blob: 187328e587caecab82711c7e71f0d6ea51880c5c [file] [log] [blame]
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <fstream>
#include "support/bits.h"
#include "wasm-binary.h"
#include "wasm-stack.h"
#include "ir/module-utils.h"
namespace wasm {
void WasmBinaryWriter::prepare() {
// we need function types for all our functions
for (auto& func : wasm->functions) {
if (func->type.isNull()) {
func->type = ensureFunctionType(getSig(func.get()), wasm)->name;
}
// TODO: depending on upstream flux https://github.com/WebAssembly/spec/pull/301 might want this: assert(!func->type.isNull());
}
ModuleUtils::BinaryIndexes indexes(*wasm);
mappedFunctions = std::move(indexes.functionIndexes);
mappedGlobals = std::move(indexes.globalIndexes);
importInfo = wasm::make_unique<ImportInfo>(*wasm);
}
void WasmBinaryWriter::write() {
writeHeader();
writeEarlyUserSections();
initializeDebugInfo();
if (sourceMap) {
writeSourceMapProlog();
}
writeTypes();
writeImports();
writeFunctionSignatures();
writeFunctionTableDeclaration();
writeMemory();
writeGlobals();
writeExports();
writeStart();
writeTableElements();
writeFunctions();
writeDataSegments();
if (debugInfo) writeNames();
if (sourceMap && !sourceMapUrl.empty()) writeSourceMapUrl();
if (symbolMap.size() > 0) writeSymbolMap();
if (sourceMap) {
writeSourceMapEpilog();
}
writeLateUserSections();
finishUp();
}
void WasmBinaryWriter::writeHeader() {
if (debug) std::cerr << "== writeHeader" << std::endl;
o << int32_t(BinaryConsts::Magic); // magic number \0asm
o << int32_t(BinaryConsts::Version);
}
int32_t WasmBinaryWriter::writeU32LEBPlaceholder() {
int32_t ret = o.size();
o << int32_t(0);
o << int8_t(0);
return ret;
}
void WasmBinaryWriter::writeResizableLimits(Address initial, Address maximum,
bool hasMaximum, bool shared) {
uint32_t flags =
(hasMaximum ? (uint32_t) BinaryConsts::HasMaximum : 0U) |
(shared ? (uint32_t) BinaryConsts::IsShared : 0U);
o << U32LEB(flags);
o << U32LEB(initial);
if (hasMaximum) {
o << U32LEB(maximum);
}
}
template<typename T>
int32_t WasmBinaryWriter::startSection(T code) {
o << U32LEB(code);
if (sourceMap) sourceMapLocationsSizeAtSectionStart = sourceMapLocations.size();
return writeU32LEBPlaceholder(); // section size to be filled in later
}
void WasmBinaryWriter::finishSection(int32_t start) {
int32_t size = o.size() - start - MaxLEB32Bytes; // section size does not include the reserved bytes of the size field itself
auto sizeFieldSize = o.writeAt(start, U32LEB(size));
if (sizeFieldSize != MaxLEB32Bytes) {
// we can save some room, nice
assert(sizeFieldSize < MaxLEB32Bytes);
std::move(&o[start] + MaxLEB32Bytes, &o[start] + MaxLEB32Bytes + size, &o[start] + sizeFieldSize);
auto adjustment = MaxLEB32Bytes - sizeFieldSize;
o.resize(o.size() - adjustment);
if (sourceMap) {
for (auto i = sourceMapLocationsSizeAtSectionStart; i < sourceMapLocations.size(); ++i) {
sourceMapLocations[i].first -= adjustment;
}
}
}
}
int32_t WasmBinaryWriter::startSubsection(BinaryConsts::UserSections::Subsection code) {
return startSection(code);
}
void WasmBinaryWriter::finishSubsection(int32_t start) {
finishSection(start);
}
void WasmBinaryWriter::writeStart() {
if (!wasm->start.is()) return;
if (debug) std::cerr << "== writeStart" << std::endl;
auto start = startSection(BinaryConsts::Section::Start);
o << U32LEB(getFunctionIndex(wasm->start.str));
finishSection(start);
}
void WasmBinaryWriter::writeMemory() {
if (!wasm->memory.exists || wasm->memory.imported()) return;
if (debug) std::cerr << "== writeMemory" << std::endl;
auto start = startSection(BinaryConsts::Section::Memory);
o << U32LEB(1); // Define 1 memory
writeResizableLimits(wasm->memory.initial, wasm->memory.max,
wasm->memory.hasMax(), wasm->memory.shared);
finishSection(start);
}
void WasmBinaryWriter::writeTypes() {
if (wasm->functionTypes.size() == 0) return;
if (debug) std::cerr << "== writeTypes" << std::endl;
auto start = startSection(BinaryConsts::Section::Type);
o << U32LEB(wasm->functionTypes.size());
for (auto& type : wasm->functionTypes) {
if (debug) std::cerr << "write one" << std::endl;
o << S32LEB(BinaryConsts::EncodedType::Func);
o << U32LEB(type->params.size());
for (auto param : type->params) {
o << binaryType(param);
}
if (type->result == none) {
o << U32LEB(0);
} else {
o << U32LEB(1);
o << binaryType(type->result);
}
}
finishSection(start);
}
int32_t WasmBinaryWriter::getFunctionTypeIndex(Name type) {
// TODO: optimize
for (size_t i = 0; i < wasm->functionTypes.size(); i++) {
if (wasm->functionTypes[i]->name == type) return i;
}
abort();
}
void WasmBinaryWriter::writeImports() {
auto num = importInfo->getNumImports();
if (num == 0) return;
if (debug) std::cerr << "== writeImports" << std::endl;
auto start = startSection(BinaryConsts::Section::Import);
o << U32LEB(num);
auto writeImportHeader = [&](Importable* import) {
writeInlineString(import->module.str);
writeInlineString(import->base.str);
};
ModuleUtils::iterImportedFunctions(*wasm, [&](Function* func) {
if (debug) std::cerr << "write one function" << std::endl;
writeImportHeader(func);
o << U32LEB(int32_t(ExternalKind::Function));
o << U32LEB(getFunctionTypeIndex(func->type));
});
ModuleUtils::iterImportedGlobals(*wasm, [&](Global* global) {
if (debug) std::cerr << "write one global" << std::endl;
writeImportHeader(global);
o << U32LEB(int32_t(ExternalKind::Global));
o << binaryType(global->type);
o << U32LEB(global->mutable_);
});
if (wasm->memory.imported()) {
if (debug) std::cerr << "write one memory" << std::endl;
writeImportHeader(&wasm->memory);
o << U32LEB(int32_t(ExternalKind::Memory));
writeResizableLimits(wasm->memory.initial, wasm->memory.max,
wasm->memory.hasMax(), wasm->memory.shared);
}
if (wasm->table.imported()) {
if (debug) std::cerr << "write one table" << std::endl;
writeImportHeader(&wasm->table);
o << U32LEB(int32_t(ExternalKind::Table));
o << S32LEB(BinaryConsts::EncodedType::AnyFunc);
writeResizableLimits(wasm->table.initial, wasm->table.max, wasm->table.hasMax(), /*shared=*/false);
}
finishSection(start);
}
void WasmBinaryWriter::writeFunctionSignatures() {
if (importInfo->getNumDefinedFunctions() == 0) return;
if (debug) std::cerr << "== writeFunctionSignatures" << std::endl;
auto start = startSection(BinaryConsts::Section::Function);
o << U32LEB(importInfo->getNumDefinedFunctions());
ModuleUtils::iterDefinedFunctions(*wasm, [&](Function* func) {
if (debug) std::cerr << "write one" << std::endl;
o << U32LEB(getFunctionTypeIndex(func->type));
});
finishSection(start);
}
void WasmBinaryWriter::writeExpression(Expression* curr) {
ExpressionStackWriter<WasmBinaryWriter>(curr, *this, o, debug);
}
void WasmBinaryWriter::writeFunctions() {
if (importInfo->getNumDefinedFunctions() == 0) return;
if (debug) std::cerr << "== writeFunctions" << std::endl;
auto start = startSection(BinaryConsts::Section::Code);
o << U32LEB(importInfo->getNumDefinedFunctions());
ModuleUtils::iterDefinedFunctions(*wasm, [&](Function* func) {
size_t sourceMapLocationsSizeAtFunctionStart = sourceMapLocations.size();
if (debug) std::cerr << "write one at" << o.size() << std::endl;
size_t sizePos = writeU32LEBPlaceholder();
size_t start = o.size();
if (debug) std::cerr << "writing" << func->name << std::endl;
// Emit Stack IR if present, and if we can
if (func->stackIR && !sourceMap) {
if (debug) std::cerr << "write Stack IR" << std::endl;
StackIRFunctionStackWriter<WasmBinaryWriter>(func, *this, o, debug);
} else {
if (debug) std::cerr << "write Binaryen IR" << std::endl;
FunctionStackWriter<WasmBinaryWriter>(func, *this, o, sourceMap, debug);
}
size_t size = o.size() - start;
assert(size <= std::numeric_limits<uint32_t>::max());
if (debug) std::cerr << "body size: " << size << ", writing at " << sizePos << ", next starts at " << o.size() << std::endl;
auto sizeFieldSize = o.writeAt(sizePos, U32LEB(size));
if (sizeFieldSize != MaxLEB32Bytes) {
// we can save some room, nice
assert(sizeFieldSize < MaxLEB32Bytes);
std::move(&o[start], &o[start] + size, &o[sizePos] + sizeFieldSize);
auto adjustment = MaxLEB32Bytes - sizeFieldSize;
o.resize(o.size() - adjustment);
if (sourceMap) {
for (auto i = sourceMapLocationsSizeAtFunctionStart; i < sourceMapLocations.size(); ++i) {
sourceMapLocations[i].first -= adjustment;
}
}
}
tableOfContents.functionBodies.emplace_back(func->name, sizePos + sizeFieldSize, size);
});
finishSection(start);
}
void WasmBinaryWriter::writeGlobals() {
if (importInfo->getNumDefinedGlobals() == 0) return;
if (debug) std::cerr << "== writeglobals" << std::endl;
auto start = startSection(BinaryConsts::Section::Global);
auto num = importInfo->getNumDefinedGlobals();
o << U32LEB(num);
ModuleUtils::iterDefinedGlobals(*wasm, [&](Global* global) {
if (debug) std::cerr << "write one" << std::endl;
o << binaryType(global->type);
o << U32LEB(global->mutable_);
writeExpression(global->init);
o << int8_t(BinaryConsts::End);
});
finishSection(start);
}
void WasmBinaryWriter::writeExports() {
if (wasm->exports.size() == 0) return;
if (debug) std::cerr << "== writeexports" << std::endl;
auto start = startSection(BinaryConsts::Section::Export);
o << U32LEB(wasm->exports.size());
for (auto& curr : wasm->exports) {
if (debug) std::cerr << "write one" << std::endl;
writeInlineString(curr->name.str);
o << U32LEB(int32_t(curr->kind));
switch (curr->kind) {
case ExternalKind::Function: o << U32LEB(getFunctionIndex(curr->value)); break;
case ExternalKind::Table: o << U32LEB(0); break;
case ExternalKind::Memory: o << U32LEB(0); break;
case ExternalKind::Global: o << U32LEB(getGlobalIndex(curr->value)); break;
default: WASM_UNREACHABLE();
}
}
finishSection(start);
}
static bool isEmpty(Memory::Segment& segment) {
return segment.data.size() == 0;
}
static bool isConstantOffset(Memory::Segment& segment) {
return segment.offset->is<Const>();
}
void WasmBinaryWriter::writeDataSegments() {
if (wasm->memory.segments.size() == 0) return;
Index numConstant = 0,
numDynamic = 0;
for (auto& segment : wasm->memory.segments) {
if (!isEmpty(segment)) {
if (isConstantOffset(segment)) {
numConstant++;
} else {
numDynamic++;
}
}
}
// check if we have too many dynamic data segments, which we can do nothing about
auto num = numConstant + numDynamic;
if (numDynamic + 1 >= WebLimitations::MaxDataSegments) {
std::cerr << "too many non-constant-offset data segments, wasm VMs may not accept this binary" << std::endl;
}
// we'll merge constant segments if we must
if (numConstant + numDynamic >= WebLimitations::MaxDataSegments) {
numConstant = WebLimitations::MaxDataSegments - numDynamic - 1;
num = numConstant + numDynamic;
assert(num == WebLimitations::MaxDataSegments - 1);
}
auto start = startSection(BinaryConsts::Section::Data);
o << U32LEB(num);
// first, emit all non-constant-offset segments; then emit the constants,
// which we may merge if forced to
Index emitted = 0;
auto emit = [&](Memory::Segment& segment) {
o << U32LEB(0); // Linear memory 0 in the MVP
writeExpression(segment.offset);
o << int8_t(BinaryConsts::End);
writeInlineBuffer(&segment.data[0], segment.data.size());
emitted++;
};
auto& segments = wasm->memory.segments;
for (auto& segment : segments) {
if (isEmpty(segment)) continue;
if (isConstantOffset(segment)) continue;
emit(segment);
}
// from here on, we concern ourselves with non-empty constant-offset
// segments, the ones which we may need to merge
auto isRelevant = [](Memory::Segment& segment) {
return !isEmpty(segment) && isConstantOffset(segment);
};
for (Index i = 0; i < segments.size(); i++) {
auto& segment = segments[i];
if (!isRelevant(segment)) continue;
if (emitted + 2 < WebLimitations::MaxDataSegments) {
emit(segment);
} else {
// we can emit only one more segment! merge everything into one
// start the combined segment at the bottom of them all
auto start = segment.offset->cast<Const>()->value.getInteger();
for (Index j = i + 1; j < segments.size(); j++) {
auto& segment = segments[j];
if (!isRelevant(segment)) continue;
auto offset = segment.offset->cast<Const>()->value.getInteger();
start = std::min(start, offset);
}
// create the segment and add in all the data
Const c;
c.value = Literal(int32_t(start));
c.type = i32;
Memory::Segment combined(&c);
for (Index j = i; j < segments.size(); j++) {
auto& segment = segments[j];
if (!isRelevant(segment)) continue;
auto offset = segment.offset->cast<Const>()->value.getInteger();
auto needed = offset + segment.data.size() - start;
if (combined.data.size() < needed) {
combined.data.resize(needed);
}
std::copy(segment.data.begin(), segment.data.end(), combined.data.begin() + offset - start);
}
emit(combined);
break;
}
}
finishSection(start);
}
uint32_t WasmBinaryWriter::getFunctionIndex(Name name) {
assert(mappedFunctions.count(name));
return mappedFunctions[name];
}
uint32_t WasmBinaryWriter::getGlobalIndex(Name name) {
assert(mappedGlobals.count(name));
return mappedGlobals[name];
}
void WasmBinaryWriter::writeFunctionTableDeclaration() {
if (!wasm->table.exists || wasm->table.imported()) return;
if (debug) std::cerr << "== writeFunctionTableDeclaration" << std::endl;
auto start = startSection(BinaryConsts::Section::Table);
o << U32LEB(1); // Declare 1 table.
