blob: 8990909971cadb2829738f84c014934774f1e453 [file] [log] [blame]
/* crypto/bio/bio_dgram.c */
/*
* DTLS implementation written by Nagendra Modadugu
* (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
*/
/* ====================================================================
* Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
#include <stdio.h>
#include <errno.h>
#define USE_SOCKETS
#include "cryptlib.h"
#include <openssl/bio.h>
#ifndef OPENSSL_NO_DGRAM
#if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS)
#include <sys/timeb.h>
#endif
#ifndef OPENSSL_NO_SCTP
#include <netinet/sctp.h>
#include <fcntl.h>
#define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
#define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
#endif
#if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
#define IP_MTU 14 /* linux is lame */
#endif
#if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
/* Standard definition causes type-punning problems. */
#undef IN6_IS_ADDR_V4MAPPED
#define s6_addr32 __u6_addr.__u6_addr32
#define IN6_IS_ADDR_V4MAPPED(a) \
(((a)->s6_addr32[0] == 0) && \
((a)->s6_addr32[1] == 0) && \
((a)->s6_addr32[2] == htonl(0x0000ffff)))
#endif
#ifdef WATT32
#define sock_write SockWrite /* Watt-32 uses same names */
#define sock_read SockRead
#define sock_puts SockPuts
#endif
static int dgram_write(BIO *h, const char *buf, int num);
static int dgram_read(BIO *h, char *buf, int size);
static int dgram_puts(BIO *h, const char *str);
static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_new(BIO *h);
static int dgram_free(BIO *data);
static int dgram_clear(BIO *bio);
#ifndef OPENSSL_NO_SCTP
static int dgram_sctp_write(BIO *h, const char *buf, int num);
static int dgram_sctp_read(BIO *h, char *buf, int size);
static int dgram_sctp_puts(BIO *h, const char *str);
static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
static int dgram_sctp_new(BIO *h);
static int dgram_sctp_free(BIO *data);
#ifdef SCTP_AUTHENTICATION_EVENT
static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp);
#endif
#endif
static int BIO_dgram_should_retry(int s);
static void get_current_time(struct timeval *t);
static BIO_METHOD methods_dgramp=
{
BIO_TYPE_DGRAM,
"datagram socket",
dgram_write,
dgram_read,
dgram_puts,
NULL, /* dgram_gets, */
dgram_ctrl,
dgram_new,
dgram_free,
NULL,
};
#ifndef OPENSSL_NO_SCTP
static BIO_METHOD methods_dgramp_sctp=
{
BIO_TYPE_DGRAM_SCTP,
"datagram sctp socket",
dgram_sctp_write,
dgram_sctp_read,
dgram_sctp_puts,
NULL, /* dgram_gets, */
dgram_sctp_ctrl,
dgram_sctp_new,
dgram_sctp_free,
NULL,
};
#endif
typedef struct bio_dgram_data_st
{
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 sa_in6;
#endif
} peer;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
struct timeval next_timeout;
struct timeval socket_timeout;
} bio_dgram_data;
#ifndef OPENSSL_NO_SCTP
typedef struct bio_dgram_sctp_save_message_st
{
BIO *bio;
char *data;
int length;
} bio_dgram_sctp_save_message;
typedef struct bio_dgram_sctp_data_st
{
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 sa_in6;
#endif
} peer;
unsigned int connected;
unsigned int _errno;
unsigned int mtu;
struct bio_dgram_sctp_sndinfo sndinfo;
struct bio_dgram_sctp_rcvinfo rcvinfo;
struct bio_dgram_sctp_prinfo prinfo;
void (*handle_notifications)(BIO *bio, void *context, void *buf);
void* notification_context;
int in_handshake;
int ccs_rcvd;
int ccs_sent;
int save_shutdown;
int peer_auth_tested;
bio_dgram_sctp_save_message saved_message;
} bio_dgram_sctp_data;
#endif
BIO_METHOD *BIO_s_datagram(void)
{
return(&methods_dgramp);
}
BIO *BIO_new_dgram(int fd, int close_flag)
{
BIO *ret;
ret=BIO_new(BIO_s_datagram());
if (ret == NULL) return(NULL);
BIO_set_fd(ret,fd,close_flag);
return(ret);
}
static int dgram_new(BIO *bi)
{
bio_dgram_data *data = NULL;
bi->init=0;
bi->num=0;
data = OPENSSL_malloc(sizeof(bio_dgram_data));
if (data == NULL)
return 0;
memset(data, 0x00, sizeof(bio_dgram_data));
bi->ptr = data;
bi->flags=0;
return(1);
}
static int dgram_free(BIO *a)
{
bio_dgram_data *data;
if (a == NULL) return(0);
if ( ! dgram_clear(a))
return 0;
data = (bio_dgram_data *)a->ptr;
if(data != NULL) OPENSSL_free(data);
return(1);
}
static int dgram_clear(BIO *a)
{
if (a == NULL) return(0);
if (a->shutdown)
{
if (a->init)
{
SHUTDOWN2(a->num);
}
a->init=0;
a->flags=0;
}
return(1);
}
static void dgram_adjust_rcv_timeout(BIO *b)
{
#if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
union { size_t s; int i; } sz = {0};
/* Is a timer active? */
if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0)
{
struct timeval timenow, timeleft;
/* Read current socket timeout */
#ifdef OPENSSL_SYS_WINDOWS
int timeout;
sz.i = sizeof(timeout);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, &sz.i) < 0)
{ perror("getsockopt"); }
else
{
data->socket_timeout.tv_sec = timeout / 1000;
data->socket_timeout.tv_usec = (timeout % 1000) * 1000;
}
#else
sz.i = sizeof(data->socket_timeout);
if ( getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
&(data->socket_timeout), (void *)&sz) < 0)
{ perror("getsockopt"); }
else if (sizeof(sz.s)!=sizeof(sz.i) && sz.i==0)
OPENSSL_assert(sz.s<=sizeof(data->socket_timeout));
#endif
/* Get current time */
get_current_time(&timenow);
/* Calculate time left until timer expires */
memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval));
timeleft.tv_sec -= timenow.tv_sec;
timeleft.tv_usec -= timenow.tv_usec;
if (timeleft.tv_usec < 0)
{
timeleft.tv_sec--;
timeleft.tv_usec += 1000000;
}
if (timeleft.tv_sec < 0)
{
timeleft.tv_sec = 0;
timeleft.tv_usec = 1;
}
/* Adjust socket timeout if next handhake message timer
* will expire earlier.
