blob: 829ad37b07a12948833412dc8cfd59afbee451d6 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library dart2js.js_emitter.program_builder;
import 'js_emitter.dart' show computeMixinClass;
import 'model.dart';
import '../common.dart';
import '../js/js.dart' as js;
import '../js_backend/js_backend.dart' show
Namer,
JavaScriptBackend,
JavaScriptConstantCompiler;
import 'js_emitter.dart' show
ClassStubGenerator,
CodeEmitterTask,
InterceptorStubGenerator,
MainCallStubGenerator,
ParameterStubGenerator,
RuntimeTypeGenerator,
TypeTestProperties;
import '../elements/elements.dart' show ParameterElement;
import '../universe/universe.dart' show Universe;
import '../deferred_load.dart' show DeferredLoadTask, OutputUnit;
import '../constants/expressions.dart' show ConstantExpression, ConstantValue;
part 'registry.dart';
class ProgramBuilder {
final Compiler _compiler;
final Namer namer;
final CodeEmitterTask _task;
final Registry _registry;
/// True if the program should store function types in the metadata.
bool _storeFunctionTypesInMetadata = false;
ProgramBuilder(Compiler compiler,
this.namer,
this._task)
: this._compiler = compiler,
this._registry = new Registry(compiler);
JavaScriptBackend get backend => _compiler.backend;
Universe get universe => _compiler.codegenWorld;
/// Mapping from [ClassElement] to constructed [Class]. We need this to
/// update the superclass in the [Class].
final Map<ClassElement, Class> _classes = <ClassElement, Class>{};
/// Mapping from [OutputUnit] to constructed [Fragment]. We need this to
/// generate the deferredLoadingMap (to know which hunks to load).
final Map<OutputUnit, Fragment> _outputs = <OutputUnit, Fragment>{};
/// Mapping from [ConstantValue] to constructed [Constant]. We need this to
/// update field-initializers to point to the ConstantModel.
final Map<ConstantValue, Constant> _constants = <ConstantValue, Constant>{};
Set<Class> _unneededNativeClasses;
Program buildProgram({bool storeFunctionTypesInMetadata: false}) {
this._storeFunctionTypesInMetadata = storeFunctionTypesInMetadata;
// Note: In rare cases (mostly tests) output units can be empty. This
// happens when the deferred code is dead-code eliminated but we still need
// to check that the library has been loaded.
_compiler.deferredLoadTask.allOutputUnits.forEach(
_registry.registerOutputUnit);
_task.outputClassLists.forEach(_registry.registerElements);
_task.outputStaticLists.forEach(_registry.registerElements);
_task.outputConstantLists.forEach(_registerConstants);
_task.outputStaticNonFinalFieldLists.forEach(_registry.registerElements);
// TODO(kasperl): There's code that implicitly needs access to the special
// $ holder so we have to register that. Can we track if we have to?
_registry.registerHolder(r'$');
// We need to run the native-preparation before we build the output. The
// preparation code, in turn needs the classes to be set up.
// We thus build the classes before building their containers.
_task.outputClassLists.forEach((OutputUnit _, List<ClassElement> classes) {
classes.forEach(_buildClass);
});
// Resolve the superclass references after we've processed all the classes.
_classes.forEach((ClassElement element, Class c) {
if (element.superclass != null) {
c.setSuperclass(_classes[element.superclass]);
assert(c.superclass != null);
}
if (c is MixinApplication) {
c.setMixinClass(_classes[computeMixinClass(element)]);
assert(c.mixinClass != null);
}
});
List<Class> nativeClasses = _task.nativeClassesAndSubclasses
.map((ClassElement classElement) => _classes[classElement])
.toList();
_unneededNativeClasses =
_task.nativeEmitter.prepareNativeClasses(nativeClasses);
MainFragment mainFragment = _buildMainFragment(_registry.mainLibrariesMap);
Iterable<Fragment> deferredFragments =
_registry.deferredLibrariesMap.map(_buildDeferredFragment);
List<Fragment> fragments = new List<Fragment>(_registry.librariesMapCount);
fragments[0] = mainFragment;
fragments.setAll(1, deferredFragments);
_markEagerClasses();
List<Holder> holders = _registry.holders.toList(growable: false);
bool needsNativeSupport = _compiler.enqueuer.codegen.nativeEnqueuer
.hasInstantiatedNativeClasses();
assert(!needsNativeSupport || nativeClasses.isNotEmpty);
return new Program(
fragments,
holders,
_buildLoadMap(),
_buildTypeToInterceptorMap(),
_task.metadataCollector,
needsNativeSupport: needsNativeSupport,
outputContainsConstantList: _task.outputContainsConstantList,
hasIsolateSupport: _compiler.hasIsolateSupport);
}
void _markEagerClasses() {
_markEagerInterceptorClasses();
}
/// Builds a map from loadId to outputs-to-load.
