nomask, opt->option))
continue;
if (get_option_raw(dhcp, opt->option))
e++;
}
if (dhcp->yiaddr || dhcp->ciaddr)
e += 5;
if (*dhcp->bootfile && !(overl & 1))
e++;
if (*dhcp->servername && !(overl & 2))
e++;
return e;
}
ep = env;
if (dhcp->yiaddr || dhcp->ciaddr) {
/* Set some useful variables that we derive from the DHCP
* message but are not necessarily in the options */
addr.s_addr = dhcp->yiaddr ? dhcp->yiaddr : dhcp->ciaddr;
setvar(&ep, prefix, "ip_address", inet_ntoa(addr));
if (get_option_addr(&net, dhcp, DHO_SUBNETMASK) == -1) {
net.s_addr = ipv4_getnetmask(addr.s_addr);
setvar(&ep, prefix, "subnet_mask", inet_ntoa(net));
}
snprintf(cidr, sizeof(cidr), "%d", inet_ntocidr(net));
setvar(&ep, prefix, "subnet_cidr", cidr);
if (get_option_addr(&brd, dhcp, DHO_BROADCAST) == -1) {
brd.s_addr = addr.s_addr | ~net.s_addr;
setvar(&ep, prefix, "broadcast_address", inet_ntoa(brd));
}
addr.s_addr = dhcp->yiaddr & net.s_addr;
setvar(&ep, prefix, "network_number", inet_ntoa(addr));
}
if (*dhcp->bootfile && !(overl & 1))
setvar(&ep, prefix, "filename", (const char *)dhcp->bootfile);
if (*dhcp->servername && !(overl & 2))
setvar(&ep, prefix, "server_name", (const char *)dhcp->servername);
for (opt = dhcp_opts; opt->option; opt++) {
if (!opt->var)
continue;
if (has_option_mask(ifo->nomask, opt->option))
continue;
val = NULL;
p = get_option(dhcp, opt->option, &pl, NULL);
if (!p)
continue;
/* We only want the FQDN name */
if (opt->option == DHO_FQDN) {
p += 3;
pl -= 3;
}
len = print_option(NULL, 0, opt->type, pl, p, ifp->name);
if (len < 0)
return -1;
e = strlen(prefix) + strlen(opt->var) + len + 4;
v = val = *ep++ = malloc(e);
if (v == NULL)
return -1;
v += snprintf(val, e, "%s_%s=", prefix, opt->var);
if (len != 0)
print_option(v, len, opt->type, pl, p, ifp->name);
}
return ep - env;
}
void
get_lease(struct dhcp_lease *lease, const struct dhcp_message *dhcp)
{
struct timeval now;
lease->cookie = dhcp->cookie;
/* BOOTP does not set yiaddr for replies when ciaddr is set. */
if (dhcp->yiaddr)
lease->addr.s_addr = dhcp->yiaddr;
else
lease->addr.s_addr = dhcp->ciaddr;
if (get_option_addr(&lease->net, dhcp, DHO_SUBNETMASK) == -1)
lease->net.s_addr = ipv4_getnetmask(lease->addr.s_addr);
if (get_option_addr(&lease->brd, dhcp, DHO_BROADCAST) == -1)
lease->brd.s_addr = lease->addr.s_addr | ~lease->net.s_addr;
if (get_option_uint32(&lease->leasetime, dhcp, DHO_LEASETIME) == 0) {
/* Ensure that we can use the lease */
get_monotonic(&now);
if (now.tv_sec + (time_t)lease->leasetime < now.tv_sec)
lease->leasetime = ~0U; /* Infinite lease */
} else
lease->leasetime = ~0U; /* Default to infinite lease */
if (get_option_uint32(&lease->renewaltime, dhcp, DHO_RENEWALTIME) != 0)
lease->renewaltime = 0;
if (get_option_uint32(&lease->rebindtime, dhcp, DHO_REBINDTIME) != 0)
lease->rebindtime = 0;
if (get_option_addr(&lease->server, dhcp, DHO_SERVERID) != 0)
lease->server.s_addr = INADDR_ANY;
}
static const char *
get_dhcp_op(uint8_t type)
{
const struct dhcp_op *d;
for (d = dhcp_ops; d->name; d++)
if (d->value == type)
return d->name;
return NULL;
}
static void
dhcp_fallback(void *arg)
{
struct interface *iface;
iface = (struct interface *)arg;
select_profile(iface, iface->options->fallback);
start_interface(iface);
}
uint32_t
dhcp_xid(const struct interface *ifp)
{
uint32_t xid;
if (ifp->options->options & DHCPCD_XID_HWADDR &&
ifp->hwlen >= sizeof(xid))
/* The lower bits are probably more unique on the network */
memcpy(&xid, (ifp->hwaddr + ifp->hwlen) - sizeof(xid),
sizeof(xid));
else
xid = arc4random();
return xid;
}
void
dhcp_close(struct interface *ifp)
{
struct dhcp_state *state = D_STATE(ifp);
if (state == NULL)
return;
if (state->arp_fd != -1) {
eloop_event_delete(state->arp_fd);
close(state->arp_fd);
state->arp_fd = -1;
}
if (state->raw_fd != -1) {
eloop_event_delete(state->raw_fd);
close(state->raw_fd);
state->raw_fd = -1;
}
if (state->udp_fd != -1) {
/* we don't listen to events on the udp */
close(state->udp_fd);
state->udp_fd = -1;
}
state->interval = 0;
}
static int
dhcp_openudp(struct interface *iface)
{
int s;
struct sockaddr_in sin;
int n;
struct dhcp_state *state;
#ifdef SO_BINDTODEVICE
struct ifreq ifr;
char *p;
#endif
if ((s = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)
return -1;
n = 1;
if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &n, sizeof(n)) == -1)
goto eexit;
#ifdef SO_BINDTODEVICE
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, iface->name, sizeof(ifr.ifr_name));
/* We can only bind to the real device */
p = strchr(ifr.ifr_name, ':');