*/
if ((data->socket_timeout.tv_sec == 0 && data->socket_timeout.tv_usec == 0) ||
(data->socket_timeout.tv_sec > timeleft.tv_sec) ||
(data->socket_timeout.tv_sec == timeleft.tv_sec &&
data->socket_timeout.tv_usec >= timeleft.tv_usec))
{
#ifdef OPENSSL_SYS_WINDOWS
timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000;
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); }
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft,
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); }
#endif
}
}
#endif
}
static void dgram_reset_rcv_timeout(BIO *b)
{
#if defined(SO_RCVTIMEO)
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
/* Is a timer active? */
if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0)
{
#ifdef OPENSSL_SYS_WINDOWS
int timeout = data->socket_timeout.tv_sec * 1000 +
data->socket_timeout.tv_usec / 1000;
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); }
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout),
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); }
#endif
}
#endif
}
static int dgram_read(BIO *b, char *out, int outl)
{
int ret=0;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
struct {
/*
* See commentary in b_sock.c. <appro>
*/
union { size_t s; int i; } len;
union {
struct sockaddr sa;
struct sockaddr_in sa_in;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 sa_in6;
#endif
} peer;
} sa;
sa.len.s=0;
sa.len.i=sizeof(sa.peer);
if (out != NULL)
{
clear_socket_error();
memset(&sa.peer, 0x00, sizeof(sa.peer));
dgram_adjust_rcv_timeout(b);
ret=recvfrom(b->num,out,outl,0,&sa.peer.sa,(void *)&sa.len);
if (sizeof(sa.len.i)!=sizeof(sa.len.s) && sa.len.i==0)
{
OPENSSL_assert(sa.len.s<=sizeof(sa.peer));
sa.len.i = (int)sa.len.s;
}
if ( ! data->connected && ret >= 0)
BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);
BIO_clear_retry_flags(b);
if (ret < 0)
{
if (BIO_dgram_should_retry(ret))
{
BIO_set_retry_read(b);
data->_errno = get_last_socket_error();
}
}
dgram_reset_rcv_timeout(b);
}
return(ret);
}
static int dgram_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_data *data = (bio_dgram_data *)b->ptr;
clear_socket_error();
if ( data->connected )
ret=writesocket(b->num,in,inl);
else
{
int peerlen = sizeof(data->peer);
if (data->peer.sa.sa_family == AF_INET)
peerlen = sizeof(data->peer.sa_in);
#if OPENSSL_USE_IPV6
else if (data->peer.sa.sa_family == AF_INET6)
peerlen = sizeof(data->peer.sa_in6);
#endif
#if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK)
ret=sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen);
#else
ret=sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
#endif
}
BIO_clear_retry_flags(b);
if (ret <= 0)
{
if (BIO_dgram_should_retry(ret))
{
BIO_set_retry_write(b);
data->_errno = get_last_socket_error();
#if 0 /* higher layers are responsible for querying MTU, if necessary */
if ( data->_errno == EMSGSIZE)
/* retrieve the new MTU */
BIO_ctrl(b, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
#endif
}
}
return(ret);
}
static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret=1;
int *ip;
struct sockaddr *to = NULL;
bio_dgram_data *data = NULL;
#if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
int sockopt_val = 0;
socklen_t sockopt_len; /* assume that system supporting IP_MTU is
* modern enough to define socklen_t */
socklen_t addr_len;
union {
struct sockaddr sa;
struct sockaddr_in s4;
#if OPENSSL_USE_IPV6
struct sockaddr_in6 s6;
#endif
} addr;
#endif
data = (bio_dgram_data *)b->ptr;
switch (cmd)
{
case BIO_CTRL_RESET:
num=0;
case BIO_C_FILE_SEEK:
ret=0;
break;
case BIO_C_FILE_TELL:
case BIO_CTRL_INFO:
ret=0;
break;
case BIO_C_SET_FD:
dgram_clear(b);
b->num= *((int *)ptr);
b->shutdown=(int)num;
b->init=1;
break;
case BIO_C_GET_FD:
if (b->init)
{
ip=(int *)ptr;
if (ip != NULL) *ip=b->num;
ret=b->num;
}
else
ret= -1;
break;
case BIO_CTRL_GET_CLOSE:
ret=b->shutdown;
break;
case BIO_CTRL_SET_CLOSE:
b->shutdown=(int)num;
break;
case BIO_CTRL_PENDING:
case BIO_CTRL_WPENDING:
ret=0;
break;
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret=1;
break;
case BIO_CTRL_DGRAM_CONNECT:
to = (struct sockaddr *)ptr;
#if 0
if (connect(b->num, to, sizeof(struct sockaddr)) < 0)
{ perror("connect"); ret = 0; }
else
{
#endif
switch (to->sa_family)
{
case AF_INET:
memcpy(&data->peer,to,sizeof(data->peer.sa_in));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(&data->peer,to,sizeof(data->peer.sa_in6));
break;
#endif
default:
memcpy(&data->peer,to,sizeof(data->peer.sa));
break;
}
#if 0
}
#endif
break;
/* (Linux)kernel sets DF bit on outgoing IP packets */