Map<String, List<Fragment>> _buildLoadMap() {
Map<String, List<Fragment>> loadMap = <String, List<Fragment>>{};
_compiler.deferredLoadTask.hunksToLoad
.forEach((String loadId, List<OutputUnit> outputUnits) {
loadMap[loadId] = outputUnits
.map((OutputUnit unit) => _outputs[unit])
.toList(growable: false);
});
return loadMap;
}
js.Expression _buildTypeToInterceptorMap() {
InterceptorStubGenerator stubGenerator =
new InterceptorStubGenerator(_compiler, namer, backend);
return stubGenerator.generateTypeToInterceptorMap();
}
MainFragment _buildMainFragment(LibrariesMap librariesMap) {
// Construct the main output from the libraries and the registered holders.
MainFragment result = new MainFragment(
librariesMap.outputUnit,
"", // The empty string is the name for the main output file.
_buildInvokeMain(),
_buildLibraries(librariesMap),
_buildStaticNonFinalFields(librariesMap),
_buildStaticLazilyInitializedFields(librariesMap),
_buildConstants(librariesMap));
_outputs[librariesMap.outputUnit] = result;
return result;
}
js.Statement _buildInvokeMain() {
MainCallStubGenerator generator =
new MainCallStubGenerator(_compiler, backend, backend.emitter);
return generator.generateInvokeMain();
}
DeferredFragment _buildDeferredFragment(LibrariesMap librariesMap) {
DeferredFragment result = new DeferredFragment(
librariesMap.outputUnit,
backend.deferredPartFileName(librariesMap.name, addExtension: false),
librariesMap.name,
_buildLibraries(librariesMap),
_buildStaticNonFinalFields(librariesMap),
_buildStaticLazilyInitializedFields(librariesMap),
_buildConstants(librariesMap));
_outputs[librariesMap.outputUnit] = result;
return result;
}
List<Constant> _buildConstants(LibrariesMap librariesMap) {
List<ConstantValue> constantValues =
_task.outputConstantLists[librariesMap.outputUnit];
if (constantValues == null) return const <Constant>[];
return constantValues.map((ConstantValue value) => _constants[value])
.toList(growable: false);
}
List<StaticField> _buildStaticNonFinalFields(LibrariesMap librariesMap) {
// TODO(floitsch): handle static non-final fields correctly with deferred
// libraries.
if (librariesMap != _registry.mainLibrariesMap) {
return const <StaticField>[];
}
Iterable<VariableElement> staticNonFinalFields =
backend.constants.getStaticNonFinalFieldsForEmission();
return Elements.sortedByPosition(staticNonFinalFields)
.map(_buildStaticField)
.toList(growable: false);
}
StaticField _buildStaticField(Element element) {
JavaScriptConstantCompiler handler = backend.constants;
ConstantValue initialValue = handler.getInitialValueFor(element).value;
// TODO(zarah): The holder should not be registered during building of
// a static field.
_registry.registerHolder(namer.globalObjectForConstant(initialValue));
js.Expression code = _task.emitter.constantReference(initialValue);
String name = namer.globalPropertyName(element);
bool isFinal = false;
bool isLazy = false;
// TODO(floitsch): we shouldn't update the registry in the middle of
// building a static field. (Note that the $ holder is already registered
// earlier).
return new StaticField(element,
name, _registry.registerHolder(r'$'), code,
isFinal, isLazy);
}
List<StaticField> _buildStaticLazilyInitializedFields(
LibrariesMap librariesMap) {
// TODO(floitsch): lazy fields should just be in their respective
// libraries.
if (librariesMap != _registry.mainLibrariesMap) {
return const <StaticField>[];
}
JavaScriptConstantCompiler handler = backend.constants;
List<VariableElement> lazyFields =
handler.getLazilyInitializedFieldsForEmission();
return Elements.sortedByPosition(lazyFields)
.map(_buildLazyField)
.where((field) => field != null) // Happens when the field was unused.