if (p)
*p = '\0';
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, &ifr,
sizeof(ifr)) == -1)
goto eexit;
#endif
/* As we don't use this socket for receiving, set the
* receive buffer to 1 */
n = 1;
if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, &n, sizeof(n)) == -1)
goto eexit;
state = D_STATE(iface);
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_port = htons(DHCP_CLIENT_PORT);
sin.sin_addr.s_addr = state->addr.s_addr;
if (bind(s, (struct sockaddr *)&sin, sizeof(sin)) == -1)
goto eexit;
state->udp_fd = s;
set_cloexec(s);
return 0;
eexit:
close(s);
return -1;
}
static ssize_t
dhcp_sendpacket(const struct interface *iface, struct in_addr to,
const uint8_t *data, ssize_t len)
{
struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = to.s_addr;
sin.sin_port = htons(DHCP_SERVER_PORT);
return sendto(D_CSTATE(iface)->udp_fd, data, len, 0,
(struct sockaddr *)&sin, sizeof(sin));
}
static uint16_t
checksum(const void *data, uint16_t len)
{
const uint8_t *addr = data;
uint32_t sum = 0;
while (len > 1) {
sum += addr[0] * 256 + addr[1];
addr += 2;
len -= 2;
}
if (len == 1)
sum += *addr * 256;
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
sum = htons(sum);
return ~sum;
}
static ssize_t
dhcp_makeudppacket(uint8_t **p, const uint8_t *data, size_t length,
struct in_addr source, struct in_addr dest)
{
struct udp_dhcp_packet *udpp;
struct ip *ip;
struct udphdr *udp;
udpp = calloc(1, sizeof(*udpp));
if (udpp == NULL)
return -1;
ip = &udpp->ip;
udp = &udpp->udp;
/* OK, this is important :)
* We copy the data to our packet and then create a small part of the
* ip structure and an invalid ip_len (basically udp length).
* We then fill the udp structure and put the checksum
* of the whole packet into the udp checksum.
* Finally we complete the ip structure and ip checksum.
* If we don't do the ordering like so then the udp checksum will be
* broken, so find another way of doing it! */
memcpy(&udpp->dhcp, data, length);
ip->ip_p = IPPROTO_UDP;
ip->ip_src.s_addr = source.s_addr;
if (dest.s_addr == 0)
ip->ip_dst.s_addr = INADDR_BROADCAST;
else
ip->ip_dst.s_addr = dest.s_addr;
udp->uh_sport = htons(DHCP_CLIENT_PORT);
udp->uh_dport = htons(DHCP_SERVER_PORT);
udp->uh_ulen = htons(sizeof(*udp) + length);
ip->ip_len = udp->uh_ulen;
udp->uh_sum = checksum(udpp, sizeof(*udpp));
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_id = arc4random() & UINT16_MAX;
ip->ip_ttl = IPDEFTTL;
ip->ip_len = htons(sizeof(*ip) + sizeof(*udp) + length);
ip->ip_sum = checksum(ip, sizeof(*ip));
*p = (uint8_t *)udpp;
return sizeof(*ip) + sizeof(*udp) + length;
}
static void
send_message(struct interface *iface, int type,
void (*callback)(void *))
{
struct dhcp_state *state = D_STATE(iface);
struct if_options *ifo = iface->options;
struct dhcp_message *dhcp;
uint8_t *udp;
ssize_t len, r;
struct in_addr from, to;
in_addr_t a = 0;
struct timeval tv;
if (!callback)
syslog(LOG_DEBUG, "%s: sending %s with xid 0x%x",
iface->name, get_dhcp_op(type), state->xid);
else {
if (state->interval == 0)
state->interval = 4;
else {
state->interval *= 2;
if (state->interval > 64)
state->interval = 64;
}
tv.tv_sec = state->interval + DHCP_RAND_MIN;
tv.tv_usec = arc4random() % (DHCP_RAND_MAX_U - DHCP_RAND_MIN_U);
timernorm(&tv);
syslog(LOG_DEBUG,
"%s: sending %s (xid 0x%x), next in %0.2f seconds",
iface->name, get_dhcp_op(type), state->xid,
timeval_to_double(&tv));
}
/* Ensure sockets are open. */
if (dhcp_open(iface) == -1) {
if (!(options & DHCPCD_TEST))
dhcp_drop(iface, "FAIL");
return;
}
/* If we couldn't open a UDP port for our IP address
* then we cannot renew.
* This could happen if our IP was pulled out from underneath us.
* Also, we should not unicast from a BOOTP lease. */
if (state->udp_fd == -1 ||
(!(ifo->options & DHCPCD_INFORM) && is_bootp(state->new)))
{
a = state->addr.s_addr;
state->addr.s_addr = 0;
}
len = make_message(&dhcp, iface, type);
if (a)
state->addr.s_addr = a;
from.s_addr = dhcp->ciaddr;
if (from.s_addr)
to.s_addr = state->lease.server.s_addr;
else
to.s_addr = 0;
if (to.s_addr && to.s_addr != INADDR_BROADCAST) {
r = dhcp_sendpacket(iface, to, (uint8_t *)dhcp, len);
if (r == -1) {
syslog(LOG_ERR, "%s: dhcp_sendpacket: %m", iface->name);
dhcp_close(iface);
}
} else {
len = dhcp_makeudppacket(&udp, (uint8_t *)dhcp, len, from, to);
if (len == -1)
return;
r = ipv4_sendrawpacket(iface, ETHERTYPE_IP, udp, len);
free(udp);
/* If we failed to send a raw packet this normally means
* we don't have the ability to work beneath the IP layer
* for this interface.