o << S32LEB(BinaryConsts::EncodedType::AnyFunc);
writeResizableLimits(wasm->table.initial, wasm->table.max, wasm->table.hasMax(), /*shared=*/false);
finishSection(start);
}
void WasmBinaryWriter::writeTableElements() {
if (!wasm->table.exists) return;
if (debug) std::cerr << "== writeTableElements" << std::endl;
auto start = startSection(BinaryConsts::Section::Element);
o << U32LEB(wasm->table.segments.size());
for (auto& segment : wasm->table.segments) {
o << U32LEB(0); // Table index; 0 in the MVP (and binaryen IR only has 1 table)
writeExpression(segment.offset);
o << int8_t(BinaryConsts::End);
o << U32LEB(segment.data.size());
for (auto name : segment.data) {
o << U32LEB(getFunctionIndex(name));
}
}
finishSection(start);
}
void WasmBinaryWriter::writeNames() {
bool hasContents = false;
if (wasm->functions.size() > 0) {
hasContents = true;
getFunctionIndex(wasm->functions[0]->name); // generate mappedFunctions
}
if (!hasContents) return;
if (debug) std::cerr << "== writeNames" << std::endl;
auto start = startSection(BinaryConsts::Section::User);
writeInlineString(BinaryConsts::UserSections::Name);
auto substart = startSubsection(BinaryConsts::UserSections::Subsection::NameFunction);
o << U32LEB(mappedFunctions.size());
Index emitted = 0;
auto add = [&](Function* curr) {
o << U32LEB(emitted);
writeEscapedName(curr->name.str);
emitted++;
};
ModuleUtils::iterImportedFunctions(*wasm, add);
ModuleUtils::iterDefinedFunctions(*wasm, add);
assert(emitted == mappedFunctions.size());
finishSubsection(substart);
/* TODO: locals */
finishSection(start);
}
void WasmBinaryWriter::writeSourceMapUrl() {
if (debug) std::cerr << "== writeSourceMapUrl" << std::endl;
auto start = startSection(BinaryConsts::Section::User);
writeInlineString(BinaryConsts::UserSections::SourceMapUrl);
writeInlineString(sourceMapUrl.c_str());
finishSection(start);
}
void WasmBinaryWriter::writeSymbolMap() {
std::ofstream file(symbolMap);
auto write = [&](Function* func) {
file << getFunctionIndex(func->name) << ":" << func->name.str << std::endl;
};
ModuleUtils::iterImportedFunctions(*wasm, write);
ModuleUtils::iterDefinedFunctions(*wasm, write);
file.close();
}
void WasmBinaryWriter::initializeDebugInfo() {
lastDebugLocation = { 0, /* lineNumber = */ 1, 0 };
}
void WasmBinaryWriter::writeSourceMapProlog() {
*sourceMap << "{\"version\":3,\"sources\":[";
for (size_t i = 0; i < wasm->debugInfoFileNames.size(); i++) {
if (i > 0) *sourceMap << ",";
// TODO respect JSON string encoding, e.g. quotes and control chars.
*sourceMap << "\"" << wasm->debugInfoFileNames[i] << "\"";
}
*sourceMap << "],\"names\":[],\"mappings\":\"";
}
static void writeBase64VLQ(std::ostream& out, int32_t n) {
uint32_t value = n >= 0 ? n << 1 : ((-n) << 1) | 1;
while (1) {
uint32_t digit = value & 0x1F;
value >>= 5;
if (!value) {
// last VLQ digit -- base64 codes 'A'..'Z', 'a'..'f'
out << char(digit < 26 ? 'A' + digit : 'a' + digit - 26);
break;
}
// more VLG digit will follow -- add continuation bit (0x20),
// base64 codes 'g'..'z', '0'..'9', '+', '/'
out << char(digit < 20 ? 'g' + digit : digit < 30 ? '0' + digit - 20 : digit == 30 ? '+' : '/');
}
}
void WasmBinaryWriter::writeSourceMapEpilog() {
// write source map entries
size_t lastOffset = 0;
Function::DebugLocation lastLoc = { 0, /* lineNumber = */ 1, 0 };
for (const auto &offsetAndlocPair : sourceMapLocations) {
if (lastOffset > 0) {
*sourceMap << ",";
}
size_t offset = offsetAndlocPair.first;
const Function::DebugLocation& loc = *offsetAndlocPair.second;
writeBase64VLQ(*sourceMap, int32_t(offset - lastOffset));
writeBase64VLQ(*sourceMap, int32_t(loc.fileIndex - lastLoc.fileIndex));
writeBase64VLQ(*sourceMap, int32_t(loc.lineNumber - lastLoc.lineNumber));
writeBase64VLQ(*sourceMap, int32_t(loc.columnNumber - lastLoc.columnNumber));
lastLoc = loc;
lastOffset = offset;
}
*sourceMap << "\"}";
}
void WasmBinaryWriter::writeEarlyUserSections() {
// The dylink section must be the first in the module, per
// the spec, to allow simple parsing by loaders.
for (auto& section : wasm->userSections) {
if (section.name == BinaryConsts::UserSections::Dylink) {
writeUserSection(section);
}
}
}
void WasmBinaryWriter::writeLateUserSections() {
for (auto& section : wasm->userSections) {
if (section.name != BinaryConsts::UserSections::Dylink) {
writeUserSection(section);
}
}
}
void WasmBinaryWriter::writeUserSection(const UserSection& section) {
auto start = startSection(0);
writeInlineString(section.name.c_str());
for (size_t i = 0; i < section.data.size(); i++) {
o << uint8_t(section.data[i]);
}
finishSection(start);
}
void WasmBinaryWriter::writeDebugLocation(const Function::DebugLocation& loc) {
if (loc == lastDebugLocation) {
return;
}
auto offset = o.size();
sourceMapLocations.emplace_back(offset, &loc);
lastDebugLocation = loc;
}
void WasmBinaryWriter::writeDebugLocation(Expression* curr, Function* func) {
auto& debugLocations = func->debugLocations;
auto iter = debugLocations.find(curr);
if (iter != debugLocations.end()) {
writeDebugLocation(iter->second);
}
}
void WasmBinaryWriter::writeInlineString(const char* name) {
int32_t size = strlen(name);
o << U32LEB(size);
for (int32_t i = 0; i < size; i++) {
o << int8_t(name[i]);
}
}
static bool isHexDigit(char ch) {
return (ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F');
}
static int decodeHexNibble(char ch) {
return ch <= '9' ? ch & 15 : (ch & 15) + 9;
}
void WasmBinaryWriter::writeEscapedName(const char* name) {
if (!strpbrk(name, "\\")) {
writeInlineString(name);
return;
}
// decode escaped by escapeName (see below) function names
std::string unescaped;
int32_t size = strlen(name);
for (int32_t i = 0; i < size;) {
char ch = name[i++];
// support only `\xx` escapes; ignore invalid or unsupported escapes
if (ch != '\\' || i + 1 >= size || !isHexDigit(name[i]) || !isHexDigit(name[i + 1])) {
unescaped.push_back(ch);
continue;
}
unescaped.push_back(char((decodeHexNibble(name[i]) << 4) | decodeHexNibble(name[i + 1])));
i += 2;
}
writeInlineString(unescaped.c_str());
}
void WasmBinaryWriter::writeInlineBuffer(const char* data, size_t size) {
o << U32LEB(size);
for (size_t i = 0; i < size; i++) {
o << int8_t(data[i]);
}
}
void WasmBinaryWriter::emitBuffer(const char* data, size_t size) {
assert(size > 0);
buffersToWrite.emplace_back(data, size, o.size());
o << uint32_t(0); // placeholder, we'll fill in the pointer to the buffer later when we have it
}
void WasmBinaryWriter::emitString(const char *str) {
if (debug) std::cerr << "emitString " << str << std::endl;
emitBuffer(str, strlen(str) + 1);
}
void WasmBinaryWriter::finishUp() {
if (debug) std::cerr << "finishUp" << std::endl;
// finish buffers
for (const auto& buffer : buffersToWrite) {
if (debug) std::cerr << "writing buffer" << (int)buffer.data[0] << "," << (int)buffer.data[1] << " at " << o.size() << " and pointer is at " << buffer.pointerLocation << std::endl;
o.writeAt(buffer.pointerLocation, (uint32_t)o.size());
for (size_t i = 0; i < buffer.size; i++) {
o << (uint8_t)buffer.data[i];
}
}
}
// reader
void WasmBinaryBuilder::read() {
readHeader();
readSourceMapHeader();
// read sections until the end
while (more()) {
uint32_t sectionCode = getU32LEB();
uint32_t payloadLen = getU32LEB();
if (pos + payloadLen > input.size()) throwError("Section extends beyond end of input");
auto oldPos = pos;
// note the section in the list of seen sections, as almost no sections can appear more than once,
// and verify those that shouldn't do not.