.toList(growable: false);
}
StaticField _buildLazyField(Element element) {
js.Expression code = backend.generatedCode[element];
// The code is null if we ended up not needing the lazily
// initialized field after all because of constant folding
// before code generation.
if (code == null) return null;
String name = namer.globalPropertyName(element);
bool isFinal = element.isFinal;
bool isLazy = true;
// TODO(floitsch): we shouldn't update the registry in the middle of
// building a static field. (Note that the $ holder is already registered
// earlier).
return new StaticField(element,
name, _registry.registerHolder(r'$'), code,
isFinal, isLazy);
}
List<Library> _buildLibraries(LibrariesMap librariesMap) {
List<Library> libraries = new List<Library>(librariesMap.length);
int count = 0;
librariesMap.forEach((LibraryElement library, List<Element> elements) {
libraries[count++] = _buildLibrary(library, elements);
});
return libraries;
}
// Note that a library-element may have multiple [Library]s, if it is split
// into multiple output units.
Library _buildLibrary(LibraryElement library, List<Element> elements) {
String uri = library.canonicalUri.toString();
List<StaticMethod> statics = elements
.where((e) => e is FunctionElement)
.map(_buildStaticMethod)
.toList();
if (library == backend.interceptorsLibrary) {
statics.addAll(_generateGetInterceptorMethods());
statics.addAll(_generateOneShotInterceptors());
}
List<Class> classes = elements
.where((e) => e is ClassElement)
.map((ClassElement classElement) => _classes[classElement])
.where((Class cls) =>
!cls.isNative || !_unneededNativeClasses.contains(cls))
.toList(growable: false);
bool visitStatics = true;
List<Field> staticFieldsForReflection = _buildFields(library, visitStatics);
return new Library(library, uri, statics, classes,
staticFieldsForReflection);
}
/// HACK for Incremental Compilation.
///
/// Returns a class that contains the fields of a class.
Class buildFieldsHackForIncrementalCompilation(ClassElement element) {
assert(_compiler.hasIncrementalSupport);
List<Field> instanceFields = _buildFields(element, false);
String name = namer.className(element);
return new Class(
element, name, null, [], instanceFields, [], [], [], [], [], null,
isDirectlyInstantiated: true,
onlyForRti: false,
isNative: element.isNative);
}
Class _buildClass(ClassElement element) {
bool onlyForRti = _task.typeTestRegistry.rtiNeededClasses.contains(element);
List<Method> methods = [];
List<StubMethod> callStubs = <StubMethod>[];
ClassStubGenerator classStubGenerator =
new ClassStubGenerator(_compiler, namer, backend);
RuntimeTypeGenerator runtimeTypeGenerator =
new RuntimeTypeGenerator(_compiler, _task, namer);
void visitMember(ClassElement enclosing, Element member) {
assert(invariant(element, member.isDeclaration));
assert(invariant(element, element == enclosing));
if (Elements.isNonAbstractInstanceMember(member)) {
js.Expression code = backend.generatedCode[member];
// TODO(herhut): Remove once _buildMethod can no longer return null.
Method method = _buildMethod(member);
if (method != null) methods.add(method);
}
if (member.isGetter || member.isField) {
Set<Selector> selectors =
_compiler.codegenWorld.invokedNames[member.name];
if (selectors != null && !selectors.isEmpty) {
Map<String, js.Expression> callStubsForMember =
classStubGenerator.generateCallStubsForGetter(member, selectors);
callStubsForMember.forEach((String name, js.Expression code) {
callStubs.add(_buildStubMethod(name, code, element: member));
});
}
}
}
List<StubMethod> typeVariableReaderStubs =
runtimeTypeGenerator.generateTypeVariableReaderStubs(element);
List<StubMethod> noSuchMethodStubs = <StubMethod>[];
if (backend.enabledNoSuchMethod && element == _compiler.objectClass) {
Map<String, Selector> selectors =
classStubGenerator.computeSelectorsForNsmHandlers();
selectors.forEach((String name, Selector selector) {
noSuchMethodStubs
.add(classStubGenerator.generateStubForNoSuchMethod(name,
selector));
});
}
if (element == backend.closureClass) {
// We add a special getter here to allow for tearing off a closure from
// itself.