* As such we remove it from consideration without actually
* stopping the interface. */
if (r == -1) {
syslog(LOG_ERR, "%s: send_raw_packet: %m", iface->name);
if (!(options & DHCPCD_TEST))
dhcp_drop(iface, "FAIL");
dhcp_close(iface);
eloop_timeout_delete(NULL, iface);
callback = NULL;
}
}
free(dhcp);
/* Even if we fail to send a packet we should continue as we are
* as our failure timeouts will change out codepath when needed. */
if (callback)
eloop_timeout_add_tv(&tv, callback, iface);
}
static void
send_inform(void *arg)
{
send_message((struct interface *)arg, DHCP_INFORM, send_inform);
}
static void
send_discover(void *arg)
{
send_message((struct interface *)arg, DHCP_DISCOVER, send_discover);
}
static void
send_request(void *arg)
{
send_message((struct interface *)arg, DHCP_REQUEST, send_request);
}
static void
send_renew(void *arg)
{
send_message((struct interface *)arg, DHCP_REQUEST, send_renew);
}
static void
send_rebind(void *arg)
{
send_message((struct interface *)arg, DHCP_REQUEST, send_rebind);
}
void
dhcp_discover(void *arg)
{
struct interface *iface = arg;
struct dhcp_state *state = D_STATE(iface);
struct if_options *ifo = iface->options;
int timeout = ifo->timeout;
/* If we're rebooting and we're not daemonised then we need
* to shorten the normal timeout to ensure we try correctly
* for a fallback or IPv4LL address. */
if (state->state == DHS_REBOOT && !(options & DHCPCD_DAEMONISED)) {
timeout -= ifo->reboot;
if (timeout <= 0)
timeout = 2;
}
state->state = DHS_DISCOVER;
state->xid = dhcp_xid(iface);
eloop_timeout_delete(NULL, iface);
if (ifo->fallback)
eloop_timeout_add_sec(timeout, dhcp_fallback, iface);
else if (ifo->options & DHCPCD_IPV4LL &&
!IN_LINKLOCAL(htonl(state->addr.s_addr)))
{
if (IN_LINKLOCAL(htonl(state->fail.s_addr)))
eloop_timeout_add_sec(RATE_LIMIT_INTERVAL,
ipv4ll_start, iface);
else
eloop_timeout_add_sec(timeout, ipv4ll_start, iface);
}
if (ifo->options & DHCPCD_REQUEST)
syslog(LOG_INFO, "%s: soliciting a DHCP lease (requesting %s)",
iface->name, inet_ntoa(ifo->req_addr));
else
syslog(LOG_INFO, "%s: soliciting a DHCP lease", iface->name);
send_discover(iface);
}
static void
dhcp_request(void *arg)
{
struct interface *ifp = arg;
struct dhcp_state *state = D_STATE(ifp);
state->state = DHS_REQUEST;
send_request(ifp);
}
static void
dhcp_expire(void *arg)
{
struct interface *ifp = arg;
struct dhcp_state *state = D_STATE(ifp);
state->interval = 0;
if (state->addr.s_addr == 0) {
/* We failed to reboot, so enter discovery. */
state->lease.addr.s_addr = 0;
dhcp_discover(ifp);
return;
}
syslog(LOG_ERR, "%s: DHCP lease expired", ifp->name);
eloop_timeout_delete(NULL, ifp);
dhcp_drop(ifp, "EXPIRE");
unlink(state->leasefile);
if (ifp->carrier != LINK_DOWN)
start_interface(ifp);
}
void
dhcp_decline(struct interface *ifp)
{
send_message(ifp, DHCP_DECLINE, NULL);
}
static void
dhcp_renew(void *arg)
{
struct interface *ifp = arg;
struct dhcp_state *state = D_STATE(ifp);
struct dhcp_lease *lease = &state->lease;
syslog(LOG_DEBUG, "%s: renewing lease of %s",
ifp->name, inet_ntoa(lease->addr));
syslog(LOG_DEBUG, "%s: rebind in %"PRIu32" seconds,"
" expire in %"PRIu32" seconds",
ifp->name, lease->rebindtime - lease->renewaltime,
lease->leasetime - lease->renewaltime);
state->state = DHS_RENEW;
state->xid = dhcp_xid(ifp);
send_renew(ifp);
}
static void
dhcp_rebind(void *arg)
{
struct interface *ifp = arg;
struct dhcp_state *state = D_STATE(ifp);
struct dhcp_lease *lease = &state->lease;
syslog(LOG_WARNING, "%s: failed to renew DHCP, rebinding",
ifp->name);
syslog(LOG_DEBUG, "%s: expire in %"PRIu32" seconds",
ifp->name, lease->leasetime - lease->rebindtime);
state->state = DHS_REBIND;
eloop_timeout_delete(send_renew, ifp);
state->lease.server.s_addr = 0;
ifp->options->options &= ~ DHCPCD_CSR_WARNED;
send_rebind(ifp);
}
void
dhcp_bind(void *arg)
{
struct interface *iface = arg;
struct dhcp_state *state = D_STATE(iface);
struct if_options *ifo = iface->options;
struct dhcp_lease *lease = &state->lease;
struct timeval tv;
/* We're binding an address now - ensure that sockets are closed */
dhcp_close(iface);
state->reason = NULL;
if (clock_monotonic)
get_monotonic(&lease->boundtime);
state->xid = 0;
free(state->old);
state->old = state->new;
state->new = state->offer;
state->offer = NULL;
get_lease(lease, state->new);
if (ifo->options & DHCPCD_STATIC) {
syslog(LOG_INFO, "%s: using static address %s",
iface->name, inet_ntoa(lease->addr));
lease->leasetime = ~0U;
lease->net.s_addr = ifo->req_mask.s_addr;
state->reason = "STATIC";
} else if (state->new->cookie != htonl(MAGIC_COOKIE)) {
syslog(LOG_INFO, "%s: using IPv4LL address %s",
iface->name, inet_ntoa(lease->addr));
lease->leasetime = ~0U;
state->reason = "IPV4LL";
} else if (ifo->options & DHCPCD_INFORM) {
if (ifo->req_addr.s_addr != 0)
lease->addr.s_addr = ifo->req_addr.s_addr;
else
lease->addr.s_addr = state->addr.s_addr;
syslog(LOG_INFO, "%s: received approval for %s", iface->name,
inet_ntoa(lease->addr));
lease->leasetime = ~0U;
state->reason = "INFORM";
} else {
if (gettimeofday(&tv, NULL) == 0)
lease->leasedfrom = tv.tv_sec;
else if (lease->frominfo)
state->reason = "TIMEOUT";
if (lease->leasetime == ~0U) {
lease->renewaltime =
lease->rebindtime =
lease->leasetime;
syslog(LOG_INFO, "%s: leased %s for infinity",
iface->name, inet_ntoa(lease->addr));
} else {
if (lease->leasetime < DHCP_MIN_LEASE) {
syslog(LOG_WARNING,
"%s: minimum lease is %d seconds",
iface->name, DHCP_MIN_LEASE);
lease->leasetime = DHCP_MIN_LEASE;
}
if (lease->rebindtime == 0)
lease->rebindtime = lease->leasetime * T2;
else if (lease->rebindtime >= lease->leasetime) {
lease->rebindtime = lease->leasetime * T2;
syslog(LOG_WARNING,
"%s: rebind time greater than lease "
"time, forcing to %"PRIu32" seconds",
iface->name, lease->rebindtime);
}
if (lease->renewaltime == 0)
lease->renewaltime = lease->leasetime * T1;
else if (lease->renewaltime > lease->rebindtime) {
lease->renewaltime = lease->leasetime * T1;
syslog(LOG_WARNING,
"%s: renewal time greater than rebind "
"time, forcing to %"PRIu32" seconds",
iface->name, lease->renewaltime);
}
syslog(lease->addr.s_addr == state->addr.s_addr ?