if (sectionCode != BinaryConsts::Section::User && sectionCode != BinaryConsts::Section::Code) {
if (!seenSections.insert(BinaryConsts::Section(sectionCode)).second) {
throwError("section seen more than once: " + std::to_string(sectionCode));
}
}
switch (sectionCode) {
case BinaryConsts::Section::Start: readStart(); break;
case BinaryConsts::Section::Memory: readMemory(); break;
case BinaryConsts::Section::Type: readSignatures(); break;
case BinaryConsts::Section::Import: readImports(); break;
case BinaryConsts::Section::Function: readFunctionSignatures(); break;
case BinaryConsts::Section::Code: readFunctions(); break;
case BinaryConsts::Section::Export: readExports(); break;
case BinaryConsts::Section::Element: readTableElements(); break;
case BinaryConsts::Section::Global: {
readGlobals();
// imports can read global imports, so we run getGlobalName and create the mapping
// but after we read globals, we need to add the internal globals too, so do that here
mappedGlobals.clear(); // wipe the mapping
getGlobalName(-1); // force rebuild
break;
}
case BinaryConsts::Section::Data: readDataSegments(); break;
case BinaryConsts::Section::Table: readFunctionTableDeclaration(); break;
default: {
readUserSection(payloadLen);
if (pos > oldPos + payloadLen) {
throwError("bad user section size, started at " + std::to_string(oldPos) + " plus payload " + std::to_string(payloadLen) + " not being equal to new position " + std::to_string(pos));
}
pos = oldPos + payloadLen;
}
}
// make sure we advanced exactly past this section
if (pos != oldPos + payloadLen) {
throwError("bad section size, started at " + std::to_string(oldPos) + " plus payload " + std::to_string(payloadLen) + " not being equal to new position " + std::to_string(pos));
}
}
processFunctions();
}
void WasmBinaryBuilder::readUserSection(size_t payloadLen) {
auto oldPos = pos;
Name sectionName = getInlineString();
size_t read = pos - oldPos;
if (read > payloadLen) {
throwError("bad user section size");
}
payloadLen -= read;
if (sectionName.equals(BinaryConsts::UserSections::Name)) {
readNames(payloadLen);
} else {
// an unfamiliar custom section
if (sectionName.equals(BinaryConsts::UserSections::Linking)) {
std::cerr << "warning: linking section is present, which binaryen cannot handle yet - relocations will be invalidated!\n";
}
wasm.userSections.resize(wasm.userSections.size() + 1);
auto& section = wasm.userSections.back();
section.name = sectionName.str;
auto sectionSize = payloadLen;
section.data.resize(sectionSize);
for (size_t i = 0; i < sectionSize; i++) {
section.data[i] = getInt8();
}
}
}
uint8_t WasmBinaryBuilder::getInt8() {
if (!more()) throwError("unexpected end of input");
if (debug) std::cerr << "getInt8: " << (int)(uint8_t)input[pos] << " (at " << pos << ")" << std::endl;
return input[pos++];
}
uint16_t WasmBinaryBuilder::getInt16() {
if (debug) std::cerr << "<==" << std::endl;
auto ret = uint16_t(getInt8());
ret |= uint16_t(getInt8()) << 8;
if (debug) std::cerr << "getInt16: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl;
return ret;
}
uint32_t WasmBinaryBuilder::getInt32() {
if (debug) std::cerr << "<==" << std::endl;
auto ret = uint32_t(getInt16());
ret |= uint32_t(getInt16()) << 16;
if (debug) std::cerr << "getInt32: " << ret << "/0x" << std::hex << ret << std::dec <<" ==>" << std::endl;
return ret;
}
uint64_t WasmBinaryBuilder::getInt64() {
if (debug) std::cerr << "<==" << std::endl;
auto ret = uint64_t(getInt32());
ret |= uint64_t(getInt32()) << 32;
if (debug) std::cerr << "getInt64: " << ret << "/0x" << std::hex << ret << std::dec << " ==>" << std::endl;
return ret;
}
uint8_t WasmBinaryBuilder::getLaneIndex(size_t lanes) {
if (debug) std::cerr << "<==" << std::endl;
auto ret = getInt8();
if (ret >= lanes) throwError("Illegal lane index");
if (debug) std::cerr << "getLaneIndex(" << lanes << "): " << ret << " ==>" << std::endl;
return ret;
}
Literal WasmBinaryBuilder::getFloat32Literal() {
if (debug) std::cerr << "<==" << std::endl;
auto ret = Literal(getInt32());
ret = ret.castToF32();
if (debug) std::cerr << "getFloat32: " << ret << " ==>" << std::endl;
return ret;
}
Literal WasmBinaryBuilder::getFloat64Literal() {
if (debug) std::cerr << "<==" << std::endl;
auto ret = Literal(getInt64());
ret = ret.castToF64();
if (debug) std::cerr << "getFloat64: " << ret << " ==>" << std::endl;
return ret;
}
Literal WasmBinaryBuilder::getVec128Literal() {
if (debug) std::cerr << "<==" << std::endl;
std::array<uint8_t, 16> bytes;
for (auto i = 0; i < 16; ++i) {
bytes[i] = getInt8();
}
auto ret = Literal(bytes.data());
if (debug) std::cerr << "getVec128: " << ret << " ==>" << std::endl;
return ret;
}
uint32_t WasmBinaryBuilder::getU32LEB() {
if (debug) std::cerr << "<==" << std::endl;
U32LEB ret;
ret.read([&]() {
return getInt8();
});
if (debug) std::cerr << "getU32LEB: " << ret.value << " ==>" << std::endl;
return ret.value;
}
uint64_t WasmBinaryBuilder::getU64LEB() {
if (debug) std::cerr << "<==" << std::endl;
U64LEB ret;
ret.read([&]() {
return getInt8();
});
if (debug) std::cerr << "getU64LEB: " << ret.value << " ==>" << std::endl;
return ret.value;
}
int32_t WasmBinaryBuilder::getS32LEB() {
if (debug) std::cerr << "<==" << std::endl;
S32LEB ret;
ret.read([&]() {
return (int8_t)getInt8();
});
if (debug) std::cerr << "getS32LEB: " << ret.value << " ==>" << std::endl;
return ret.value;
}
int64_t WasmBinaryBuilder::getS64LEB() {
if (debug) std::cerr << "<==" << std::endl;
S64LEB ret;
ret.read([&]() {
return (int8_t)getInt8();
});
if (debug) std::cerr << "getS64LEB: " << ret.value << " ==>" << std::endl;
return ret.value;
}
Type WasmBinaryBuilder::getType() {
int type = getS32LEB();
switch (type) {
// None only used for block signatures. TODO: Separate out?
case BinaryConsts::EncodedType::Empty: return none;
case BinaryConsts::EncodedType::i32: return i32;
case BinaryConsts::EncodedType::i64: return i64;
case BinaryConsts::EncodedType::f32: return f32;
case BinaryConsts::EncodedType::f64: return f64;
case BinaryConsts::EncodedType::v128: return v128;
default: {
throwError("invalid wasm type: " + std::to_string(type));
}
}
WASM_UNREACHABLE();
}
Type WasmBinaryBuilder::getConcreteType() {
auto type = getType();
if (!isConcreteType(type)) {
throw ParseException("non-concrete type when one expected");
}
return type;
}
Name WasmBinaryBuilder::getString() {
if (debug) std::cerr << "<==" << std::endl;
size_t offset = getInt32();
Name ret = cashew::IString((&input[0]) + offset, false);
if (debug) std::cerr << "getString: " << ret << " ==>" << std::endl;
return ret;
}
Name WasmBinaryBuilder::getInlineString() {
if (debug) std::cerr << "<==" << std::endl;
auto len = getU32LEB();
std::string str;
for (size_t i = 0; i < len; i++) {
auto curr = char(getInt8());
if (curr == 0) {
throwError("inline string contains NULL (0). that is technically valid in wasm, but you shouldn't do it, and it's not supported in binaryen");
}
str = str + curr;
}
if (debug) std::cerr << "getInlineString: " << str << " ==>" << std::endl;
return Name(str);
}
void WasmBinaryBuilder::verifyInt8(int8_t x) {
int8_t y = getInt8();
if (x != y) throwError("surprising value");
}
void WasmBinaryBuilder::verifyInt16(int16_t x) {
int16_t y = getInt16();
if (x != y) throwError("surprising value");
}
void WasmBinaryBuilder::verifyInt32(int32_t x) {
int32_t y = getInt32();
if (x != y) throwError("surprising value");
}
void WasmBinaryBuilder::verifyInt64(int64_t x) {
int64_t y = getInt64();
if (x != y) throwError("surprising value");
}
void WasmBinaryBuilder::ungetInt8() {
assert(pos > 0);
if (debug) std::cerr << "ungetInt8 (at " << pos << ")" << std::endl;
pos--;
}
void WasmBinaryBuilder::readHeader() {
if (debug) std::cerr << "== readHeader" << std::endl;
verifyInt32(BinaryConsts::Magic);
verifyInt32(BinaryConsts::Version);
}
void WasmBinaryBuilder::readStart() {
if (debug) std::cerr << "== readStart" << std::endl;
startIndex = getU32LEB();
}
void WasmBinaryBuilder::readMemory() {
if (debug) std::cerr << "== readMemory" << std::endl;
auto numMemories = getU32LEB();
if (!numMemories) return;
if (numMemories != 1) {
throwError("Must be exactly 1 memory");
}
if (wasm.memory.exists) {
throwError("Memory cannot be both imported and defined");
}
wasm.memory.exists = true;
getResizableLimits(wasm.memory.initial, wasm.memory.max, wasm.memory.shared, Memory::kUnlimitedSize);
}
void WasmBinaryBuilder::readSignatures() {
if (debug) std::cerr << "== readSignatures" << std::endl;
size_t numTypes = getU32LEB();
if (debug) std::cerr << "num: " << numTypes << std::endl;
for (size_t i = 0; i < numTypes; i++) {
if (debug) std::cerr << "read one" << std::endl;
auto curr = make_unique<FunctionType>();
auto form = getS32LEB();
if (form != BinaryConsts::EncodedType::Func) {
throwError("bad signature form " + std::to_string(form));
}
size_t numParams = getU32LEB();
if (debug) std::cerr << "num params: " << numParams << std::endl;
for (size_t j = 0; j < numParams; j++) {
curr->params.push_back(getConcreteType());
}
auto numResults = getU32LEB();
if (numResults == 0) {
curr->result = none;
} else {
if (numResults != 1) {
throwError("signature must have 1 result");
}
curr->result = getType();
}
curr->name = Name::fromInt(wasm.functionTypes.size());
wasm.addFunctionType(std::move(curr));
}
}
Name WasmBinaryBuilder::getFunctionIndexName(Index i) {
if (i >= wasm.functions.size()) {
throwError("invalid function index");
}
return wasm.functions[i]->name;
}
void WasmBinaryBuilder::getResizableLimits(Address& initial, Address& max, bool &shared, Address defaultIfNoMax) {
auto flags = getU32LEB();
initial = getU32LEB();
bool hasMax = (flags & BinaryConsts::HasMaximum) != 0;
bool isShared = (flags & BinaryConsts::IsShared) != 0;
if (isShared && !hasMax) throwError("shared memory must have max size");
shared = isShared;
if (hasMax) max = getU32LEB();
else max = defaultIfNoMax;
}
void WasmBinaryBuilder::readImports() {
if (debug) std::cerr << "== readImports" << std::endl;
size_t num = getU32LEB();
if (debug) std::cerr << "num: " << num << std::endl;
Builder builder(wasm);
for (size_t i = 0; i < num; i++) {
if (debug) std::cerr << "read one" << std::endl;
auto module = getInlineString();
auto base = getInlineString();
auto kind = (ExternalKind)getU32LEB();
// We set a unique prefix for the name based on the kind. This ensures no collisions
// between them, which can't occur here (due to the index i) but could occur later
// due to the names section.