String name = namer.getterForPublicMember(Compiler.CALL_OPERATOR_NAME);
js.Fun function = js.js('function() { return this; }');
callStubs.add(_buildStubMethod(name, function));
}
ClassElement implementation = element.implementation;
// MixinApplications run through the members of their mixin. Here, we are
// only interested in direct members.
if (!onlyForRti && !element.isMixinApplication) {
implementation.forEachMember(visitMember, includeBackendMembers: true);
}
List<Field> instanceFields =
onlyForRti ? const <Field>[] : _buildFields(element, false);
List<Field> staticFieldsForReflection =
onlyForRti ? const <Field>[] : _buildFields(element, true);
TypeTestProperties typeTests =
runtimeTypeGenerator.generateIsTests(
element,
storeFunctionTypeInMetadata: _storeFunctionTypesInMetadata);
List<StubMethod> isChecks = <StubMethod>[];
typeTests.properties.forEach((String name, js.Node code) {
isChecks.add(_buildStubMethod(name, code));
});
String name = namer.className(element);
String holderName = namer.globalObjectFor(element);
// TODO(floitsch): we shouldn't update the registry in the middle of
// building a class.
Holder holder = _registry.registerHolder(holderName);
bool isInstantiated =
_compiler.codegenWorld.directlyInstantiatedClasses.contains(element);
Class result;
if (element.isMixinApplication && !onlyForRti) {
assert(!element.isNative);
assert(methods.isEmpty);
result = new MixinApplication(element,
name, holder,
instanceFields,
staticFieldsForReflection,
callStubs,
typeVariableReaderStubs,
isChecks,
typeTests.functionTypeIndex,
isDirectlyInstantiated: isInstantiated,
onlyForRti: onlyForRti);
} else {
result = new Class(element,
name, holder, methods, instanceFields,
staticFieldsForReflection,
callStubs,
typeVariableReaderStubs,
noSuchMethodStubs,
isChecks,
typeTests.functionTypeIndex,
isDirectlyInstantiated: isInstantiated,
onlyForRti: onlyForRti,
isNative: element.isNative);
}
_classes[element] = result;
return result;
}
bool _methodNeedsStubs(FunctionElement method) {
return !method.functionSignature.optionalParameters.isEmpty;
}
bool _methodCanBeReflected(FunctionElement method) {
return backend.isAccessibleByReflection(method) ||
// During incremental compilation, we have to assume that reflection
// *might* get enabled.
_compiler.hasIncrementalSupport;
}
bool _methodCanBeApplied(FunctionElement method) {
return _compiler.enabledFunctionApply &&
_compiler.world.getMightBePassedToApply(method);
}
// TODO(herhut): Refactor incremental compilation and remove method.
Method buildMethodHackForIncrementalCompilation(FunctionElement element) {
assert(_compiler.hasIncrementalSupport);
if (element.isInstanceMember) {
return _buildMethod(element);
} else {
return _buildStaticMethod(element);
}
}
/* Map | List */ _computeParameterDefaultValues(FunctionSignature signature) {
var /* Map | List */ optionalParameterDefaultValues;
if (signature.optionalParametersAreNamed) {
optionalParameterDefaultValues = new Map<String, ConstantValue>();
signature.forEachOptionalParameter((ParameterElement parameter) {
ConstantExpression def =
backend.constants.getConstantForVariable(parameter);
optionalParameterDefaultValues[parameter.name] = def.value;
});
} else {
optionalParameterDefaultValues = <ConstantValue>[];
signature.forEachOptionalParameter((ParameterElement parameter) {
ConstantExpression def =
backend.constants.getConstantForVariable(parameter);
optionalParameterDefaultValues.add(def.value);
});
}
return optionalParameterDefaultValues;
}
DartMethod _buildMethod(FunctionElement element) {
String name = namer.methodPropertyName(element);
js.Expression code = backend.generatedCode[element];
// TODO(kasperl): Figure out under which conditions code is null.