LOG_DEBUG : LOG_INFO,
"%s: leased %s for %"PRIu32" seconds", iface->name,
inet_ntoa(lease->addr), lease->leasetime);
}
}
if (options & DHCPCD_TEST) {
state->reason = "TEST";
script_runreason(iface, state->reason);
exit(EXIT_SUCCESS);
}
if (state->reason == NULL) {
if (state->old) {
if (state->old->yiaddr == state->new->yiaddr &&
lease->server.s_addr)
state->reason = "RENEW";
else
state->reason = "REBIND";
} else if (state->state == DHS_REBOOT)
state->reason = "REBOOT";
else
state->reason = "BOUND";
}
if (lease->leasetime == ~0U)
lease->renewaltime = lease->rebindtime = lease->leasetime;
else {
eloop_timeout_add_sec(lease->renewaltime, dhcp_renew, iface);
eloop_timeout_add_sec(lease->rebindtime, dhcp_rebind, iface);
eloop_timeout_add_sec(lease->leasetime, dhcp_expire, iface);
syslog(LOG_DEBUG,
"%s: renew in %"PRIu32" seconds, rebind in %"PRIu32
" seconds",
iface->name, lease->renewaltime, lease->rebindtime);
}
ipv4_applyaddr(iface);
daemonise();
state->state = DHS_BOUND;
if (ifo->options & DHCPCD_ARP) {
state->claims = 0;
arp_announce(iface);
}
}
static void
dhcp_timeout(void *arg)
{
struct interface *ifp = arg;
struct dhcp_state *state = D_STATE(ifp);
dhcp_bind(ifp);
state->interval = 0;
dhcp_discover(ifp);
}
struct dhcp_message *
dhcp_message_new(struct in_addr *addr, struct in_addr *mask)
{
struct dhcp_message *dhcp;
uint8_t *p;
dhcp = calloc(1, sizeof(*dhcp));
if (dhcp == NULL)
return NULL;
dhcp->yiaddr = addr->s_addr;
p = dhcp->options;
if (mask && mask->s_addr != INADDR_ANY) {
*p++ = DHO_SUBNETMASK;
*p++ = sizeof(mask->s_addr);
memcpy(p, &mask->s_addr, sizeof(mask->s_addr));
p+= sizeof(mask->s_addr);
}
*p++ = DHO_END;
return dhcp;
}
static int
handle_3rdparty(struct interface *ifp)
{
struct if_options *ifo;
struct dhcp_state *state;
struct in_addr addr, net, dst;
ifo = ifp->options;
if (ifo->req_addr.s_addr != INADDR_ANY)
return 0;
if (ipv4_getaddress(ifp->name, &addr, &net, &dst) == 1)
ipv4_handleifa(RTM_NEWADDR, ifp->name, &addr, &net, &dst);
else {
syslog(LOG_INFO,
"%s: waiting for 3rd party to configure IP address",
ifp->name);
state = D_STATE(ifp);
state->reason = "3RDPARTY";
script_runreason(ifp, state->reason);
}
return 1;
}
static void
dhcp_static(struct interface *ifp)
{
struct if_options *ifo;
struct dhcp_state *state;
if (handle_3rdparty(ifp))
return;
ifo = ifp->options;
state = D_STATE(ifp);
state->offer = dhcp_message_new(&ifo->req_addr, &ifo->req_mask);
eloop_timeout_delete(NULL, ifp);
dhcp_bind(ifp);
}
void
dhcp_inform(struct interface *ifp)
{
struct dhcp_state *state;
if (handle_3rdparty(ifp))
return;
state = D_STATE(ifp);
if (options & DHCPCD_TEST) {
state->addr.s_addr = ifp->options->req_addr.s_addr;
state->net.s_addr = ifp->options->req_mask.s_addr;
} else {
ifp->options->options |= DHCPCD_STATIC;
dhcp_static(ifp);
}
state->state = DHS_INFORM;
state->xid = dhcp_xid(ifp);
send_inform(ifp);
}
void
dhcp_reboot_newopts(struct interface *ifp, int oldopts)
{
struct if_options *ifo;
struct dhcp_state *state = D_STATE(ifp);
if (state == NULL)
return;
ifo = ifp->options;
if ((ifo->options & (DHCPCD_INFORM | DHCPCD_STATIC) &&
state->addr.s_addr != ifo->req_addr.s_addr) ||
(oldopts & (DHCPCD_INFORM | DHCPCD_STATIC) &&
!(ifo->options & (DHCPCD_INFORM | DHCPCD_STATIC))))
{
dhcp_drop(ifp, "EXPIRE");
}
}
static void
dhcp_reboot(struct interface *ifp)
{
struct if_options *ifo;
struct dhcp_state *state = D_STATE(ifp);
if (state == NULL)
return;
ifo = ifp->options;
state->interval = 0;
if (ifo->options & DHCPCD_LINK && ifp->carrier == LINK_DOWN) {
syslog(LOG_INFO, "%s: waiting for carrier", ifp->name);
return;
}
if (ifo->options & DHCPCD_STATIC) {
dhcp_static(ifp);
return;
}
if (ifo->reboot == 0 || state->offer == NULL) {
dhcp_discover(ifp);
return;
}
if (ifo->options & DHCPCD_INFORM) {
syslog(LOG_INFO, "%s: informing address of %s",
ifp->name, inet_ntoa(state->lease.addr));
} else if (state->offer->cookie == 0) {
if (ifo->options & DHCPCD_IPV4LL) {
state->claims = 0;
arp_announce(ifp);
} else
dhcp_discover(ifp);
return;
} else {
syslog(LOG_INFO, "%s: rebinding lease of %s",
ifp->name, inet_ntoa(state->lease.addr));
}
state->state = DHS_REBOOT;
state->xid = dhcp_xid(ifp);
state->lease.server.s_addr = 0;