switch (kind) {
case ExternalKind::Function: {
auto name = Name(std::string("fimport$") + std::to_string(i));
auto index = getU32LEB();
if (index >= wasm.functionTypes.size()) {
throwError("invalid function index " + std::to_string(index) + " / " + std::to_string(wasm.functionTypes.size()));
}
auto* functionType = wasm.functionTypes[index].get();
auto params = functionType->params;
auto result = functionType->result;
auto* curr = builder.makeFunction(name, std::move(params), result, {});
curr->module = module;
curr->base = base;
curr->type = functionType->name;
wasm.addFunction(curr);
functionImports.push_back(curr);
break;
}
case ExternalKind::Table: {
wasm.table.module = module;
wasm.table.base = base;
wasm.table.name = Name(std::string("timport$") + std::to_string(i));
auto elementType = getS32LEB();
WASM_UNUSED(elementType);
if (elementType != BinaryConsts::EncodedType::AnyFunc) throwError("Imported table type is not AnyFunc");
wasm.table.exists = true;
bool is_shared;
getResizableLimits(wasm.table.initial, wasm.table.max, is_shared, Table::kUnlimitedSize);
if (is_shared) throwError("Tables may not be shared");
break;
}
case ExternalKind::Memory: {
wasm.memory.module = module;
wasm.memory.base = base;
wasm.memory.name = Name(std::to_string(i));
wasm.memory.exists = true;
getResizableLimits(wasm.memory.initial, wasm.memory.max, wasm.memory.shared, Memory::kUnlimitedSize);
break;
}
case ExternalKind::Global: {
auto name = Name(std::string("gimport$") + std::to_string(i));
auto type = getConcreteType();
auto mutable_ = getU32LEB();
auto* curr = builder.makeGlobal(name, type, nullptr, mutable_ ? Builder::Mutable : Builder::Immutable);
curr->module = module;
curr->base = base;
wasm.addGlobal(curr);
break;
}
default: {
throwError("bad import kind");
}
}
}
}
Name WasmBinaryBuilder::getNextLabel() {
requireFunctionContext("getting a label");
return Name("label$" + std::to_string(nextLabel++));
}
void WasmBinaryBuilder::requireFunctionContext(const char* error) {
if (!currFunction) {
throwError(std::string("in a non-function context: ") + error);
}
}
void WasmBinaryBuilder::readFunctionSignatures() {
if (debug) std::cerr << "== readFunctionSignatures" << std::endl;
size_t num = getU32LEB();
if (debug) std::cerr << "num: " << num << std::endl;
for (size_t i = 0; i < num; i++) {
if (debug) std::cerr << "read one" << std::endl;
auto index = getU32LEB();
if (index >= wasm.functionTypes.size()) {
throwError("invalid function type index for function");
}
functionTypes.push_back(wasm.functionTypes[index].get());
}
}
void WasmBinaryBuilder::readFunctions() {
if (debug) std::cerr << "== readFunctions" << std::endl;
size_t total = getU32LEB();
if (total != functionTypes.size()) {
throwError("invalid function section size, must equal types");
}
for (size_t i = 0; i < total; i++) {
if (debug) std::cerr << "read one at " << pos << std::endl;
size_t size = getU32LEB();
if (size == 0) {
throwError("empty function size");
}
endOfFunction = pos + size;
Function *func = new Function;
func->name = Name::fromInt(i);
currFunction = func;
readNextDebugLocation();
auto type = functionTypes[i];
if (debug) std::cerr << "reading " << i << std::endl;
func->type = type->name;
func->result = type->result;
for (size_t j = 0; j < type->params.size(); j++) {
func->params.emplace_back(type->params[j]);
}
size_t numLocalTypes = getU32LEB();
for (size_t t = 0; t < numLocalTypes; t++) {
auto num = getU32LEB();
auto type = getConcreteType();
while (num > 0) {
func->vars.push_back(type);
num--;
}
}
std::swap(func->prologLocation, debugLocation);
{
// process the function body
if (debug) std::cerr << "processing function: " << i << std::endl;
nextLabel = 0;
debugLocation.clear();
willBeIgnored = false;
// process body
assert(breakTargetNames.size() == 0);
assert(breakStack.empty());
assert(expressionStack.empty());
assert(depth == 0);
func->body = getBlockOrSingleton(func->result);
assert(depth == 0);
assert(breakStack.size() == 0);
assert(breakTargetNames.size() == 0);
if (!expressionStack.empty()) {
throwError("stack not empty on function exit");
}
if (pos != endOfFunction) {
throwError("binary offset at function exit not at expected location");
}
}
std::swap(func->epilogLocation, debugLocation);
currFunction = nullptr;
debugLocation.clear();
functions.push_back(func);
}
if (debug) std::cerr << " end function bodies" << std::endl;
}
void WasmBinaryBuilder::readExports() {
if (debug) std::cerr << "== readExports" << std::endl;
size_t num = getU32LEB();
if (debug) std::cerr << "num: " << num << std::endl;
std::set<Name> names;
for (size_t i = 0; i < num; i++) {
if (debug) std::cerr << "read one" << std::endl;
auto curr = new Export;
curr->name = getInlineString();
if (names.count(curr->name) > 0) {
throwError("duplicate export name");
}
names.insert(curr->name);
curr->kind = (ExternalKind)getU32LEB();
auto index = getU32LEB();
exportIndexes[curr] = index;
exportOrder.push_back(curr);
}
}
static int32_t readBase64VLQ(std::istream& in) {
uint32_t value = 0;
uint32_t shift = 0;
while (1) {
auto ch = in.get();
if (ch == EOF)
throw MapParseException("unexpected EOF in the middle of VLQ");
if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch < 'g')) {
// last number digit
uint32_t digit = ch < 'a' ? ch - 'A' : ch - 'a' + 26;
value |= digit << shift;
break;
}
if (!(ch >= 'g' && ch <= 'z') && !(ch >= '0' && ch <= '9') &&
ch != '+' && ch != '/') {
throw MapParseException("invalid VLQ digit");
}
uint32_t digit = ch > '9' ? ch - 'g' : (ch >= '0' ? ch - '0' + 20 : (ch == '+' ? 30 : 31));
value |= digit << shift;
shift += 5;
}
return value & 1 ? -int32_t(value >> 1) : int32_t(value >> 1);
}
void WasmBinaryBuilder::readSourceMapHeader() {
if (!sourceMap) return;
auto skipWhitespace = [&]() {
while (sourceMap->peek() == ' ' || sourceMap->peek() == '\n')
sourceMap->get();
};
auto maybeReadChar = [&](char expected) {
if (sourceMap->peek() != expected) return false;
sourceMap->get();
return true;
};
auto mustReadChar = [&](char expected) {
char c = sourceMap->get();
if (c != expected) {
throw MapParseException(std::string("Unexpected char: expected '") +
expected + "' got '" + c + "'");
}
};
auto findField = [&](const char* name) {
bool matching = false;
size_t len = strlen(name);
size_t pos;
while (1) {
int ch = sourceMap->get();
if (ch == EOF) return false;
if (ch == '\"') {
if (matching) {
// we matched a terminating quote.
if (pos == len)
break;
matching = false;
} else {
matching = true;
pos = 0;
}
} else if (matching && name[pos] == ch) {
++pos;
} else if (matching) {
matching = false;
}
}
skipWhitespace();
mustReadChar(':');
skipWhitespace();
return true;
};
auto readString = [&](std::string& str) {
std::vector<char> vec;
skipWhitespace();
mustReadChar('\"');
if (!maybeReadChar('\"')) {
while (1) {
int ch = sourceMap->get();
if (ch == EOF) {
throw MapParseException("unexpected EOF in the middle of string");
}
if (ch == '\"') break;
vec.push_back(ch);
}
}
skipWhitespace();
str = std::string(vec.begin(), vec.end());
};
if (!findField("sources")) {
throw MapParseException("cannot find the 'sources' field in map");
}
skipWhitespace();
mustReadChar('[');
if (!maybeReadChar(']')) {
do {
std::string file;
readString(file);
Index index = wasm.debugInfoFileNames.size();
wasm.debugInfoFileNames.push_back(file);
debugInfoFileIndices[file] = index;
} while (maybeReadChar(','));
mustReadChar(']');
}
if (!findField("mappings")) {
throw MapParseException("cannot find the 'mappings' field in map");
}
mustReadChar('\"');
if (maybeReadChar('\"')) { // empty mappings
nextDebugLocation.first = 0;
return;
}
// read first debug location
uint32_t position = readBase64VLQ(*sourceMap);
uint32_t fileIndex = readBase64VLQ(*sourceMap);
uint32_t lineNumber = readBase64VLQ(*sourceMap) + 1; // adjust zero-based line number
uint32_t columnNumber = readBase64VLQ(*sourceMap);
nextDebugLocation = { position, { fileIndex, lineNumber, columnNumber } };
}
void WasmBinaryBuilder::readNextDebugLocation() {
if (!sourceMap) return;
while (nextDebugLocation.first && nextDebugLocation.first <= pos) {
if (nextDebugLocation.first < pos) {
std::cerr << "skipping debug location info for 0x";
std::cerr << std::hex << nextDebugLocation.first << std::dec << std::endl;
}
debugLocation.clear();
// use debugLocation only for function expressions
if (currFunction) {
debugLocation.insert(nextDebugLocation.second);
}
char ch;
*sourceMap >> ch;
if (ch == '\"') { // end of records
nextDebugLocation.first = 0;
break;
}
if (ch != ',') {
throw MapParseException("Unexpected delimiter");
}
int32_t positionDelta = readBase64VLQ(*sourceMap);
uint32_t position = nextDebugLocation.first + positionDelta;
int32_t fileIndexDelta = readBase64VLQ(*sourceMap);
uint32_t fileIndex = nextDebugLocation.second.fileIndex + fileIndexDelta;
int32_t lineNumberDelta = readBase64VLQ(*sourceMap);
uint32_t lineNumber = nextDebugLocation.second.lineNumber + lineNumberDelta;
int32_t columnNumberDelta = readBase64VLQ(*sourceMap);
uint32_t columnNumber = nextDebugLocation.second.columnNumber + columnNumberDelta;
nextDebugLocation = { position, { fileIndex, lineNumber, columnNumber } };
}
}
Expression* WasmBinaryBuilder::readExpression() {
assert(depth == 0);
processExpressions();
if (expressionStack.size() != 1) {
throwError("expected to read a single expression");
}
auto* ret = popExpression();
assert(depth == 0);
return ret;
}
void WasmBinaryBuilder::readGlobals() {
if (debug) std::cerr << "== readGlobals" << std::endl;
size_t num = getU32LEB();
if (debug) std::cerr << "num: " << num << std::endl;
for (size_t i = 0; i < num; i++) {
if (debug) std::cerr << "read one" << std::endl;
auto type = getConcreteType();
auto mutable_ = getU32LEB();
if (mutable_ & ~1) throwError("Global mutability must be 0 or 1");
auto* init = readExpression();
wasm.addGlobal(Builder::makeGlobal(
"global$" + std::to_string(i),
type,
init,
mutable_ ? Builder::Mutable : Builder::Immutable
));
}
}
void WasmBinaryBuilder::processExpressions() {
if (debug) std::cerr << "== processExpressions" << std::endl;
unreachableInTheWasmSense = false;
while (1) {
Expression* curr;
auto ret = readExpression(curr);
if (!curr) {
lastSeparator = ret;
if (debug) std::cerr << "== processExpressions finished" << std::endl;
return;
}
expressionStack.push_back(curr);
if (curr->type == unreachable) {
// once we see something unreachable, we don't want to add anything else
// to the stack, as it could be stacky code that is non-representable in
// our AST. but we do need to skip it
// if there is nothing else here, just stop. otherwise, go into unreachable
// mode. peek to see what to do
if (pos == endOfFunction) {
throwError("Reached function end without seeing End opcode");
}
if (!more()) throwError("unexpected end of input");
auto peek = input[pos];
if (peek == BinaryConsts::End || peek == BinaryConsts::Else) {
if (debug) std::cerr << "== processExpressions finished with unreachable" << std::endl;
readNextDebugLocation();
lastSeparator = BinaryConsts::ASTNodes(peek);
pos++;
return;
} else {
skipUnreachableCode();
return;
}
}
}
}
void WasmBinaryBuilder::skipUnreachableCode() {
if (debug) std::cerr << "== skipUnreachableCode" << std::endl;
// preserve the stack, and restore it. it contains the instruction that made us
// unreachable, and we can ignore anything after it. things after it may pop,
// we want to undo that
auto savedStack = expressionStack;
// note we are entering unreachable code, and note what the state as before so
// we can restore it
auto before = willBeIgnored;
willBeIgnored = true;
// clear the stack. nothing should be popped from there anyhow, just stuff
// can be pushed and then popped. Popping past the top of the stack will
// result in uneachables being returned
expressionStack.clear();
while (1) {
// set the unreachableInTheWasmSense flag each time, as sub-blocks may set and unset it
unreachableInTheWasmSense = true;
Expression* curr;
auto ret = readExpression(curr);
if (!curr) {
if (debug) std::cerr << "== skipUnreachableCode finished" << std::endl;
lastSeparator = ret;
unreachableInTheWasmSense = false;
willBeIgnored = before;
expressionStack = savedStack;
return;
}
expressionStack.push_back(curr);
}
}
Expression* WasmBinaryBuilder::popExpression() {
if (debug) std::cerr << "== popExpression" << std::endl;
if (expressionStack.empty()) {
if (unreachableInTheWasmSense) {
// in unreachable code, trying to pop past the polymorphic stack
// area results in receiving unreachables
if (debug) std::cerr << "== popping unreachable from polymorphic stack" << std::endl;
return allocator.alloc<Unreachable>();
}
throwError("attempted pop from empty stack / beyond block start boundary at " + std::to_string(pos));
}
// the stack is not empty, and we would not be going out of the current block
auto ret = expressionStack.back();
expressionStack.pop_back();
return ret;
}
Expression* WasmBinaryBuilder::popNonVoidExpression() {
auto* ret = popExpression();
if (ret->type != none) return ret;
// we found a void, so this is stacky code that we must handle carefully
Builder builder(wasm);
// add elements until we find a non-void
std::vector<Expression*> expressions;
expressions.push_back(ret);
while (1) {
auto* curr = popExpression();
expressions.push_back(curr);
if (curr->type != none) break;
}
auto* block = builder.makeBlock();
while (!expressions.empty()) {
block->list.push_back(expressions.back());
expressions.pop_back();
}
requireFunctionContext("popping void where we need a new local");
auto type = block->list[0]->type;
if (isConcreteType(type)) {
auto local = builder.addVar(currFunction, type);
block->list[0] = builder.makeSetLocal(local, block->list[0]);
block->list.push_back(builder.makeGetLocal(local, type));
} else {
assert(type == unreachable);
// nothing to do here - unreachable anyhow
}
block->finalize();
return block;
}
Name WasmBinaryBuilder::getGlobalName(Index index) {
if (!mappedGlobals.size()) {
// Create name => index mapping.
auto add = [&](Global* curr) {
auto index = mappedGlobals.size();
mappedGlobals[index] = curr->name;
};
ModuleUtils::iterImportedGlobals(wasm, add);
ModuleUtils::iterDefinedGlobals(wasm, add);
}
if (index == Index(-1)) return Name("null"); // just a force-rebuild
if (mappedGlobals.count(index) == 0) {
throwError("bad global index");
}
return mappedGlobals[index];
}
void WasmBinaryBuilder::processFunctions() {
for (auto* func : functions) {
wasm.addFunction(func);
}
// now that we have names for each function, apply things
if (startIndex != static_cast<Index>(-1)) {
wasm.start = getFunctionIndexName(startIndex);
}
for (auto* curr : exportOrder) {
auto index = exportIndexes[curr];
switch (curr->kind) {
case ExternalKind::Function: {
curr->value = getFunctionIndexName(index);
break;
}
case ExternalKind::Table: curr->value = Name::fromInt(0); break;
case ExternalKind::Memory: curr->value = Name::fromInt(0); break;
case ExternalKind::Global: curr->value = getGlobalName(index); break;
default: throwError("bad export kind");
}
wasm.addExport(curr);
}
for (auto& iter : functionCalls) {
size_t index = iter.first;
auto& calls = iter.second;
for (auto* call : calls) {
call->target = getFunctionIndexName(index);
}
}
for (auto& pair : functionTable) {
auto i = pair.first;
auto& indexes = pair.second;
for (auto j : indexes) {
wasm.table.segments[i].data.push_back(getFunctionIndexName(j));
}
}
// Everything now has its proper name.