if (code == null) return null;
bool canTearOff = false;
String tearOffName;
bool isClosure = false;
bool isNotApplyTarget = !element.isFunction || element.isAccessor;
bool canBeReflected = _methodCanBeReflected(element);
bool needsStubs = _methodNeedsStubs(element);
bool canBeApplied = _methodCanBeApplied(element);
String aliasName = backend.isAliasedSuperMember(element)
? namer.aliasedSuperMemberPropertyName(element)
: null;
if (isNotApplyTarget) {
canTearOff = false;
} else {
if (element.enclosingClass.isClosure) {
canTearOff = false;
isClosure = true;
} else {
// Careful with operators.
canTearOff = universe.hasInvokedGetter(element, _compiler.world) ||
(canBeReflected && !element.isOperator);
assert(canTearOff ||
!universe.methodsNeedingSuperGetter.contains(element));
tearOffName = namer.getterForElement(element);
}
}
if (canTearOff) {
assert(invariant(element, !element.isGenerativeConstructor));
assert(invariant(element, !element.isGenerativeConstructorBody));
assert(invariant(element, !element.isConstructor));
}
String callName = null;
if (canTearOff) {
Selector callSelector =
new Selector.fromElement(element).toCallSelector();
callName = namer.invocationName(callSelector);
}
DartType memberType;
if (element.isGenerativeConstructorBody) {
// TODO(herhut): Why does this need to be normalized away? We never need
// this information anyway as they cannot be torn off or
// reflected.
var body = element;
memberType = body.constructor.type;
} else {
memberType = element.type;
}
js.Expression functionType;
if (canTearOff || canBeReflected) {
functionType = _generateFunctionType(memberType);
}
int requiredParameterCount;
var /* List | Map */ optionalParameterDefaultValues;
if (canBeApplied || canBeReflected) {
FunctionSignature signature = element.functionSignature;
requiredParameterCount = signature.requiredParameterCount;
optionalParameterDefaultValues =
_computeParameterDefaultValues(signature);
}
return new InstanceMethod(element, name, code,
_generateParameterStubs(element, canTearOff), callName,
needsTearOff: canTearOff, tearOffName: tearOffName,
isClosure: isClosure, aliasName: aliasName,
canBeApplied: canBeApplied, canBeReflected: canBeReflected,
requiredParameterCount: requiredParameterCount,
optionalParameterDefaultValues: optionalParameterDefaultValues,
functionType: functionType);
}
js.Expression _generateFunctionType(DartType type) {
if (type.containsTypeVariables) {
js.Expression thisAccess = js.js(r'this.$receiver');
return backend.rti.getSignatureEncoding(type, thisAccess);
} else {
return js.number(backend.emitter.metadataCollector.reifyType(type));
}
}
List<ParameterStubMethod> _generateParameterStubs(FunctionElement element,
bool canTearOff) {
if (!_methodNeedsStubs(element)) return const <ParameterStubMethod>[];
ParameterStubGenerator generator =
new ParameterStubGenerator(_compiler, namer, backend);
return generator.generateParameterStubs(element, canTearOff: canTearOff);
}
/// Builds a stub method.
///
/// Stub methods may have an element that can be used for code-size
/// attribution.
Method _buildStubMethod(String name, js.Expression code,
{Element element}) {
return new StubMethod(name, code, element: element);
}
// The getInterceptor methods directly access the prototype of classes.
// We must evaluate these classes eagerly so that the prototype is
// accessible.
void _markEagerInterceptorClasses() {
Map<String, Set<ClassElement>> specializedGetInterceptors =
backend.specializedGetInterceptors;
for (Set<ClassElement> classes in specializedGetInterceptors.values) {
for (ClassElement element in classes) {
Class cls = _classes[element];
if (cls != null) cls.isEager = true;
}
}
}
Iterable<StaticStubMethod> _generateGetInterceptorMethods() {
InterceptorStubGenerator stubGenerator =
new InterceptorStubGenerator(_compiler, namer, backend);
String holderName = namer.globalObjectFor(backend.interceptorsLibrary);
// TODO(floitsch): we shouldn't update the registry in the middle of
// generating the interceptor methods.