eloop_timeout_delete(NULL, ifp);
if (ifo->fallback)
eloop_timeout_add_sec(ifo->reboot, dhcp_fallback, ifp);
else if (ifo->options & DHCPCD_LASTLEASE && state->lease.frominfo)
eloop_timeout_add_sec(ifo->reboot, dhcp_timeout, ifp);
else if (!(ifo->options & DHCPCD_INFORM &&
options & (DHCPCD_MASTER | DHCPCD_DAEMONISED)))
eloop_timeout_add_sec(ifo->reboot, dhcp_expire, ifp);
/* Don't bother ARP checking as the server could NAK us first. */
if (ifo->options & DHCPCD_INFORM)
dhcp_inform(ifp);
else
dhcp_request(ifp);
}
void
dhcp_drop(struct interface *ifp, const char *reason)
{
struct dhcp_state *state;
#ifdef RELEASE_SLOW
struct timespec ts;
#endif
state = D_STATE(ifp);
if (state == NULL)
return;
eloop_timeouts_delete(ifp, dhcp_expire, NULL);
if (ifp->options->options & DHCPCD_RELEASE) {
unlink(state->leasefile);
if (ifp->carrier != LINK_DOWN &&
state->new != NULL &&
state->new->cookie == htonl(MAGIC_COOKIE))
{
syslog(LOG_INFO, "%s: releasing lease of %s",
ifp->name, inet_ntoa(state->lease.addr));
state->xid = dhcp_xid(ifp);
send_message(ifp, DHCP_RELEASE, NULL);
#ifdef RELEASE_SLOW
/* Give the packet a chance to go */
ts.tv_sec = RELEASE_DELAY_S;
ts.tv_nsec = RELEASE_DELAY_NS;
nanosleep(&ts, NULL);
#endif
}
}
free(state->old);
state->old = state->new;
state->new = NULL;
state->reason = reason;
ipv4_applyaddr(ifp);
free(state->old);
state->old = NULL;
state->lease.addr.s_addr = 0;
ifp->options->options &= ~ DHCPCD_CSR_WARNED;
}
static void
log_dhcp(int lvl, const char *msg,
const struct interface *iface, const struct dhcp_message *dhcp,
const struct in_addr *from)
{
const char *tfrom;
char *a;
struct in_addr addr;
int r;
if (strcmp(msg, "NAK:") == 0)
a = get_option_string(dhcp, DHO_MESSAGE);
else if (dhcp->yiaddr != 0) {
addr.s_addr = dhcp->yiaddr;
a = strdup(inet_ntoa(addr));
if (a == NULL) {
syslog(LOG_ERR, "%s: %m", __func__);
return;
}
} else
a = NULL;
tfrom = "from";
r = get_option_addr(&addr, dhcp, DHO_SERVERID);
if (dhcp->servername[0] && r == 0)
syslog(lvl, "%s: %s %s %s %s `%s'", iface->name, msg, a,
tfrom, inet_ntoa(addr), dhcp->servername);
else {
if (r != 0) {
tfrom = "via";
addr = *from;
}
if (a == NULL)
syslog(lvl, "%s: %s %s %s",
iface->name, msg, tfrom, inet_ntoa(addr));
else
syslog(lvl, "%s: %s %s %s %s",
iface->name, msg, a, tfrom, inet_ntoa(addr));
}
free(a);
}
static int
blacklisted_ip(const struct if_options *ifo, in_addr_t addr)
{
size_t i;
for (i = 0; i < ifo->blacklist_len; i += 2)
if (ifo->blacklist[i] == (addr & ifo->blacklist[i + 1]))
return 1;
return 0;
}
static int
whitelisted_ip(const struct if_options *ifo, in_addr_t addr)
{
size_t i;
if (ifo->whitelist_len == 0)
return -1;
for (i = 0; i < ifo->whitelist_len; i += 2)
if (ifo->whitelist[i] == (addr & ifo->whitelist[i + 1]))
return 1;
return 0;
}
static void
dhcp_handle(struct interface *iface, struct dhcp_message **dhcpp,
const struct in_addr *from)
{
struct dhcp_state *state = D_STATE(iface);
struct if_options *ifo = iface->options;
struct dhcp_message *dhcp = *dhcpp;
struct dhcp_lease *lease = &state->lease;
uint8_t type, tmp;
struct in_addr addr;
size_t i;
/* reset the message counter */
state->interval = 0;
/* We may have found a BOOTP server */
if (get_option_uint8(&type, dhcp, DHO_MESSAGETYPE) == -1)
type = 0;
if (type == DHCP_NAK) {
/* For NAK, only check if we require the ServerID */
if (has_option_mask(ifo->requiremask, DHO_SERVERID) &&
get_option_addr(&addr, dhcp, DHO_SERVERID) == -1)
{
log_dhcp(LOG_WARNING, "reject NAK", iface, dhcp, from);
return;
}
/* We should restart on a NAK */
log_dhcp(LOG_WARNING, "NAK:", iface, dhcp, from);
if (!(options & DHCPCD_TEST)) {
dhcp_drop(iface, "NAK");
unlink(state->leasefile);
}
dhcp_close(iface);
/* If we constantly get NAKS then we should slowly back off */
eloop_timeout_add_sec(state->nakoff, start_interface, iface);
if (state->nakoff == 0)
state->nakoff = 1;
else {
state->nakoff *= 2;
if (state->nakoff > NAKOFF_MAX)
state->nakoff = NAKOFF_MAX;
}
return;
}
/* Ensure that all required options are present */
for (i = 1; i < 255; i++) {
if (has_option_mask(ifo->requiremask, i) &&
get_option_uint8(&tmp, dhcp, i) != 0)
{
/* If we are bootp, then ignore the need for serverid.