case BIO_CTRL_DGRAM_MTU_DISCOVER:
#if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
addr_len = (socklen_t)sizeof(addr);
memset((void *)&addr, 0, sizeof(addr));
if (getsockname(b->num, &addr.sa, &addr_len) < 0)
{
ret = 0;
break;
}
switch (addr.sa.sa_family)
{
case AF_INET:
sockopt_val = IP_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
perror("setsockopt");
break;
#if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
case AF_INET6:
sockopt_val = IPV6_PMTUDISC_DO;
if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&sockopt_val, sizeof(sockopt_val))) < 0)
perror("setsockopt");
break;
#endif
default:
ret = -1;
break;
}
ret = -1;
#else
break;
#endif
case BIO_CTRL_DGRAM_QUERY_MTU:
#if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
addr_len = (socklen_t)sizeof(addr);
memset((void *)&addr, 0, sizeof(addr));
if (getsockname(b->num, &addr.sa, &addr_len) < 0)
{
ret = 0;
break;
}
sockopt_len = sizeof(sockopt_val);
switch (addr.sa.sa_family)
{
case AF_INET:
if ((ret = getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
&sockopt_len)) < 0 || sockopt_val < 0)
{
ret = 0;
}
else
{
/* we assume that the transport protocol is UDP and no
* IP options are used.
*/
data->mtu = sockopt_val - 8 - 20;
ret = data->mtu;
}
break;
#if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
case AF_INET6:
if ((ret = getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU, (void *)&sockopt_val,
&sockopt_len)) < 0 || sockopt_val < 0)
{
ret = 0;
}
else
{
/* we assume that the transport protocol is UDP and no
* IPV6 options are used.
*/
data->mtu = sockopt_val - 8 - 40;
ret = data->mtu;
}
break;
#endif
default:
ret = 0;
break;
}
#else
ret = 0;
#endif
break;
case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
switch (data->peer.sa.sa_family)
{
case AF_INET:
ret = 576 - 20 - 8;
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
#ifdef IN6_IS_ADDR_V4MAPPED
if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
ret = 576 - 20 - 8;
else
#endif
ret = 1280 - 40 - 8;
break;
#endif
default:
ret = 576 - 20 - 8;
break;
}
break;
case BIO_CTRL_DGRAM_GET_MTU:
return data->mtu;
break;
case BIO_CTRL_DGRAM_SET_MTU:
data->mtu = num;
ret = num;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
to = (struct sockaddr *)ptr;
if ( to != NULL)
{
data->connected = 1;
switch (to->sa_family)
{
case AF_INET:
memcpy(&data->peer,to,sizeof(data->peer.sa_in));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(&data->peer,to,sizeof(data->peer.sa_in6));
break;
#endif
default:
memcpy(&data->peer,to,sizeof(data->peer.sa));
break;
}
}
else
{
data->connected = 0;
memset(&(data->peer), 0x00, sizeof(data->peer));
}
break;
case BIO_CTRL_DGRAM_GET_PEER:
switch (data->peer.sa.sa_family)
{
case AF_INET:
ret=sizeof(data->peer.sa_in);
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
ret=sizeof(data->peer.sa_in6);
break;
#endif
default:
ret=sizeof(data->peer.sa);
break;
}
if (num==0 || num>ret)
num=ret;
memcpy(ptr,&data->peer,(ret=num));
break;
case BIO_CTRL_DGRAM_SET_PEER:
to = (struct sockaddr *) ptr;
switch (to->sa_family)
{
case AF_INET:
memcpy(&data->peer,to,sizeof(data->peer.sa_in));
break;
#if OPENSSL_USE_IPV6
case AF_INET6:
memcpy(&data->peer,to,sizeof(data->peer.sa_in6));
break;
#endif
default:
memcpy(&data->peer,to,sizeof(data->peer.sa));
break;
}
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
break;
#if defined(SO_RCVTIMEO)
case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
#ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec/1000;
if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); ret = -1; }
}
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); ret = -1; }
#endif
break;
case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
{
union { size_t s; int i; } sz = {0};
#ifdef OPENSSL_SYS_WINDOWS
int timeout;
struct timeval *tv = (struct timeval *)ptr;
sz.i = sizeof(timeout);
if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
(void*)&timeout, &sz.i) < 0)
{ perror("getsockopt"); ret = -1; }
else
{
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
#else
sz.i = sizeof(struct timeval);
if ( getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
ptr, (void *)&sz) < 0)
{ perror("getsockopt"); ret = -1; }
else if (sizeof(sz.s)!=sizeof(sz.i) && sz.i==0)
{
OPENSSL_assert(sz.s<=sizeof(struct timeval));
ret = (int)sz.s;
}
else
ret = sz.i;
#endif
}
break;
#endif
#if defined(SO_SNDTIMEO)
case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
#ifdef OPENSSL_SYS_WINDOWS
{
struct timeval *tv = (struct timeval *)ptr;