Holder holder = _registry.registerHolder(holderName);
Map<String, Set<ClassElement>> specializedGetInterceptors =
backend.specializedGetInterceptors;
List<String> names = specializedGetInterceptors.keys.toList()..sort();
return names.map((String name) {
Set<ClassElement> classes = specializedGetInterceptors[name];
js.Expression code = stubGenerator.generateGetInterceptorMethod(classes);
return new StaticStubMethod(name, holder, code);
});
}
List<Field> _buildFields(Element holder, bool visitStatics) {
List<Field> fields = <Field>[];
_task.oldEmitter.classEmitter.visitFields(
holder, visitStatics, (VariableElement field,
String name,
String accessorName,
bool needsGetter,
bool needsSetter,
bool needsCheckedSetter) {
assert(invariant(field, field.isDeclaration));
int getterFlags = 0;
if (needsGetter) {
if (visitStatics || !backend.fieldHasInterceptedGetter(field)) {
getterFlags = 1;
} else {
getterFlags += 2;
// TODO(sra): 'isInterceptorClass' might not be the correct test
// for methods forced to use the interceptor convention because
// the method's class was elsewhere mixed-in to an interceptor.
if (!backend.isInterceptorClass(holder)) {
getterFlags += 1;
}
}
}
int setterFlags = 0;
if (needsSetter) {
if (visitStatics || !backend.fieldHasInterceptedSetter(field)) {
setterFlags = 1;
} else {
setterFlags += 2;
if (!backend.isInterceptorClass(holder)) {
setterFlags += 1;
}
}
}
fields.add(new Field(field, name, accessorName,
getterFlags, setterFlags,
needsCheckedSetter));
});
return fields;
}
Iterable<StaticStubMethod> _generateOneShotInterceptors() {
InterceptorStubGenerator stubGenerator =
new InterceptorStubGenerator(_compiler, namer, backend);
String holderName = namer.globalObjectFor(backend.interceptorsLibrary);
// TODO(floitsch): we shouldn't update the registry in the middle of
// generating the interceptor methods.
Holder holder = _registry.registerHolder(holderName);
List<String> names = backend.oneShotInterceptors.keys.toList()..sort();
return names.map((String name) {
js.Expression code = stubGenerator.generateOneShotInterceptor(name);
return new StaticStubMethod(name, holder, code);
});
}
StaticDartMethod _buildStaticMethod(FunctionElement element) {
String name = namer.methodPropertyName(element);
String holder = namer.globalObjectFor(element);
js.Expression code = backend.generatedCode[element];
bool isApplyTarget = !element.isConstructor && !element.isAccessor;
bool canBeApplied = _methodCanBeApplied(element);
bool canBeReflected = _methodCanBeReflected(element);
bool needsTearOff = isApplyTarget &&
(canBeReflected ||
universe.staticFunctionsNeedingGetter.contains(element));
String tearOffName =
needsTearOff ? namer.staticClosureName(element) : null;
String callName = null;
if (needsTearOff) {
Selector callSelector =
new Selector.fromElement(element).toCallSelector();
callName = namer.invocationName(callSelector);
}
js.Expression functionType;
DartType type = element.type;
if (needsTearOff || canBeReflected) {
functionType = _generateFunctionType(type);
}
int requiredParameterCount;
var /* List | Map */ optionalParameterDefaultValues;
if (canBeApplied || canBeReflected) {
FunctionSignature signature = element.functionSignature;
requiredParameterCount = signature.requiredParameterCount;
optionalParameterDefaultValues =
_computeParameterDefaultValues(signature);
}
// TODO(floitsch): we shouldn't update the registry in the middle of
// building a static method.
return new StaticDartMethod(element,
name, _registry.registerHolder(holder), code,
_generateParameterStubs(element, needsTearOff),
callName,
needsTearOff: needsTearOff,
tearOffName: tearOffName,
canBeApplied: canBeApplied,
canBeReflected: canBeReflected,
requiredParameterCount: requiredParameterCount,
optionalParameterDefaultValues:
optionalParameterDefaultValues,
functionType: functionType);
}
void _registerConstants(OutputUnit outputUnit,
Iterable<ConstantValue> constantValues) {
// `constantValues` is null if an outputUnit doesn't contain any constants.
if (constantValues == null) return;
for (ConstantValue constantValue in constantValues) {
_registry.registerConstant(outputUnit, constantValue);
assert(!_constants.containsKey(constantValue));
String name = namer.constantName(constantValue);
String constantObject = namer.globalObjectForConstant(constantValue);
Holder holder = _registry.registerHolder(constantObject);
Constant constant = new Constant(name, holder, constantValue);
_constants[constantValue] = constant;
}
}
}