* To ignore bootp, require dhcp_message_type. */
if (type == 0 && i == DHO_SERVERID)
continue;
log_dhcp(LOG_WARNING, "reject DHCP", iface, dhcp, from);
return;
}
}
/* Ensure that the address offered is valid */
if ((type == 0 || type == DHCP_OFFER || type == DHCP_ACK) &&
(dhcp->ciaddr == INADDR_ANY || dhcp->ciaddr == INADDR_BROADCAST) &&
(dhcp->yiaddr == INADDR_ANY || dhcp->yiaddr == INADDR_BROADCAST))
{
log_dhcp(LOG_WARNING, "reject invalid address",
iface, dhcp, from);
return;
}
/* No NAK, so reset the backoff */
state->nakoff = 0;
if ((type == 0 || type == DHCP_OFFER) &&
state->state == DHS_DISCOVER)
{
lease->frominfo = 0;
lease->addr.s_addr = dhcp->yiaddr;
lease->cookie = dhcp->cookie;
if (type == 0 ||
get_option_addr(&lease->server, dhcp, DHO_SERVERID) != 0)
lease->server.s_addr = INADDR_ANY;
log_dhcp(LOG_INFO, "offered", iface, dhcp, from);
free(state->offer);
state->offer = dhcp;
*dhcpp = NULL;
if (options & DHCPCD_TEST) {
free(state->old);
state->old = state->new;
state->new = state->offer;
state->offer = NULL;
state->reason = "TEST";
script_runreason(iface, state->reason);
exit(EXIT_SUCCESS);
}
eloop_timeout_delete(send_discover, iface);
/* We don't request BOOTP addresses */
if (type) {
/* We used to ARP check here, but that seems to be in
* violation of RFC2131 where it only describes
* DECLINE after REQUEST.
* It also seems that some MS DHCP servers actually
* ignore DECLINE if no REQUEST, ie we decline a
* DISCOVER. */
dhcp_request(iface);
return;
}
}
if (type) {
if (type == DHCP_OFFER) {
log_dhcp(LOG_WARNING, "ignoring offer of",
iface, dhcp, from);
return;
}
/* We should only be dealing with acks */
if (type != DHCP_ACK) {
log_dhcp(LOG_ERR, "not ACK or OFFER",
iface, dhcp, from);
return;
}
if (!(ifo->options & DHCPCD_INFORM))
log_dhcp(LOG_DEBUG, "acknowledged", iface, dhcp, from);
}
/* BOOTP could have already assigned this above, so check we still
* have a pointer. */
if (*dhcpp) {
free(state->offer);
state->offer = dhcp;
*dhcpp = NULL;
}
lease->frominfo = 0;
eloop_timeout_delete(NULL, iface);
/* We now have an offer, so close the DHCP sockets.
* This allows us to safely ARP when broken DHCP servers send an ACK
* follows by an invalid NAK. */
dhcp_close(iface);
if (ifo->options & DHCPCD_ARP &&
state->addr.s_addr != state->offer->yiaddr)
{
/* If the interface already has the address configured
* then we can't ARP for duplicate detection. */
addr.s_addr = state->offer->yiaddr;
if (ipv4_hasaddress(iface->name, &addr, NULL) != 1) {
state->claims = 0;
state->probes = 0;
state->conflicts = 0;
state->state = DHS_PROBE;
arp_probe(iface);
return;
}
}
dhcp_bind(iface);
}
static ssize_t
get_udp_data(const uint8_t **data, const uint8_t *udp)
{
struct udp_dhcp_packet p;
memcpy(&p, udp, sizeof(p));
*data = udp + offsetof(struct udp_dhcp_packet, dhcp);
return ntohs(p.ip.ip_len) - sizeof(p.ip) - sizeof(p.udp);
}
static int
valid_udp_packet(const uint8_t *data, size_t data_len, struct in_addr *from,
int noudpcsum)
{
struct udp_dhcp_packet p;
uint16_t bytes, udpsum;
if (data_len < sizeof(p.ip)) {
if (from)
from->s_addr = INADDR_ANY;
errno = EINVAL;
return -1;
}
memcpy(&p, data, MIN(data_len, sizeof(p)));
if (from)
from->s_addr = p.ip.ip_src.s_addr;
if (data_len > sizeof(p)) {
errno = EINVAL;
return -1;
}
if (checksum(&p.ip, sizeof(p.ip)) != 0) {
errno = EINVAL;
return -1;
}
bytes = ntohs(p.ip.ip_len);
if (data_len < bytes) {
errno = EINVAL;
return -1;
}
if (noudpcsum == 0) {
udpsum = p.udp.uh_sum;
p.udp.uh_sum = 0;
p.ip.ip_hl = 0;
p.ip.ip_v = 0;
p.ip.ip_tos = 0;
p.ip.ip_len = p.udp.uh_ulen;
p.ip.ip_id = 0;
p.ip.ip_off = 0;
p.ip.ip_ttl = 0;
p.ip.ip_sum = 0;
if (udpsum && checksum(&p, bytes) != udpsum) {
errno = EINVAL;
return -1;
}
}
return 0;
}
static void
dhcp_handlepacket(void *arg)
{
struct interface *iface = arg;
struct dhcp_message *dhcp = NULL;
const uint8_t *pp;
ssize_t bytes;
struct in_addr from;
int i, partialcsum = 0;
const struct dhcp_state *state = D_CSTATE(iface);
/* We loop through until our buffer is empty.