int timeout = tv->tv_sec * 1000 + tv->tv_usec/1000;
if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void*)&timeout, sizeof(timeout)) < 0)
{ perror("setsockopt"); ret = -1; }
}
#else
if ( setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
sizeof(struct timeval)) < 0)
{ perror("setsockopt"); ret = -1; }
#endif
break;
case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
{
union { size_t s; int i; } sz = {0};
#ifdef OPENSSL_SYS_WINDOWS
int timeout;
struct timeval *tv = (struct timeval *)ptr;
sz.i = sizeof(timeout);
if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
(void*)&timeout, &sz.i) < 0)
{ perror("getsockopt"); ret = -1; }
else
{
tv->tv_sec = timeout / 1000;
tv->tv_usec = (timeout % 1000) * 1000;
ret = sizeof(*tv);
}
#else
sz.i = sizeof(struct timeval);
if ( getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
ptr, (void *)&sz) < 0)
{ perror("getsockopt"); ret = -1; }
else if (sizeof(sz.s)!=sizeof(sz.i) && sz.i==0)
{
OPENSSL_assert(sz.s<=sizeof(struct timeval));
ret = (int)sz.s;
}
else
ret = sz.i;
#endif
}
break;
#endif
case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
/* fall-through */
case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
#ifdef OPENSSL_SYS_WINDOWS
if ( data->_errno == WSAETIMEDOUT)
#else
if ( data->_errno == EAGAIN)
#endif
{
ret = 1;
data->_errno = 0;
}
else
ret = 0;
break;
#ifdef EMSGSIZE
case BIO_CTRL_DGRAM_MTU_EXCEEDED:
if ( data->_errno == EMSGSIZE)
{
ret = 1;
data->_errno = 0;
}
else
ret = 0;
break;
#endif
default:
ret=0;
break;
}
return(ret);
}
static int dgram_puts(BIO *bp, const char *str)
{
int n,ret;
n=strlen(str);
ret=dgram_write(bp,str,n);
return(ret);
}
#ifndef OPENSSL_NO_SCTP
BIO_METHOD *BIO_s_datagram_sctp(void)
{
return(&methods_dgramp_sctp);
}
BIO *BIO_new_dgram_sctp(int fd, int close_flag)
{
BIO *bio;
int ret, optval = 20000;
int auth_data = 0, auth_forward = 0;
unsigned char *p;
struct sctp_authchunk auth;
struct sctp_authchunks *authchunks;
socklen_t sockopt_len;
#ifdef SCTP_AUTHENTICATION_EVENT
#ifdef SCTP_EVENT
struct sctp_event event;
#else
struct sctp_event_subscribe event;
#endif
#endif
bio=BIO_new(BIO_s_datagram_sctp());
if (bio == NULL) return(NULL);
BIO_set_fd(bio,fd,close_flag);
/* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct sctp_authchunk));
OPENSSL_assert(ret >= 0);
auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
ret = setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth, sizeof(struct sctp_authchunk));
OPENSSL_assert(ret >= 0);
/* Test if activation was successful. When using accept(),
* SCTP-AUTH has to be activated for the listening socket
* already, otherwise the connected socket won't use it. */
sockopt_len = (socklen_t)(sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
authchunks = OPENSSL_malloc(sockopt_len);
memset(authchunks, 0, sizeof(sockopt_len));
ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks, &sockopt_len);
OPENSSL_assert(ret >= 0);
for (p = (unsigned char*) authchunks + sizeof(sctp_assoc_t);
p < (unsigned char*) authchunks + sockopt_len;
p += sizeof(uint8_t))
{
if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1;
if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward = 1;
}
OPENSSL_free(authchunks);
OPENSSL_assert(auth_data);
OPENSSL_assert(auth_forward);
#ifdef SCTP_AUTHENTICATION_EVENT
#ifdef SCTP_EVENT
memset(&event, 0, sizeof(struct sctp_event));
event.se_assoc_id = 0;
event.se_type = SCTP_AUTHENTICATION_EVENT;
event.se_on = 1;
ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event));
OPENSSL_assert(ret >= 0);
#else
sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
OPENSSL_assert(ret >= 0);
event.sctp_authentication_event = 1;
ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe));
OPENSSL_assert(ret >= 0);
#endif
#endif
/* Disable partial delivery by setting the min size
* larger than the max record size of 2^14 + 2048 + 13
*/
ret = setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval, sizeof(optval));
OPENSSL_assert(ret >= 0);
return(bio);
}
int BIO_dgram_is_sctp(BIO *bio)
{
return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
}
static int dgram_sctp_new(BIO *bi)
{
bio_dgram_sctp_data *data = NULL;
bi->init=0;
bi->num=0;
data = OPENSSL_malloc(sizeof(bio_dgram_sctp_data));
if (data == NULL)
return 0;
memset(data, 0x00, sizeof(bio_dgram_sctp_data));
#ifdef SCTP_PR_SCTP_NONE
data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
#endif
bi->ptr = data;
bi->flags=0;
return(1);
}
static int dgram_sctp_free(BIO *a)
{
bio_dgram_sctp_data *data;
if (a == NULL) return(0);