wasm.updateMaps();
}
void WasmBinaryBuilder::readDataSegments() {
if (debug) std::cerr << "== readDataSegments" << std::endl;
auto num = getU32LEB();
for (size_t i = 0; i < num; i++) {
auto memoryIndex = getU32LEB();
WASM_UNUSED(memoryIndex);
if (memoryIndex != 0) {
throwError("bad memory index, must be 0");
}
Memory::Segment curr;
auto offset = readExpression();
auto size = getU32LEB();
std::vector<char> buffer;
buffer.resize(size);
for (size_t j = 0; j < size; j++) {
buffer[j] = char(getInt8());
}
wasm.memory.segments.emplace_back(offset, (const char*)&buffer[0], size);
}
}
void WasmBinaryBuilder::readFunctionTableDeclaration() {
if (debug) std::cerr << "== readFunctionTableDeclaration" << std::endl;
auto numTables = getU32LEB();
if (numTables != 1) throwError("Only 1 table definition allowed in MVP");
if (wasm.table.exists) throwError("Table cannot be both imported and defined");
wasm.table.exists = true;
auto elemType = getS32LEB();
if (elemType != BinaryConsts::EncodedType::AnyFunc) throwError("ElementType must be AnyFunc in MVP");
bool is_shared;
getResizableLimits(wasm.table.initial, wasm.table.max, is_shared, Table::kUnlimitedSize);
if (is_shared) throwError("Tables may not be shared");
}
void WasmBinaryBuilder::readTableElements() {
if (debug) std::cerr << "== readTableElements" << std::endl;
auto numSegments = getU32LEB();
if (numSegments >= Table::kMaxSize) throwError("Too many segments");
for (size_t i = 0; i < numSegments; i++) {
auto tableIndex = getU32LEB();
if (tableIndex != 0) throwError("Table elements must refer to table 0 in MVP");
wasm.table.segments.emplace_back(readExpression());
auto& indexSegment = functionTable[i];
auto size = getU32LEB();
for (Index j = 0; j < size; j++) {
indexSegment.push_back(getU32LEB());
}
}
}
static bool isIdChar(char ch) {
return (ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') ||
ch == '!' || ch == '#' || ch == '$' || ch == '%' || ch == '&' || ch == '\'' || ch == '*' ||
ch == '+' || ch == '-' || ch == '.' || ch == '/' || ch == ':' || ch == '<' || ch == '=' ||
ch == '>' || ch == '?' || ch == '@' || ch == '^' || ch == '_' || ch == '`' || ch == '|' ||
ch == '~';
}
static char formatNibble(int nibble) {
return nibble < 10 ? '0' + nibble : 'a' - 10 + nibble;
}
static void escapeName(Name &name) {
bool allIdChars = true;
for (const char *p = name.str; allIdChars && *p; p++) {
allIdChars = isIdChar(*p);
}
if (allIdChars) {
return;
}
// encode name, if at least one non-idchar (per WebAssembly spec) was found
std::string escaped;
for (const char *p = name.str; *p; p++) {
char ch = *p;
if (isIdChar(ch)) {
escaped.push_back(ch);
continue;
}
// replace non-idchar with `\xx` escape
escaped.push_back('\\');
escaped.push_back(formatNibble(ch >> 4));
escaped.push_back(formatNibble(ch & 15));
}
name = escaped;
}
void WasmBinaryBuilder::readNames(size_t payloadLen) {
if (debug) std::cerr << "== readNames" << std::endl;
auto sectionPos = pos;
while (pos < sectionPos + payloadLen) {
auto nameType = getU32LEB();
auto subsectionSize = getU32LEB();
auto subsectionPos = pos;
if (nameType != BinaryConsts::UserSections::Subsection::NameFunction) {
// TODO: locals
std::cerr << "unknown name subsection at " << pos << std::endl;
pos = subsectionPos + subsectionSize;
continue;
}
auto num = getU32LEB();
std::set<Name> usedNames;
for (size_t i = 0; i < num; i++) {
auto index = getU32LEB();
auto rawName = getInlineString();
escapeName(rawName);
auto name = rawName;
// De-duplicate names by appending .1, .2, etc.
for (int i = 1; !usedNames.insert(name).second; ++i) {
name = rawName.str + std::string(".") + std::to_string(i);
}
// note: we silently ignore errors here, as name section errors
// are not fatal. should we warn?
auto numFunctionImports = functionImports.size();
if (index < numFunctionImports) {
functionImports[index]->name = name;
} else if (index - numFunctionImports < functions.size()) {
functions[index - numFunctionImports]->name = name;
} else {
throwError("index out of bounds: " + std::string(name.str));
}
}
if (pos != subsectionPos + subsectionSize) {
throwError("bad names subsection position change");
}
}
if (pos != sectionPos + payloadLen) {
throwError("bad names section position change");
}
}
BinaryConsts::ASTNodes WasmBinaryBuilder::readExpression(Expression*& curr) {
if (pos == endOfFunction) {
throwError("Reached function end without seeing End opcode");
}
if (debug) std::cerr << "zz recurse into " << ++depth << " at " << pos << std::endl;
readNextDebugLocation();
std::set<Function::DebugLocation> currDebugLocation;
if (debugLocation.size()) {
currDebugLocation.insert(*debugLocation.begin());
}
uint8_t code = getInt8();
if (debug) std::cerr << "readExpression seeing " << (int)code << std::endl;
switch (code) {
case BinaryConsts::Block: visitBlock((curr = allocator.alloc<Block>())->cast<Block>()); break;
case BinaryConsts::If: visitIf((curr = allocator.alloc<If>())->cast<If>()); break;
case BinaryConsts::Loop: visitLoop((curr = allocator.alloc<Loop>())->cast<Loop>()); break;
case BinaryConsts::Br:
case BinaryConsts::BrIf: visitBreak((curr = allocator.alloc<Break>())->cast<Break>(), code); break; // code distinguishes br from br_if
case BinaryConsts::TableSwitch: visitSwitch((curr = allocator.alloc<Switch>())->cast<Switch>()); break;
case BinaryConsts::CallFunction: visitCall((curr = allocator.alloc<Call>())->cast<Call>()); break;
case BinaryConsts::CallIndirect: visitCallIndirect((curr = allocator.alloc<CallIndirect>())->cast<CallIndirect>()); break;
case BinaryConsts::GetLocal: visitGetLocal((curr = allocator.alloc<GetLocal>())->cast<GetLocal>()); break;
case BinaryConsts::TeeLocal:
case BinaryConsts::SetLocal: visitSetLocal((curr = allocator.alloc<SetLocal>())->cast<SetLocal>(), code); break;
case BinaryConsts::GetGlobal: visitGetGlobal((curr = allocator.alloc<GetGlobal>())->cast<GetGlobal>()); break;
case BinaryConsts::SetGlobal: visitSetGlobal((curr = allocator.alloc<SetGlobal>())->cast<SetGlobal>()); break;
case BinaryConsts::Select: visitSelect((curr = allocator.alloc<Select>())->cast<Select>()); break;
case BinaryConsts::Return: visitReturn((curr = allocator.alloc<Return>())->cast<Return>()); break;
case BinaryConsts::Nop: visitNop((curr = allocator.alloc<Nop>())->cast<Nop>()); break;
case BinaryConsts::Unreachable: visitUnreachable((curr = allocator.alloc<Unreachable>())->cast<Unreachable>()); break;
case BinaryConsts::Drop: visitDrop((curr = allocator.alloc<Drop>())->cast<Drop>()); break;
case BinaryConsts::End:
case BinaryConsts::Else: curr = nullptr; break;
case BinaryConsts::AtomicPrefix: {
code = static_cast<uint8_t>(getU32LEB());
if (maybeVisitLoad(curr, code, /*isAtomic=*/true)) break;
if (maybeVisitStore(curr, code, /*isAtomic=*/true)) break;
if (maybeVisitAtomicRMW(curr, code)) break;
if (maybeVisitAtomicCmpxchg(curr, code)) break;
if (maybeVisitAtomicWait(curr, code)) break;
if (maybeVisitAtomicWake(curr, code)) break;
throwError("invalid code after atomic prefix: " + std::to_string(code));
break;
}
case BinaryConsts::TruncSatPrefix: {
auto opcode = getU32LEB();
if (maybeVisitTruncSat(curr, opcode)) break;
throwError("invalid code after nontrapping float-to-int prefix: " + std::to_string(code));
break;
}
case BinaryConsts::SIMDPrefix: {
auto opcode = getU32LEB();
if (maybeVisitSIMDBinary(curr, opcode)) break;
if (maybeVisitSIMDUnary(curr, opcode)) break;
if (maybeVisitSIMDConst(curr, opcode)) break;
if (maybeVisitSIMDLoad(curr, opcode)) break;
if (maybeVisitSIMDStore(curr, opcode)) break;
if (maybeVisitSIMDExtract(curr, opcode)) break;
if (maybeVisitSIMDReplace(curr, opcode)) break;
if (maybeVisitSIMDShuffle(curr, opcode)) break;
if (maybeVisitSIMDBitselect(curr, opcode)) break;
if (maybeVisitSIMDShift(curr, opcode)) break;
throwError("invalid code after SIMD prefix: " + std::to_string(opcode));
break;
}
default: {
// otherwise, the code is a subcode TODO: optimize
if (maybeVisitBinary(curr, code)) break;
if (maybeVisitUnary(curr, code)) break;
if (maybeVisitConst(curr, code)) break;
if (maybeVisitLoad(curr, code, /*isAtomic=*/false)) break;
if (maybeVisitStore(curr, code, /*isAtomic=*/false)) break;
if (maybeVisitHost(curr, code)) break;
throwError("bad node code " + std::to_string(code));
break;
}
}
if (curr && currDebugLocation.size()) {
currFunction->debugLocations[curr] = *currDebugLocation.begin();
}
if (debug) std::cerr << "zz recurse from " << depth-- << " at " << pos << std::endl;
return BinaryConsts::ASTNodes(code);
}
void WasmBinaryBuilder::pushBlockElements(Block* curr, size_t start, size_t end) {
assert(start <= expressionStack.size());
assert(start <= end);
assert(end <= expressionStack.size());
// the first dropped element may be consumed by code later - it was on the stack first,
// and is the only thing left on the stack. there must be just one thing on the stack
// since we are at the end of a block context. note that we may need to drop more than
// one thing, since a bunch of concrete values may be all "consumed" by an unreachable
// (in which case, the first value can't be consumed anyhow, so it doesn't matter)
const Index NONE = -1;
Index consumable = NONE;
for (size_t i = start; i < end; i++) {
auto* item = expressionStack[i];
curr->list.push_back(item);
if (i < end - 1) {
// stacky&unreachable code may introduce elements that need to be dropped in non-final positions
if (isConcreteType(item->type)) {
curr->list.back() = Builder(wasm).makeDrop(item);
if (consumable == NONE) {
// this is the first, and hence consumable value. note the location
consumable = curr->list.size() - 1;
}
}
}
}
expressionStack.resize(start);
// if we have a consumable item and need it, use it
if (consumable != NONE && curr->list.back()->type == none) {
requireFunctionContext("need an extra var in a non-function context, invalid wasm");
Builder builder(wasm);
auto* item = curr->list[consumable]->cast<Drop>()->value;
auto temp = builder.addVar(currFunction, item->type);
curr->list[consumable] = builder.makeSetLocal(temp, item);
curr->list.push_back(builder.makeGetLocal(temp, item->type));
}
}
void WasmBinaryBuilder::visitBlock(Block* curr) {
if (debug) std::cerr << "zz node: Block" << std::endl;
// special-case Block and de-recurse nested blocks in their first position, as that is
// a common pattern that can be very highly nested.
std::vector<Block*> stack;
while (1) {
curr->type = getType();
curr->name = getNextLabel();
breakStack.push_back({curr->name, curr->type != none});
stack.push_back(curr);
auto peek = input[pos];
if (peek == BinaryConsts::Block) {
// a recursion
readNextDebugLocation();
curr = allocator.alloc<Block>();
pos++;
if (debugLocation.size()) {
currFunction->debugLocations[curr] = *debugLocation.begin();
}
continue;
} else {
// end of recursion
break;
}
}
Block* last = nullptr;
while (stack.size() > 0) {
curr = stack.back();
stack.pop_back();
size_t start = expressionStack.size(); // everything after this, that is left when we see the marker, is ours
if (last) {
// the previous block is our first-position element
expressionStack.push_back(last);
}
last = curr;
processExpressions();
size_t end = expressionStack.size();
if (end < start) {
throwError("block cannot pop from outside");
}
pushBlockElements(curr, start, end);
curr->finalize(curr->type, breakTargetNames.find(curr->name) != breakTargetNames.end() /* hasBreak */);
breakStack.pop_back();
breakTargetNames.erase(curr->name);
}
}
Expression* WasmBinaryBuilder::getBlockOrSingleton(Type type) {
Name label = getNextLabel();
breakStack.push_back({label, type != none && type != unreachable});
auto start = expressionStack.size();
processExpressions();
size_t end = expressionStack.size();
if (end < start) {
throwError("block cannot pop from outside");
}
breakStack.pop_back();
auto* block = allocator.alloc<Block>();
pushBlockElements(block, start, end);
block->name = label;
block->finalize(type);
// maybe we don't need a block here?