* The benefit is that if we get >1 DHCP packet in our buffer and
* the first one fails for any reason, we can use the next. */
if (packet == NULL) {
packet = malloc(udp_dhcp_len);
if (packet == NULL) {
syslog(LOG_ERR, "%s: %m", __func__);
return;
}
}
for(;;) {
bytes = ipv4_getrawpacket(iface, ETHERTYPE_IP,
packet, udp_dhcp_len, &partialcsum);
if (bytes == 0 || bytes == -1)
break;
if (valid_udp_packet(packet, bytes, &from, partialcsum) == -1) {
syslog(LOG_ERR, "%s: invalid UDP packet from %s",
iface->name, inet_ntoa(from));
continue;
}
i = whitelisted_ip(iface->options, from.s_addr);
if (i == 0) {
syslog(LOG_WARNING,
"%s: non whitelisted DHCP packet from %s",
iface->name, inet_ntoa(from));
continue;
} else if (i != 1 &&
blacklisted_ip(iface->options, from.s_addr) == 1)
{
syslog(LOG_WARNING,
"%s: blacklisted DHCP packet from %s",
iface->name, inet_ntoa(from));
continue;
}
if (iface->flags & IFF_POINTOPOINT &&
state->dst.s_addr != from.s_addr)
{
syslog(LOG_WARNING,
"%s: server %s is not destination",
iface->name, inet_ntoa(from));
}
bytes = get_udp_data(&pp, packet);
if ((size_t)bytes > sizeof(*dhcp)) {
syslog(LOG_ERR,
"%s: packet greater than DHCP size from %s",
iface->name, inet_ntoa(from));
continue;
}
if (dhcp == NULL) {
dhcp = calloc(1, sizeof(*dhcp));
if (dhcp == NULL) {
syslog(LOG_ERR, "%s: calloc: %m", __func__);
break;
}
}
memcpy(dhcp, pp, bytes);
if (dhcp->cookie != htonl(MAGIC_COOKIE)) {
syslog(LOG_DEBUG, "%s: bogus cookie from %s",
iface->name, inet_ntoa(from));
continue;
}
/* Ensure it's the right transaction */
if (state->xid != ntohl(dhcp->xid)) {
syslog(LOG_DEBUG,
"%s: wrong xid 0x%x (expecting 0x%x) from %s",
iface->name, ntohl(dhcp->xid), state->xid,
inet_ntoa(from));
continue;
}
/* Ensure packet is for us */
if (iface->hwlen <= sizeof(dhcp->chaddr) &&
memcmp(dhcp->chaddr, iface->hwaddr, iface->hwlen))
{
syslog(LOG_DEBUG, "%s: xid 0x%x is not for hwaddr %s",
iface->name, ntohl(dhcp->xid),
hwaddr_ntoa(dhcp->chaddr, sizeof(dhcp->chaddr)));
continue;
}
dhcp_handle(iface, &dhcp, &from);
if (state->raw_fd == -1)
break;
}
free(packet);
packet = NULL;
free(dhcp);
}
static int
dhcp_open(struct interface *ifp)
{
int r = 0;
struct dhcp_state *state;
state = D_STATE(ifp);
if (state->raw_fd == -1) {
if ((r = ipv4_opensocket(ifp, ETHERTYPE_IP)) == -1) {
syslog(LOG_ERR, "%s: %s: %m", __func__, ifp->name);
return -1;
}
eloop_event_add(state->raw_fd, dhcp_handlepacket, ifp);
}
if (state->udp_fd == -1 &&
state->addr.s_addr != 0 &&
state->new != NULL &&
(state->new->cookie == htonl(MAGIC_COOKIE) ||
ifp->options->options & DHCPCD_INFORM))
{
if (dhcp_openudp(ifp) == -1 && errno != EADDRINUSE) {
syslog(LOG_ERR, "%s: dhcp_openudp: %m", ifp->name);
return -1;
}
}
return 0;
}
int
dhcp_dump(const char *ifname)
{
struct interface *ifp;
struct dhcp_state *state;
ifaces = malloc(sizeof(*ifaces));
if (ifaces == NULL)
goto eexit;
TAILQ_INIT(ifaces);
ifp = calloc(1, sizeof(*ifp));
if (ifp == NULL)
goto eexit;
TAILQ_INSERT_HEAD(ifaces, ifp, next);
ifp->if_data[IF_DATA_DHCP] = state = calloc(1, sizeof(*state));
if (state == NULL)
goto eexit;
ifp->options = calloc(1, sizeof(*ifp->options));
if (ifp->options == NULL)
goto eexit;
strlcpy(ifp->name, ifname, sizeof(ifp->name));
snprintf(state->leasefile, sizeof(state->leasefile),
LEASEFILE, ifp->name);
strlcpy(ifp->options->script, if_options->script,
sizeof(ifp->options->script));
state->new = read_lease(ifp);
if (state->new == NULL && errno == ENOENT) {
strlcpy(state->leasefile, ifname, sizeof(state->leasefile));
state->new = read_lease(ifp);
}
if (state->new == NULL) {
if (errno == ENOENT)
syslog(LOG_ERR, "%s: no lease to dump", ifname);
return -1;
}
state->reason = "DUMP";
return script_runreason(ifp, state->reason);
eexit:
syslog(LOG_ERR, "%s: %m", __func__);
return -1;
}
void
dhcp_free(struct interface *ifp)
{
struct dhcp_state *state = D_STATE(ifp);
if (state) {
free(state->old);
free(state->new);
free(state->offer);
free(state->buffer);
free(state->clientid);
free(state);
ifp->if_data[IF_DATA_DHCP] = NULL;
}
}
static int
dhcp_init(struct interface *ifp)