if ( ! dgram_clear(a))
return 0;
data = (bio_dgram_sctp_data *)a->ptr;
if(data != NULL) OPENSSL_free(data);
return(1);
}
#ifdef SCTP_AUTHENTICATION_EVENT
void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification *snp)
{
int ret;
struct sctp_authkey_event* authkeyevent = &snp->sn_auth_event;
if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY)
{
struct sctp_authkeyid authkeyid;
/* delete key */
authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
}
}
#endif
static int dgram_sctp_read(BIO *b, char *out, int outl)
{
int ret = 0, n = 0, i, optval;
socklen_t optlen;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;
union sctp_notification *snp;
struct msghdr msg;
struct iovec iov;
struct cmsghdr *cmsg;
char cmsgbuf[512];
if (out != NULL)
{
clear_socket_error();
do
{
memset(&data->rcvinfo, 0x00, sizeof(struct bio_dgram_sctp_rcvinfo));
iov.iov_base = out;
iov.iov_len = outl;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = 512;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (msg.msg_controllen > 0)
{
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg))
{
if (cmsg->cmsg_level != IPPROTO_SCTP)
continue;
#ifdef SCTP_RCVINFO
if (cmsg->cmsg_type == SCTP_RCVINFO)
{
struct sctp_rcvinfo *rcvinfo;
rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg);
data->rcvinfo.rcv_sid = rcvinfo->rcv_sid;
data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn;
data->rcvinfo.rcv_flags = rcvinfo->rcv_flags;
data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid;
data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn;
data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn;
data->rcvinfo.rcv_context = rcvinfo->rcv_context;
}
#endif
#ifdef SCTP_SNDRCV
if (cmsg->cmsg_type == SCTP_SNDRCV)
{
struct sctp_sndrcvinfo *sndrcvinfo;
sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream;
data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn;
data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags;
data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid;
data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn;
data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn;
data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context;
}
#endif
}
}
if (n <= 0)
{
if (n < 0)
ret = n;
break;
}
if (msg.msg_flags & MSG_NOTIFICATION)
{
snp = (union sctp_notification*) out;
if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EVENT)
{
#ifdef SCTP_EVENT
struct sctp_event event;
#else
struct sctp_event_subscribe event;
socklen_t eventsize;
#endif
/* If a message has been delayed until the socket
* is dry, it can be sent now.
*/
if (data->saved_message.length > 0)
{
dgram_sctp_write(data->saved_message.bio, data->saved_message.data,
data->saved_message.length);
OPENSSL_free(data->saved_message.data);
data->saved_message.length = 0;
}
/* disable sender dry event */
#ifdef SCTP_EVENT
memset(&event, 0, sizeof(struct sctp_event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 0;
i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event));
OPENSSL_assert(i >= 0);
#else
eventsize = sizeof(struct sctp_event_subscribe);
i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
OPENSSL_assert(i >= 0);
event.sctp_sender_dry_event = 0;
i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe));
OPENSSL_assert(i >= 0);
#endif
}
#ifdef SCTP_AUTHENTICATION_EVENT
if (snp->sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, snp);
#endif
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context, (void*) out);
memset(out, 0, outl);
}
else
ret += n;
}
while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR) && (ret < outl));
if (ret > 0 && !(msg.msg_flags & MSG_EOR))
{
/* Partial message read, this should never happen! */
/* The buffer was too small, this means the peer sent
* a message that was larger than allowed. */
if (ret == outl)
return -1;
/* Test if socket buffer can handle max record
* size (2^14 + 2048 + 13)
*/
optlen = (socklen_t) sizeof(int);
ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen);
OPENSSL_assert(ret >= 0);
OPENSSL_assert(optval >= 18445);
/* Test if SCTP doesn't partially deliver below
* max record size (2^14 + 2048 + 13)
*/
optlen = (socklen_t) sizeof(int);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT,
&optval, &optlen);
OPENSSL_assert(ret >= 0);
OPENSSL_assert(optval >= 18445);
/* Partially delivered notification??? Probably a bug.... */
OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));
/* Everything seems ok till now, so it's most likely
* a message dropped by PR-SCTP.