if (breakTargetNames.find(block->name) == breakTargetNames.end()) {
block->name = Name();
if (block->list.size() == 1) {
return block->list[0];
}
}
breakTargetNames.erase(block->name);
return block;
}
void WasmBinaryBuilder::visitIf(If* curr) {
if (debug) std::cerr << "zz node: If" << std::endl;
curr->type = getType();
curr->condition = popNonVoidExpression();
curr->ifTrue = getBlockOrSingleton(curr->type);
if (lastSeparator == BinaryConsts::Else) {
curr->ifFalse = getBlockOrSingleton(curr->type);
}
curr->finalize(curr->type);
if (lastSeparator != BinaryConsts::End) {
throwError("if should end with End");
}
}
void WasmBinaryBuilder::visitLoop(Loop* curr) {
if (debug) std::cerr << "zz node: Loop" << std::endl;
curr->type = getType();
curr->name = getNextLabel();
breakStack.push_back({curr->name, 0});
// find the expressions in the block, and create the body
// a loop may have a list of instructions in wasm, much like
// a block, but it only has a label at the top of the loop,
// so even if we need a block (if there is more than 1
// expression) we never need a label on the block.
auto start = expressionStack.size();
processExpressions();
size_t end = expressionStack.size();
if (end - start == 1) {
curr->body = popExpression();
} else {
if (start > end) {
throwError("block cannot pop from outside");
}
auto* block = allocator.alloc<Block>();
pushBlockElements(block, start, end);
block->finalize(curr->type);
curr->body = block;
}
breakStack.pop_back();
breakTargetNames.erase(curr->name);
curr->finalize(curr->type);
}
WasmBinaryBuilder::BreakTarget WasmBinaryBuilder::getBreakTarget(int32_t offset) {
if (debug) std::cerr << "getBreakTarget " << offset << std::endl;
if (breakStack.size() < 1 + size_t(offset)) {
throwError("bad breakindex (low)");
}
size_t index = breakStack.size() - 1 - offset;
if (index >= breakStack.size()) {
throwError("bad breakindex (high)");
}
if (debug) std::cerr << "breaktarget "<< breakStack[index].name << " arity " << breakStack[index].arity << std::endl;
auto& ret = breakStack[index];
// if the break is in literally unreachable code, then we will not emit it anyhow,
// so do not note that the target has breaks to it
if (!willBeIgnored) {
breakTargetNames.insert(ret.name);
}
return ret;
}
void WasmBinaryBuilder::visitBreak(Break *curr, uint8_t code) {
if (debug) std::cerr << "zz node: Break, code "<< int32_t(code) << std::endl;
BreakTarget target = getBreakTarget(getU32LEB());
curr->name = target.name;
if (code == BinaryConsts::BrIf) curr->condition = popNonVoidExpression();
if (target.arity) curr->value = popNonVoidExpression();
curr->finalize();
}
void WasmBinaryBuilder::visitSwitch(Switch* curr) {
if (debug) std::cerr << "zz node: Switch" << std::endl;
curr->condition = popNonVoidExpression();
auto numTargets = getU32LEB();
if (debug) std::cerr << "targets: "<< numTargets<<std::endl;
for (size_t i = 0; i < numTargets; i++) {
curr->targets.push_back(getBreakTarget(getU32LEB()).name);
}
auto defaultTarget = getBreakTarget(getU32LEB());
curr->default_ = defaultTarget.name;
if (debug) std::cerr << "default: "<< curr->default_<<std::endl;
if (defaultTarget.arity) curr->value = popNonVoidExpression();
curr->finalize();
}
void WasmBinaryBuilder::visitCall(Call* curr) {
if (debug) std::cerr << "zz node: Call" << std::endl;
auto index = getU32LEB();
FunctionType* type;
if (index < functionImports.size()) {
auto* import = functionImports[index];
type = wasm.getFunctionType(import->type);
} else {
Index adjustedIndex = index - functionImports.size();
if (adjustedIndex >= functionTypes.size()) {
throwError("invalid call index");
}
type = functionTypes[adjustedIndex];
}
assert(type);
auto num = type->params.size();
curr->operands.resize(num);
for (size_t i = 0; i < num; i++) {
curr->operands[num - i - 1] = popNonVoidExpression();
}
curr->type = type->result;
functionCalls[index].push_back(curr); // we don't know function names yet
curr->finalize();
}
void WasmBinaryBuilder::visitCallIndirect(CallIndirect* curr) {
if (debug) std::cerr << "zz node: CallIndirect" << std::endl;
auto index = getU32LEB();
if (index >= wasm.functionTypes.size()) {
throwError("bad call_indirect function index");
}
auto* fullType = wasm.functionTypes[index].get();
auto reserved = getU32LEB();
if (reserved != 0) throwError("Invalid flags field in call_indirect");
curr->fullType = fullType->name;
auto num = fullType->params.size();
curr->operands.resize(num);
curr->target = popNonVoidExpression();
for (size_t i = 0; i < num; i++) {
curr->operands[num - i - 1] = popNonVoidExpression();
}
curr->type = fullType->result;
curr->finalize();
}
void WasmBinaryBuilder::visitGetLocal(GetLocal* curr) {
if (debug) std::cerr << "zz node: GetLocal " << pos << std::endl;
requireFunctionContext("local.get");
curr->index = getU32LEB();
if (curr->index >= currFunction->getNumLocals()) {
throwError("bad local.get index");
}
curr->type = currFunction->getLocalType(curr->index);
curr->finalize();
}
void WasmBinaryBuilder::visitSetLocal(SetLocal *curr, uint8_t code) {
if (debug) std::cerr << "zz node: Set|TeeLocal" << std::endl;
requireFunctionContext("local.set outside of function");
curr->index = getU32LEB();
if (curr->index >= currFunction->getNumLocals()) {
throwError("bad local.set index");
}
curr->value = popNonVoidExpression();
curr->type = curr->value->type;
curr->setTee(code == BinaryConsts::TeeLocal);
curr->finalize();
}
void WasmBinaryBuilder::visitGetGlobal(GetGlobal* curr) {
if (debug) std::cerr << "zz node: GetGlobal " << pos << std::endl;
auto index = getU32LEB();
curr->name = getGlobalName(index);
curr->type = wasm.getGlobal(curr->name)->type;
}
void WasmBinaryBuilder::visitSetGlobal(SetGlobal* curr) {
if (debug) std::cerr << "zz node: SetGlobal" << std::endl;
auto index = getU32LEB();
curr->name = getGlobalName(index);
curr->value = popNonVoidExpression();
curr->finalize();
}
void WasmBinaryBuilder::readMemoryAccess(Address& alignment, Address& offset) {
auto rawAlignment = getU32LEB();
if (rawAlignment > 4) throwError("Alignment must be of a reasonable size");
alignment = Pow2(rawAlignment);
offset = getU32LEB();
}
bool WasmBinaryBuilder::maybeVisitLoad(Expression*& out, uint8_t code, bool isAtomic) {
Load* curr;
if (!isAtomic) {
switch (code) {
case BinaryConsts::I32LoadMem8S: curr = allocator.alloc<Load>(); curr->bytes = 1; curr->type = i32; curr->signed_ = true; break;
case BinaryConsts::I32LoadMem8U: curr = allocator.alloc<Load>(); curr->bytes = 1; curr->type = i32; curr->signed_ = false; break;
case BinaryConsts::I32LoadMem16S: curr = allocator.alloc<Load>(); curr->bytes = 2; curr->type = i32; curr->signed_ = true; break;
case BinaryConsts::I32LoadMem16U: curr = allocator.alloc<Load>(); curr->bytes = 2; curr->type = i32; curr->signed_ = false; break;
case BinaryConsts::I32LoadMem: curr = allocator.alloc<Load>(); curr->bytes = 4; curr->type = i32; break;
case BinaryConsts::I64LoadMem8S: curr = allocator.alloc<Load>(); curr->bytes = 1; curr->type = i64; curr->signed_ = true; break;
case BinaryConsts::I64LoadMem8U: curr = allocator.alloc<Load>(); curr->bytes = 1; curr->type = i64; curr->signed_ = false; break;
case BinaryConsts::I64LoadMem16S: curr = allocator.alloc<Load>(); curr->bytes = 2; curr->type = i64; curr->signed_ = true; break;
case BinaryConsts::I64LoadMem16U: curr = allocator.alloc<Load>(); curr->bytes = 2; curr->type = i64; curr->signed_ = false; break;
case BinaryConsts::I64LoadMem32S: curr = allocator.alloc<Load>(); curr->bytes = 4; curr->type = i64; curr->signed_ = true; break;
case BinaryConsts::I64LoadMem32U: curr = allocator.alloc<Load>(); curr->bytes = 4; curr->type = i64; curr->signed_ = false; break;
case BinaryConsts::I64LoadMem: curr = allocator.alloc<Load>(); curr->bytes = 8; curr->type = i64; break;
case BinaryConsts::F32LoadMem: curr = allocator.alloc<Load>(); curr->bytes = 4; curr->type = f32; break;
case BinaryConsts::F64LoadMem: curr = allocator.alloc<Load>(); curr->bytes = 8; curr->type = f64; break;
default: return false;
}
if (debug) std::cerr << "zz node: Load" << std::endl;
} else {
switch (code) {
case BinaryConsts::I32AtomicLoad8U: curr = allocator.alloc<Load>(); curr->bytes = 1; curr->type = i32; break;
case BinaryConsts::I32AtomicLoad16U: curr = allocator.alloc<Load>(); curr->bytes = 2; curr->type = i32; break;
case BinaryConsts::I32AtomicLoad: curr = allocator.alloc<Load>(); curr->bytes = 4; curr->type = i32; break;
case BinaryConsts::I64AtomicLoad8U: curr = allocator.alloc<Load>(); curr->bytes = 1; curr->type = i64; break;
case BinaryConsts::I64AtomicLoad16U: curr = allocator.alloc<Load>(); curr->bytes = 2; curr->type = i64; break;
case BinaryConsts::I64AtomicLoad32U: curr = allocator.alloc<Load>(); curr->bytes = 4; curr->type = i64; break;
case BinaryConsts::I64AtomicLoad: curr = allocator.alloc<Load>(); curr->bytes = 8; curr->type = i64; break;
default: return false;
}
curr->signed_ = false;
if (debug) std::cerr << "zz node: AtomicLoad" << std::endl;
}
curr->isAtomic = isAtomic;
readMemoryAccess(curr->align, curr->offset);
curr->ptr = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitStore(Expression*& out, uint8_t code, bool isAtomic) {
Store* curr;
if (!isAtomic) {
switch (code) {
case BinaryConsts::I32StoreMem8: curr = allocator.alloc<Store>(); curr->bytes = 1; curr->valueType = i32; break;
case BinaryConsts::I32StoreMem16: curr = allocator.alloc<Store>(); curr->bytes = 2; curr->valueType = i32; break;
case BinaryConsts::I32StoreMem: curr = allocator.alloc<Store>(); curr->bytes = 4; curr->valueType = i32; break;
case BinaryConsts::I64StoreMem8: curr = allocator.alloc<Store>(); curr->bytes = 1; curr->valueType = i64; break;
case BinaryConsts::I64StoreMem16: curr = allocator.alloc<Store>(); curr->bytes = 2; curr->valueType = i64; break;
case BinaryConsts::I64StoreMem32: curr = allocator.alloc<Store>(); curr->bytes = 4; curr->valueType = i64; break;
case BinaryConsts::I64StoreMem: curr = allocator.alloc<Store>(); curr->bytes = 8; curr->valueType = i64; break;
case BinaryConsts::F32StoreMem: curr = allocator.alloc<Store>(); curr->bytes = 4; curr->valueType = f32; break;
case BinaryConsts::F64StoreMem: curr = allocator.alloc<Store>(); curr->bytes = 8; curr->valueType = f64; break;
default: return false;
}
} else {
switch (code) {
case BinaryConsts::I32AtomicStore8: curr = allocator.alloc<Store>(); curr->bytes = 1; curr->valueType = i32; break;
case BinaryConsts::I32AtomicStore16: curr = allocator.alloc<Store>(); curr->bytes = 2; curr->valueType = i32; break;
case BinaryConsts::I32AtomicStore: curr = allocator.alloc<Store>(); curr->bytes = 4; curr->valueType = i32; break;
case BinaryConsts::I64AtomicStore8: curr = allocator.alloc<Store>(); curr->bytes = 1; curr->valueType = i64; break;
case BinaryConsts::I64AtomicStore16: curr = allocator.alloc<Store>(); curr->bytes = 2; curr->valueType = i64; break;
case BinaryConsts::I64AtomicStore32: curr = allocator.alloc<Store>(); curr->bytes = 4; curr->valueType = i64; break;
case BinaryConsts::I64AtomicStore: curr = allocator.alloc<Store>(); curr->bytes = 8; curr->valueType = i64; break;
default: return false;
}
}
curr->isAtomic = isAtomic;
if (debug) std::cerr << "zz node: Store" << std::endl;
readMemoryAccess(curr->align, curr->offset);
curr->value = popNonVoidExpression();
curr->ptr = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitAtomicRMW(Expression*& out, uint8_t code) {
if (code < BinaryConsts::AtomicRMWOps_Begin || code > BinaryConsts::AtomicRMWOps_End) return false;
auto* curr = allocator.alloc<AtomicRMW>();
// Set curr to the given opcode, type and size.