{
struct dhcp_state *state;
const struct if_options *ifo;
unsigned char *duid;
size_t len, ifl;
state = D_STATE(ifp);
if (state == NULL) {
ifp->if_data[IF_DATA_DHCP] = calloc(1, sizeof(*state));
state = D_STATE(ifp);
if (state == NULL)
return -1;
/* 0 is a valid fd, so init to -1 */
state->raw_fd = state->udp_fd = state->arp_fd = -1;
}
state->state = DHS_INIT;
state->reason = "PREINIT";
state->nakoff = 0;
snprintf(state->leasefile, sizeof(state->leasefile),
LEASEFILE, ifp->name);
ifo = ifp->options;
/* We need to drop the leasefile so that start_interface
* doesn't load it. */
if (ifo->options & DHCPCD_REQUEST)
unlink(state->leasefile);
free(state->clientid);
state->clientid = NULL;
if (*ifo->clientid) {
state->clientid = malloc(ifo->clientid[0] + 1);
if (state->clientid == NULL)
goto eexit;
memcpy(state->clientid, ifo->clientid, ifo->clientid[0] + 1);
} else if (ifo->options & DHCPCD_CLIENTID) {
len = 0;
if (ifo->options & DHCPCD_DUID) {
duid = malloc(DUID_LEN);
if (duid == NULL)
goto eexit;
if ((len = get_duid(duid, ifp)) == 0)
syslog(LOG_ERR, "get_duid: %m");
} else
duid = NULL;
if (len > 0) {
state->clientid = malloc(len + 6);
if (state->clientid == NULL)
goto eexit;
state->clientid[0] = len + 5;
state->clientid[1] = 255; /* RFC 4361 */
ifl = strlen(ifp->name);
if (ifl < 5) {
memcpy(state->clientid + 2, ifp->name, ifl);
if (ifl < 4)
memset(state->clientid + 2 + ifl,
0, 4 - ifl);
} else {
ifl = htonl(ifp->index);
memcpy(state->clientid + 2, &ifl, 4);
}
memcpy(state->clientid + 6, duid, len);
} else if (len == 0) {
len = ifp->hwlen + 1;
state->clientid = malloc(len + 1);
if (state->clientid == NULL)
goto eexit;
state->clientid[0] = len;
state->clientid[1] = ifp->family;
memcpy(state->clientid + 2, ifp->hwaddr,
ifp->hwlen);
}
free(duid);
}
if (ifo->options & DHCPCD_CLIENTID)
syslog(LOG_DEBUG, "%s: using ClientID %s", ifp->name,
hwaddr_ntoa(state->clientid + 1, state->clientid[0]));
else if (ifp->hwlen)
syslog(LOG_DEBUG, "%s: using hwaddr %s", ifp->name,
hwaddr_ntoa(ifp->hwaddr, ifp->hwlen));
return 0;
eexit:
syslog(LOG_ERR, "%s: Error making ClientID: %m", __func__);
return -1;
}
void
dhcp_start(struct interface *ifp)
{
struct if_options *ifo = ifp->options;
struct dhcp_state *state;
struct stat st;
struct timeval now;
uint32_t l;
int nolease;
if (!(ifo->options & DHCPCD_IPV4))
return;
if (dhcp_init(ifp) == -1) {
syslog(LOG_ERR, "%s: dhcp_init: %m", ifp->name);
return;
}
/* Close any pre-existing sockets as we're starting over */
dhcp_close(ifp);
state = D_STATE(ifp);
state->start_uptime = uptime();
free(state->offer);
state->offer = NULL;
if (state->arping_index < ifo->arping_len) {
arp_start(ifp);
return;
}
if (ifo->options & DHCPCD_STATIC) {
dhcp_static(ifp);
return;
}
if (dhcp_open(ifp) == -1)
return;
if (ifo->options & DHCPCD_INFORM) {
dhcp_inform(ifp);
return;
}
if (ifp->hwlen == 0 && ifo->clientid[0] == '\0') {
syslog(LOG_WARNING, "%s: needs a clientid to configure",
ifp->name);
dhcp_drop(ifp, "FAIL");
dhcp_close(ifp);
eloop_timeout_delete(NULL, ifp);
return;
}
/* We don't want to read the old lease if we NAK an old test */
nolease = state->offer && options & DHCPCD_TEST;
if (!nolease)
state->offer = read_lease(ifp);
if (state->offer) {
get_lease(&state->lease, state->offer);
state->lease.frominfo = 1;
if (state->offer->cookie == 0) {
if (state->offer->yiaddr == state->addr.s_addr) {
free(state->offer);
state->offer = NULL;
}
} else if (state->lease.leasetime != ~0U &&
stat(state->leasefile, &st) == 0)
{
/* Offset lease times and check expiry */
gettimeofday(&now, NULL);
if ((time_t)state->lease.leasetime <
now.tv_sec - st.st_mtime)
{
syslog(LOG_DEBUG,
"%s: discarding expired lease",
ifp->name);
free(state->offer);
state->offer = NULL;
state->lease.addr.s_addr = 0;
} else {
l = now.tv_sec - st.st_mtime;
state->lease.leasetime -= l;
state->lease.renewaltime -= l;
state->lease.rebindtime -= l;
}
}
}
if (state->offer == NULL)
dhcp_discover(ifp);
else if (state->offer->cookie == 0 &&
ifp->options->options & DHCPCD_IPV4LL)
ipv4ll_start(ifp);
else
dhcp_reboot(ifp);
}