*/
memset(out, 0, outl);
BIO_set_retry_read(b);
return -1;
}
BIO_clear_retry_flags(b);
if (ret < 0)
{
if (BIO_dgram_should_retry(ret))
{
BIO_set_retry_read(b);
data->_errno = get_last_socket_error();
}
}
/* Test if peer uses SCTP-AUTH before continuing */
if (!data->peer_auth_tested)
{
int ii, auth_data = 0, auth_forward = 0;
unsigned char *p;
struct sctp_authchunks *authchunks;
optlen = (socklen_t)(sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
authchunks = OPENSSL_malloc(optlen);
memset(authchunks, 0, sizeof(optlen));
ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS, authchunks, &optlen);
OPENSSL_assert(ii >= 0);
for (p = (unsigned char*) authchunks + sizeof(sctp_assoc_t);
p < (unsigned char*) authchunks + optlen;
p += sizeof(uint8_t))
{
if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE) auth_data = 1;
if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE) auth_forward = 1;
}
OPENSSL_free(authchunks);
if (!auth_data || !auth_forward)
{
BIOerr(BIO_F_DGRAM_SCTP_READ,BIO_R_CONNECT_ERROR);
return -1;
}
data->peer_auth_tested = 1;
}
}
return(ret);
}
static int dgram_sctp_write(BIO *b, const char *in, int inl)
{
int ret;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;
struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
struct bio_dgram_sctp_sndinfo handshake_sinfo;
struct iovec iov[1];
struct msghdr msg;
struct cmsghdr *cmsg;
#if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) + CMSG_SPACE(sizeof(struct sctp_prinfo))];
struct sctp_sndinfo *sndinfo;
struct sctp_prinfo *prinfo;
#else
char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
struct sctp_sndrcvinfo *sndrcvinfo;
#endif
clear_socket_error();
/* If we're send anything else than application data,
* disable all user parameters and flags.
*/
if (in[0] != 23) {
memset(&handshake_sinfo, 0x00, sizeof(struct bio_dgram_sctp_sndinfo));
#ifdef SCTP_SACK_IMMEDIATELY
handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;
#endif
sinfo = &handshake_sinfo;
}
/* If we have to send a shutdown alert message and the
* socket is not dry yet, we have to save it and send it
* as soon as the socket gets dry.
*/
if (data->save_shutdown && !BIO_dgram_sctp_wait_for_dry(b))
{
data->saved_message.bio = b;
data->saved_message.length = inl;
data->saved_message.data = OPENSSL_malloc(inl);
memcpy(data->saved_message.data, in, inl);
return inl;
}
iov[0].iov_base = (char *)in;
iov[0].iov_len = inl;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = (caddr_t)cmsgbuf;
msg.msg_controllen = 0;
msg.msg_flags = 0;
#if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
memset(sndinfo, 0, sizeof(struct sctp_sndinfo));
sndinfo->snd_sid = sinfo->snd_sid;
sndinfo->snd_flags = sinfo->snd_flags;
sndinfo->snd_ppid = sinfo->snd_ppid;
sndinfo->snd_context = sinfo->snd_context;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));
cmsg = (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))];
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_PRINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
memset(prinfo, 0, sizeof(struct sctp_prinfo));
prinfo->pr_policy = pinfo->pr_policy;
prinfo->pr_value = pinfo->pr_value;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
#else
cmsg = (struct cmsghdr *)cmsgbuf;
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
memset(sndrcvinfo, 0, sizeof(struct sctp_sndrcvinfo));
sndrcvinfo->sinfo_stream = sinfo->snd_sid;
sndrcvinfo->sinfo_flags = sinfo->snd_flags;
#ifdef __FreeBSD__
sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
#endif
sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
sndrcvinfo->sinfo_context = sinfo->snd_context;
sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
#endif
ret = sendmsg(b->num, &msg, 0);
BIO_clear_retry_flags(b);
if (ret <= 0)
{
if (BIO_dgram_should_retry(ret))
{
BIO_set_retry_write(b);
data->_errno = get_last_socket_error();
}
}
return(ret);
}
static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
{
long ret=1;
bio_dgram_sctp_data *data = NULL;
socklen_t sockopt_len = 0;
struct sctp_authkeyid authkeyid;
struct sctp_authkey *authkey;
data = (bio_dgram_sctp_data *)b->ptr;
switch (cmd)
{
case BIO_CTRL_DGRAM_QUERY_MTU:
/* Set to maximum (2^14)
* and ignore user input to enable transport
* protocol fragmentation.
* Returns always 2^14.
*/
data->mtu = 16384;
ret = data->mtu;
break;
case BIO_CTRL_DGRAM_SET_MTU:
/* Set to maximum (2^14)
* and ignore input to enable transport
* protocol fragmentation.
* Returns always 2^14.