#define SET(opcode, optype, size) \
curr->op = opcode; \
curr->type = optype; \
curr->bytes = size
// Handle the cases for all the valid types for a particular opcode
#define SET_FOR_OP(Op) \
case BinaryConsts::I32AtomicRMW##Op: SET(Op, i32, 4); break; \
case BinaryConsts::I32AtomicRMW##Op##8U: SET(Op, i32, 1); break; \
case BinaryConsts::I32AtomicRMW##Op##16U: SET(Op, i32, 2); break; \
case BinaryConsts::I64AtomicRMW##Op: SET(Op, i64, 8); break; \
case BinaryConsts::I64AtomicRMW##Op##8U: SET(Op, i64, 1); break; \
case BinaryConsts::I64AtomicRMW##Op##16U: SET(Op, i64, 2); break; \
case BinaryConsts::I64AtomicRMW##Op##32U: SET(Op, i64, 4); break;
switch(code) {
SET_FOR_OP(Add);
SET_FOR_OP(Sub);
SET_FOR_OP(And);
SET_FOR_OP(Or);
SET_FOR_OP(Xor);
SET_FOR_OP(Xchg);
default: WASM_UNREACHABLE();
}
#undef SET_FOR_OP
#undef SET
if (debug) std::cerr << "zz node: AtomicRMW" << std::endl;
Address readAlign;
readMemoryAccess(readAlign, curr->offset);
if (readAlign != curr->bytes) throwError("Align of AtomicRMW must match size");
curr->value = popNonVoidExpression();
curr->ptr = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitAtomicCmpxchg(Expression*& out, uint8_t code) {
if (code < BinaryConsts::AtomicCmpxchgOps_Begin || code > BinaryConsts::AtomicCmpxchgOps_End) return false;
auto* curr = allocator.alloc<AtomicCmpxchg>();
// Set curr to the given type and size.
#define SET(optype, size) \
curr->type = optype; \
curr->bytes = size
switch (code) {
case BinaryConsts::I32AtomicCmpxchg: SET(i32, 4); break;
case BinaryConsts::I64AtomicCmpxchg: SET(i64, 8); break;
case BinaryConsts::I32AtomicCmpxchg8U: SET(i32, 1); break;
case BinaryConsts::I32AtomicCmpxchg16U: SET(i32, 2); break;
case BinaryConsts::I64AtomicCmpxchg8U: SET(i64, 1); break;
case BinaryConsts::I64AtomicCmpxchg16U: SET(i64, 2); break;
case BinaryConsts::I64AtomicCmpxchg32U: SET(i64, 4); break;
default: WASM_UNREACHABLE();
}
if (debug) std::cerr << "zz node: AtomicCmpxchg" << std::endl;
Address readAlign;
readMemoryAccess(readAlign, curr->offset);
if (readAlign != curr->bytes) throwError("Align of AtomicCpxchg must match size");
curr->replacement = popNonVoidExpression();
curr->expected = popNonVoidExpression();
curr->ptr = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitAtomicWait(Expression*& out, uint8_t code) {
if (code < BinaryConsts::I32AtomicWait || code > BinaryConsts::I64AtomicWait) return false;
auto* curr = allocator.alloc<AtomicWait>();
switch (code) {
case BinaryConsts::I32AtomicWait: curr->expectedType = i32; break;
case BinaryConsts::I64AtomicWait: curr->expectedType = i64; break;
default: WASM_UNREACHABLE();
}
curr->type = i32;
if (debug) std::cerr << "zz node: AtomicWait" << std::endl;
curr->timeout = popNonVoidExpression();
curr->expected = popNonVoidExpression();
curr->ptr = popNonVoidExpression();
Address readAlign;
readMemoryAccess(readAlign, curr->offset);
if (readAlign != getTypeSize(curr->expectedType)) throwError("Align of AtomicWait must match size");
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitAtomicWake(Expression*& out, uint8_t code) {
if (code != BinaryConsts::AtomicWake) return false;
auto* curr = allocator.alloc<AtomicWake>();
if (debug) std::cerr << "zz node: AtomicWake" << std::endl;
curr->type = i32;
curr->wakeCount = popNonVoidExpression();
curr->ptr = popNonVoidExpression();
Address readAlign;
readMemoryAccess(readAlign, curr->offset);
if (readAlign != getTypeSize(curr->type)) throwError("Align of AtomicWake must match size");
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitConst(Expression*& out, uint8_t code) {
Const* curr;
if (debug) std::cerr << "zz node: Const, code " << code << std::endl;
switch (code) {
case BinaryConsts::I32Const: curr = allocator.alloc<Const>(); curr->value = Literal(getS32LEB()); break;
case BinaryConsts::I64Const: curr = allocator.alloc<Const>(); curr->value = Literal(getS64LEB()); break;
case BinaryConsts::F32Const: curr = allocator.alloc<Const>(); curr->value = getFloat32Literal(); break;
case BinaryConsts::F64Const: curr = allocator.alloc<Const>(); curr->value = getFloat64Literal(); break;
default: return false;
}
curr->type = curr->value.type;
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitUnary(Expression*& out, uint8_t code) {
Unary* curr;
switch (code) {
case BinaryConsts::I32Clz: curr = allocator.alloc<Unary>(); curr->op = ClzInt32; break;
case BinaryConsts::I64Clz: curr = allocator.alloc<Unary>(); curr->op = ClzInt64; break;
case BinaryConsts::I32Ctz: curr = allocator.alloc<Unary>(); curr->op = CtzInt32; break;
case BinaryConsts::I64Ctz: curr = allocator.alloc<Unary>(); curr->op = CtzInt64; break;
case BinaryConsts::I32Popcnt: curr = allocator.alloc<Unary>(); curr->op = PopcntInt32; break;
case BinaryConsts::I64Popcnt: curr = allocator.alloc<Unary>(); curr->op = PopcntInt64; break;
case BinaryConsts::I32EqZ: curr = allocator.alloc<Unary>(); curr->op = EqZInt32; break;
case BinaryConsts::I64EqZ: curr = allocator.alloc<Unary>(); curr->op = EqZInt64; break;
case BinaryConsts::F32Neg: curr = allocator.alloc<Unary>(); curr->op = NegFloat32; break;
case BinaryConsts::F64Neg: curr = allocator.alloc<Unary>(); curr->op = NegFloat64; break;
case BinaryConsts::F32Abs: curr = allocator.alloc<Unary>(); curr->op = AbsFloat32; break;
case BinaryConsts::F64Abs: curr = allocator.alloc<Unary>(); curr->op = AbsFloat64; break;
case BinaryConsts::F32Ceil: curr = allocator.alloc<Unary>(); curr->op = CeilFloat32; break;
case BinaryConsts::F64Ceil: curr = allocator.alloc<Unary>(); curr->op = CeilFloat64; break;
case BinaryConsts::F32Floor: curr = allocator.alloc<Unary>(); curr->op = FloorFloat32; break;
case BinaryConsts::F64Floor: curr = allocator.alloc<Unary>(); curr->op = FloorFloat64; break;
case BinaryConsts::F32NearestInt: curr = allocator.alloc<Unary>(); curr->op = NearestFloat32; break;
case BinaryConsts::F64NearestInt: curr = allocator.alloc<Unary>(); curr->op = NearestFloat64; break;
case BinaryConsts::F32Sqrt: curr = allocator.alloc<Unary>(); curr->op = SqrtFloat32; break;
case BinaryConsts::F64Sqrt: curr = allocator.alloc<Unary>(); curr->op = SqrtFloat64; break;
case BinaryConsts::F32UConvertI32: curr = allocator.alloc<Unary>(); curr->op = ConvertUInt32ToFloat32; break;
case BinaryConsts::F64UConvertI32: curr = allocator.alloc<Unary>(); curr->op = ConvertUInt32ToFloat64; break;
case BinaryConsts::F32SConvertI32: curr = allocator.alloc<Unary>(); curr->op = ConvertSInt32ToFloat32; break;
case BinaryConsts::F64SConvertI32: curr = allocator.alloc<Unary>(); curr->op = ConvertSInt32ToFloat64; break;
case BinaryConsts::F32UConvertI64: curr = allocator.alloc<Unary>(); curr->op = ConvertUInt64ToFloat32; break;
case BinaryConsts::F64UConvertI64: curr = allocator.alloc<Unary>(); curr->op = ConvertUInt64ToFloat64; break;
case BinaryConsts::F32SConvertI64: curr = allocator.alloc<Unary>(); curr->op = ConvertSInt64ToFloat32; break;
case BinaryConsts::F64SConvertI64: curr = allocator.alloc<Unary>(); curr->op = ConvertSInt64ToFloat64; break;
case BinaryConsts::I64STruncI32: curr = allocator.alloc<Unary>(); curr->op = ExtendSInt32; break;
case BinaryConsts::I64UTruncI32: curr = allocator.alloc<Unary>(); curr->op = ExtendUInt32; break;
case BinaryConsts::I32ConvertI64: curr = allocator.alloc<Unary>(); curr->op = WrapInt64; break;
case BinaryConsts::I32UTruncF32: curr = allocator.alloc<Unary>(); curr->op = TruncUFloat32ToInt32; break;
case BinaryConsts::I32UTruncF64: curr = allocator.alloc<Unary>(); curr->op = TruncUFloat64ToInt32; break;
case BinaryConsts::I32STruncF32: curr = allocator.alloc<Unary>(); curr->op = TruncSFloat32ToInt32; break;
case BinaryConsts::I32STruncF64: curr = allocator.alloc<Unary>(); curr->op = TruncSFloat64ToInt32; break;
case BinaryConsts::I64UTruncF32: curr = allocator.alloc<Unary>(); curr->op = TruncUFloat32ToInt64; break;
case BinaryConsts::I64UTruncF64: curr = allocator.alloc<Unary>(); curr->op = TruncUFloat64ToInt64; break;
case BinaryConsts::I64STruncF32: curr = allocator.alloc<Unary>(); curr->op = TruncSFloat32ToInt64; break;
case BinaryConsts::I64STruncF64: curr = allocator.alloc<Unary>(); curr->op = TruncSFloat64ToInt64; break;
case BinaryConsts::F32Trunc: curr = allocator.alloc<Unary>(); curr->op = TruncFloat32; break;
case BinaryConsts::F64Trunc: curr = allocator.alloc<Unary>(); curr->op = TruncFloat64; break;
case BinaryConsts::F32ConvertF64: curr = allocator.alloc<Unary>(); curr->op = DemoteFloat64; break;
case BinaryConsts::F64ConvertF32: curr = allocator.alloc<Unary>(); curr->op = PromoteFloat32; break;
case BinaryConsts::I32ReinterpretF32: curr = allocator.alloc<Unary>(); curr->op = ReinterpretFloat32; break;
case BinaryConsts::I64ReinterpretF64: curr = allocator.alloc<Unary>(); curr->op = ReinterpretFloat64; break;
case BinaryConsts::F32ReinterpretI32: curr = allocator.alloc<Unary>(); curr->op = ReinterpretInt32; break;
case BinaryConsts::F64ReinterpretI64: curr = allocator.alloc<Unary>(); curr->op = ReinterpretInt64; break;
case BinaryConsts::I32ExtendS8: curr = allocator.alloc<Unary>(); curr->op = ExtendS8Int32; break;
case BinaryConsts::I32ExtendS16: curr = allocator.alloc<Unary>(); curr->op = ExtendS16Int32; break;
case BinaryConsts::I64ExtendS8: curr = allocator.alloc<Unary>(); curr->op = ExtendS8Int64; break;
case BinaryConsts::I64ExtendS16: curr = allocator.alloc<Unary>(); curr->op = ExtendS16Int64; break;
case BinaryConsts::I64ExtendS32: curr = allocator.alloc<Unary>(); curr->op = ExtendS32Int64; break;
default: return false;
}
if (debug) std::cerr << "zz node: Unary" << std::endl;