*/
data->mtu = 16384;
ret = data->mtu;
break;
case BIO_CTRL_DGRAM_SET_CONNECTED:
case BIO_CTRL_DGRAM_CONNECT:
/* Returns always -1. */
ret = -1;
break;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
/* SCTP doesn't need the DTLS timer
* Returns always 1.
*/
break;
case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
if (num > 0)
data->in_handshake = 1;
else
data->in_handshake = 0;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY, &data->in_handshake, sizeof(int));
break;
case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
/* New shared key for SCTP AUTH.
* Returns 0 on success, -1 otherwise.
*/
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len);
if (ret < 0) break;
/* Add new key */
sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t);
authkey = OPENSSL_malloc(sockopt_len);
memset(authkey, 0x00, sockopt_len);
authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
#ifndef __FreeBSD__
/* This field is missing in FreeBSD 8.2 and earlier,
* and FreeBSD 8.3 and higher work without it.
*/
authkey->sca_keylength = 64;
#endif
memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey, sockopt_len);
if (ret < 0) break;
/* Reset active key */
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0) break;
break;
case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
/* Returns 0 on success, -1 otherwise. */
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len);
if (ret < 0) break;
/* Set active key */
authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0) break;
/* CCS has been sent, so remember that and fall through
* to check if we need to deactivate an old key
*/
data->ccs_sent = 1;
case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
/* Returns 0 on success, -1 otherwise. */
/* Has this command really been called or is this just a fall-through? */
if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
data->ccs_rcvd = 1;
/* CSS has been both, received and sent, so deactivate an old key */
if (data->ccs_rcvd == 1 && data->ccs_sent == 1)
{
/* Get active key */
sockopt_len = sizeof(struct sctp_authkeyid);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid, &sockopt_len);
if (ret < 0) break;
/* Deactivate key or delete second last key if
* SCTP_AUTHENTICATION_EVENT is not available.
*/
authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
#ifdef SCTP_AUTH_DEACTIVATE_KEY
sockopt_len = sizeof(struct sctp_authkeyid);
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY,
&authkeyid, sockopt_len);
if (ret < 0) break;
#endif
#ifndef SCTP_AUTHENTICATION_EVENT
if (authkeyid.scact_keynumber > 0)
{
authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
&authkeyid, sizeof(struct sctp_authkeyid));
if (ret < 0) break;
}
#endif
data->ccs_rcvd = 0;
data->ccs_sent = 0;
}
break;
case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
/* Returns the size of the copied struct. */
if (num > (long) sizeof(struct bio_dgram_sctp_sndinfo))
num = sizeof(struct bio_dgram_sctp_sndinfo);
memcpy(ptr, &(data->sndinfo), num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
/* Returns the size of the copied struct. */
if (num > (long) sizeof(struct bio_dgram_sctp_sndinfo))
num = sizeof(struct bio_dgram_sctp_sndinfo);
memcpy(&(data->sndinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
/* Returns the size of the copied struct. */
if (num > (long) sizeof(struct bio_dgram_sctp_rcvinfo))
num = sizeof(struct bio_dgram_sctp_rcvinfo);
memcpy(ptr, &data->rcvinfo, num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
/* Returns the size of the copied struct. */
if (num > (long) sizeof(struct bio_dgram_sctp_rcvinfo))
num = sizeof(struct bio_dgram_sctp_rcvinfo);
memcpy(&(data->rcvinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
/* Returns the size of the copied struct. */
if (num > (long) sizeof(struct bio_dgram_sctp_prinfo))
num = sizeof(struct bio_dgram_sctp_prinfo);
memcpy(ptr, &(data->prinfo), num);
ret = num;
break;
case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
/* Returns the size of the copied struct. */
if (num > (long) sizeof(struct bio_dgram_sctp_prinfo))
num = sizeof(struct bio_dgram_sctp_prinfo);
memcpy(&(data->prinfo), ptr, num);
break;
case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
/* Returns always 1. */
if (num > 0)
data->save_shutdown = 1;
else
data->save_shutdown = 0;
break;
default:
/* Pass to default ctrl function to
* process SCTP unspecific commands
*/
ret=dgram_ctrl(b, cmd, num, ptr);
break;
}
return(ret);
}
int BIO_dgram_sctp_notification_cb(BIO *b,
void (*handle_notifications)(BIO *bio, void *context, void *buf),
void *context)
{
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
if (handle_notifications != NULL)
{
data->handle_notifications = handle_notifications;
data->notification_context = context;
}
else
return -1;
return 0;
}
int BIO_dgram_sctp_wait_for_dry(BIO *b)
{
int is_dry = 0;
int n, sockflags, ret;
union sctp_notification snp;
struct msghdr msg;
struct iovec iov;
#ifdef SCTP_EVENT
struct sctp_event event;
#else
struct sctp_event_subscribe event;
socklen_t eventsize;
#endif
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;
/* set sender dry event */
#ifdef SCTP_EVENT
memset(&event, 0, sizeof(struct sctp_event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event));
#else
eventsize = sizeof(struct sctp_event_subscribe);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
if (ret < 0)
return -1;
event.sctp_sender_dry_event = 1;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe));
#endif
if (ret < 0)
return -1;
/* peek for notification */
memset(&snp, 0x00, sizeof(union sctp_notification));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, MSG_PEEK);
if (n <= 0)
{
if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return 0;
}
/* if we find a notification, process it and try again if necessary */
while (msg.msg_flags & MSG_NOTIFICATION)
{
memset(&snp, 0x00, sizeof(union sctp_notification));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (n <= 0)
{
if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return is_dry;
}
if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT)
{
is_dry = 1;
/* disable sender dry event */
#ifdef SCTP_EVENT
memset(&event, 0, sizeof(struct sctp_event));
event.se_assoc_id = 0;
event.se_type = SCTP_SENDER_DRY_EVENT;
event.se_on = 0;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(struct sctp_event));
#else
eventsize = (socklen_t) sizeof(struct sctp_event_subscribe);
ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
if (ret < 0)
return -1;
event.sctp_sender_dry_event = 0;
ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, sizeof(struct sctp_event_subscribe));
#endif
if (ret < 0)
return -1;
}
#ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
#endif
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context, (void*) &snp);
/* found notification, peek again */
memset(&snp, 0x00, sizeof(union sctp_notification));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
/* if we have seen the dry already, don't wait */
if (is_dry)
{
sockflags = fcntl(b->num, F_GETFL, 0);
fcntl(b->num, F_SETFL, O_NONBLOCK);
}
n = recvmsg(b->num, &msg, MSG_PEEK);
if (is_dry)
{
fcntl(b->num, F_SETFL, sockflags);
}
if (n <= 0)
{
if ((n < 0) && (get_last_socket_error() != EAGAIN) && (get_last_socket_error() != EWOULDBLOCK))
return -1;
else
return is_dry;
}
}
/* read anything else */
return is_dry;
}
int BIO_dgram_sctp_msg_waiting(BIO *b)
{
int n, sockflags;
union sctp_notification snp;
struct msghdr msg;
struct iovec iov;
bio_dgram_sctp_data *data = (bio_dgram_sctp_data *)b->ptr;
/* Check if there are any messages waiting to be read */
do
{
memset(&snp, 0x00, sizeof(union sctp_notification));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
sockflags = fcntl(b->num, F_GETFL, 0);
fcntl(b->num, F_SETFL, O_NONBLOCK);
n = recvmsg(b->num, &msg, MSG_PEEK);
fcntl(b->num, F_SETFL, sockflags);
/* if notification, process and try again */
if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION))
{
#ifdef SCTP_AUTHENTICATION_EVENT
if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
dgram_sctp_handle_auth_free_key_event(b, &snp);
#endif
memset(&snp, 0x00, sizeof(union sctp_notification));
iov.iov_base = (char *)&snp;
iov.iov_len = sizeof(union sctp_notification);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
n = recvmsg(b->num, &msg, 0);
if (data->handle_notifications != NULL)
data->handle_notifications(b, data->notification_context, (void*) &snp);
}
} while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));
/* Return 1 if there is a message to be read, return 0 otherwise. */
if (n > 0)
return 1;
else
return 0;
}
static int dgram_sctp_puts(BIO *bp, const char *str)
{
int n,ret;
n=strlen(str);
ret=dgram_sctp_write(bp,str,n);
return(ret);
}
#endif
static int BIO_dgram_should_retry(int i)
{
int err;
if ((i == 0) || (i == -1))
{
err=get_last_socket_error();
#if defined(OPENSSL_SYS_WINDOWS)
/* If the socket return value (i) is -1
* and err is unexpectedly 0 at this point,
* the error code was overwritten by
* another system call before this error
* handling is called.
*/
#endif
return(BIO_dgram_non_fatal_error(err));
}
return(0);
}
int BIO_dgram_non_fatal_error(int err)
{
switch (err)
{
#if defined(OPENSSL_SYS_WINDOWS)
# if defined(WSAEWOULDBLOCK)
case WSAEWOULDBLOCK:
# endif
# if 0 /* This appears to always be an error */
# if defined(WSAENOTCONN)
case WSAENOTCONN:
# endif
# endif
#endif
#ifdef EWOULDBLOCK
# ifdef WSAEWOULDBLOCK
# if WSAEWOULDBLOCK != EWOULDBLOCK
case EWOULDBLOCK:
# endif
# else
case EWOULDBLOCK:
# endif
#endif
#ifdef EINTR
case EINTR:
#endif
#ifdef EAGAIN
#if EWOULDBLOCK != EAGAIN
case EAGAIN:
# endif
#endif
#ifdef EPROTO
case EPROTO:
#endif
#ifdef EINPROGRESS
case EINPROGRESS:
#endif
#ifdef EALREADY
case EALREADY:
#endif
return(1);
/* break; */
default:
break;
}
return(0);
}
static void get_current_time(struct timeval *t)
{
#ifdef OPENSSL_SYS_WIN32
struct _timeb tb;
_ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#elif defined(OPENSSL_SYS_VMS)
struct timeb tb;
ftime(&tb);
t->tv_sec = (long)tb.time;
t->tv_usec = (long)tb.millitm * 1000;
#else
gettimeofday(t, NULL);
#endif
}
#endif