curr->value = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitTruncSat(Expression*& out, uint32_t code) {
Unary* curr;
switch (code) {
case BinaryConsts::I32STruncSatF32: curr = allocator.alloc<Unary>(); curr->op = TruncSatSFloat32ToInt32; break;
case BinaryConsts::I32UTruncSatF32: curr = allocator.alloc<Unary>(); curr->op = TruncSatUFloat32ToInt32; break;
case BinaryConsts::I32STruncSatF64: curr = allocator.alloc<Unary>(); curr->op = TruncSatSFloat64ToInt32; break;
case BinaryConsts::I32UTruncSatF64: curr = allocator.alloc<Unary>(); curr->op = TruncSatUFloat64ToInt32; break;
case BinaryConsts::I64STruncSatF32: curr = allocator.alloc<Unary>(); curr->op = TruncSatSFloat32ToInt64; break;
case BinaryConsts::I64UTruncSatF32: curr = allocator.alloc<Unary>(); curr->op = TruncSatUFloat32ToInt64; break;
case BinaryConsts::I64STruncSatF64: curr = allocator.alloc<Unary>(); curr->op = TruncSatSFloat64ToInt64; break;
case BinaryConsts::I64UTruncSatF64: curr = allocator.alloc<Unary>(); curr->op = TruncSatUFloat64ToInt64; break;
default: return false;
}
if (debug) std::cerr << "zz node: Unary (nontrapping float-to-int)" << std::endl;
curr->value = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitBinary(Expression*& out, uint8_t code) {
Binary* curr;
#define INT_TYPED_CODE(code) { \
case BinaryConsts::I32##code: curr = allocator.alloc<Binary>(); curr->op = code##Int32; break; \
case BinaryConsts::I64##code: curr = allocator.alloc<Binary>(); curr->op = code##Int64; break; \
}
#define FLOAT_TYPED_CODE(code) { \
case BinaryConsts::F32##code: curr = allocator.alloc<Binary>(); curr->op = code##Float32; break; \
case BinaryConsts::F64##code: curr = allocator.alloc<Binary>(); curr->op = code##Float64; break; \
}
#define TYPED_CODE(code) { \
INT_TYPED_CODE(code) \
FLOAT_TYPED_CODE(code) \
}
switch (code) {
TYPED_CODE(Add);
TYPED_CODE(Sub);
TYPED_CODE(Mul);
INT_TYPED_CODE(DivS);
INT_TYPED_CODE(DivU);
INT_TYPED_CODE(RemS);
INT_TYPED_CODE(RemU);
INT_TYPED_CODE(And);
INT_TYPED_CODE(Or);
INT_TYPED_CODE(Xor);
INT_TYPED_CODE(Shl);
INT_TYPED_CODE(ShrU);
INT_TYPED_CODE(ShrS);
INT_TYPED_CODE(RotL);
INT_TYPED_CODE(RotR);
FLOAT_TYPED_CODE(Div);
FLOAT_TYPED_CODE(CopySign);
FLOAT_TYPED_CODE(Min);
FLOAT_TYPED_CODE(Max);
TYPED_CODE(Eq);
TYPED_CODE(Ne);
INT_TYPED_CODE(LtS);
INT_TYPED_CODE(LtU);
INT_TYPED_CODE(LeS);
INT_TYPED_CODE(LeU);
INT_TYPED_CODE(GtS);
INT_TYPED_CODE(GtU);
INT_TYPED_CODE(GeS);
INT_TYPED_CODE(GeU);
FLOAT_TYPED_CODE(Lt);
FLOAT_TYPED_CODE(Le);
FLOAT_TYPED_CODE(Gt);
FLOAT_TYPED_CODE(Ge);
default: return false;
}
if (debug) std::cerr << "zz node: Binary" << std::endl;
curr->right = popNonVoidExpression();
curr->left = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
#undef TYPED_CODE
#undef INT_TYPED_CODE
#undef FLOAT_TYPED_CODE
}
bool WasmBinaryBuilder::maybeVisitSIMDBinary(Expression*& out, uint32_t code) {
Binary* curr;
switch (code) {
case BinaryConsts::I8x16Eq: curr = allocator.alloc<Binary>(); curr->op = EqVecI8x16; break;
case BinaryConsts::I8x16Ne: curr = allocator.alloc<Binary>(); curr->op = NeVecI8x16; break;
case BinaryConsts::I8x16LtS: curr = allocator.alloc<Binary>(); curr->op = LtSVecI8x16; break;
case BinaryConsts::I8x16LtU: curr = allocator.alloc<Binary>(); curr->op = LtUVecI8x16; break;
case BinaryConsts::I8x16GtS: curr = allocator.alloc<Binary>(); curr->op = GtSVecI8x16; break;
case BinaryConsts::I8x16GtU: curr = allocator.alloc<Binary>(); curr->op = GtUVecI8x16; break;
case BinaryConsts::I8x16LeS: curr = allocator.alloc<Binary>(); curr->op = LeSVecI8x16; break;
case BinaryConsts::I8x16LeU: curr = allocator.alloc<Binary>(); curr->op = LeUVecI8x16; break;
case BinaryConsts::I8x16GeS: curr = allocator.alloc<Binary>(); curr->op = GeSVecI8x16; break;
case BinaryConsts::I8x16GeU: curr = allocator.alloc<Binary>(); curr->op = GeUVecI8x16; break;
case BinaryConsts::I16x8Eq: curr = allocator.alloc<Binary>(); curr->op = EqVecI16x8; break;
case BinaryConsts::I16x8Ne: curr = allocator.alloc<Binary>(); curr->op = NeVecI16x8; break;
case BinaryConsts::I16x8LtS: curr = allocator.alloc<Binary>(); curr->op = LtSVecI16x8; break;
case BinaryConsts::I16x8LtU: curr = allocator.alloc<Binary>(); curr->op = LtUVecI16x8; break;
case BinaryConsts::I16x8GtS: curr = allocator.alloc<Binary>(); curr->op = GtSVecI16x8; break;
case BinaryConsts::I16x8GtU: curr = allocator.alloc<Binary>(); curr->op = GtUVecI16x8; break;
case BinaryConsts::I16x8LeS: curr = allocator.alloc<Binary>(); curr->op = LeSVecI16x8; break;
case BinaryConsts::I16x8LeU: curr = allocator.alloc<Binary>(); curr->op = LeUVecI16x8; break;
case BinaryConsts::I16x8GeS: curr = allocator.alloc<Binary>(); curr->op = GeSVecI16x8; break;
case BinaryConsts::I16x8GeU: curr = allocator.alloc<Binary>(); curr->op = GeUVecI16x8; break;
case BinaryConsts::I32x4Eq: curr = allocator.alloc<Binary>(); curr->op = EqVecI32x4; break;
case BinaryConsts::I32x4Ne: curr = allocator.alloc<Binary>(); curr->op = NeVecI32x4; break;
case BinaryConsts::I32x4LtS: curr = allocator.alloc<Binary>(); curr->op = LtSVecI32x4; break;
case BinaryConsts::I32x4LtU: curr = allocator.alloc<Binary>(); curr->op = LtUVecI32x4; break;
case BinaryConsts::I32x4GtS: curr = allocator.alloc<Binary>(); curr->op = GtSVecI32x4; break;
case BinaryConsts::I32x4GtU: curr = allocator.alloc<Binary>(); curr->op = GtUVecI32x4; break;
case BinaryConsts::I32x4LeS: curr = allocator.alloc<Binary>(); curr->op = LeSVecI32x4; break;
case BinaryConsts::I32x4LeU: curr = allocator.alloc<Binary>(); curr->op = LeUVecI32x4; break;
case BinaryConsts::I32x4GeS: curr = allocator.alloc<Binary>(); curr->op = GeSVecI32x4; break;
case BinaryConsts::I32x4GeU: curr = allocator.alloc<Binary>(); curr->op = GeUVecI32x4; break;
case BinaryConsts::F32x4Eq: curr = allocator.alloc<Binary>(); curr->op = EqVecF32x4; break;
case BinaryConsts::F32x4Ne: curr = allocator.alloc<Binary>(); curr->op = NeVecF32x4; break;
case BinaryConsts::F32x4Lt: curr = allocator.alloc<Binary>(); curr->op = LtVecF32x4; break;
case BinaryConsts::F32x4Gt: curr = allocator.alloc<Binary>(); curr->op = GtVecF32x4; break;
case BinaryConsts::F32x4Le: curr = allocator.alloc<Binary>(); curr->op = LeVecF32x4; break;
case BinaryConsts::F32x4Ge: curr = allocator.alloc<Binary>(); curr->op = GeVecF32x4; break;
case BinaryConsts::F64x2Eq: curr = allocator.alloc<Binary>(); curr->op = EqVecF64x2; break;
case BinaryConsts::F64x2Ne: curr = allocator.alloc<Binary>(); curr->op = NeVecF64x2; break;
case BinaryConsts::F64x2Lt: curr = allocator.alloc<Binary>(); curr->op = LtVecF64x2; break;
case BinaryConsts::F64x2Gt: curr = allocator.alloc<Binary>(); curr->op = GtVecF64x2; break;
case BinaryConsts::F64x2Le: curr = allocator.alloc<Binary>(); curr->op = LeVecF64x2; break;
case BinaryConsts::F64x2Ge: curr = allocator.alloc<Binary>(); curr->op = GeVecF64x2; break;
case BinaryConsts::V128And: curr = allocator.alloc<Binary>(); curr->op = AndVec128; break;
case BinaryConsts::V128Or: curr = allocator.alloc<Binary>(); curr->op = OrVec128; break;
case BinaryConsts::V128Xor: curr = allocator.alloc<Binary>(); curr->op = XorVec128; break;
case BinaryConsts::I8x16Add: curr = allocator.alloc<Binary>(); curr->op = AddVecI8x16; break;
case BinaryConsts::I8x16AddSatS: curr = allocator.alloc<Binary>(); curr->op = AddSatSVecI8x16; break;
case BinaryConsts::I8x16AddSatU: curr = allocator.alloc<Binary>(); curr->op = AddSatUVecI8x16; break;
case BinaryConsts::I8x16Sub: curr = allocator.alloc<Binary>(); curr->op = SubVecI8x16; break;
case BinaryConsts::I8x16SubSatS: curr = allocator.alloc<Binary>(); curr->op = SubSatSVecI8x16; break;
case BinaryConsts::I8x16SubSatU: curr = allocator.alloc<Binary>(); curr->op = SubSatUVecI8x16; break;
case BinaryConsts::I8x16Mul: curr = allocator.alloc<Binary>(); curr->op = MulVecI8x16; break;
case BinaryConsts::I16x8Add: curr = allocator.alloc<Binary>(); curr->op = AddVecI16x8; break;
case BinaryConsts::I16x8AddSatS: curr = allocator.alloc<Binary>(); curr->op = AddSatSVecI16x8; break;
case BinaryConsts::I16x8AddSatU: curr = allocator.alloc<Binary>(); curr->op = AddSatUVecI16x8; break;
case BinaryConsts::I16x8Sub: curr = allocator.alloc<Binary>(); curr->op = SubVecI16x8; break;
case BinaryConsts::I16x8SubSatS: curr = allocator.alloc<Binary>(); curr->op = SubSatSVecI16x8; break;
case BinaryConsts::I16x8SubSatU: curr = allocator.alloc<Binary>(); curr->op = SubSatUVecI16x8; break;
case BinaryConsts::I16x8Mul: curr = allocator.alloc<Binary>(); curr->op = MulVecI16x8; break;
case BinaryConsts::I32x4Add: curr = allocator.alloc<Binary>(); curr->op = AddVecI32x4; break;
case BinaryConsts::I32x4Sub: curr = allocator.alloc<Binary>(); curr->op = SubVecI32x4; break;
case BinaryConsts::I32x4Mul: curr = allocator.alloc<Binary>(); curr->op = MulVecI32x4; break;
case BinaryConsts::I64x2Add: curr = allocator.alloc<Binary>(); curr->op = AddVecI64x2; break;
case BinaryConsts::I64x2Sub: curr = allocator.alloc<Binary>(); curr->op = SubVecI64x2; break;
case BinaryConsts::F32x4Add: curr = allocator.alloc<Binary>(); curr->op = AddVecF32x4; break;
case BinaryConsts::F32x4Sub: curr = allocator.alloc<Binary>(); curr->op = SubVecF32x4; break;
case BinaryConsts::F32x4Mul: curr = allocator.alloc<Binary>(); curr->op = MulVecF32x4; break;
case BinaryConsts::F32x4Div: curr = allocator.alloc<Binary>(); curr->op = DivVecF32x4; break;
case BinaryConsts::F32x4Min: curr = allocator.alloc<Binary>(); curr->op = MinVecF32x4; break;
case BinaryConsts::F32x4Max: curr = allocator.alloc<Binary>(); curr->op = MaxVecF32x4; break;
case BinaryConsts::F64x2Add: curr = allocator.alloc<Binary>(); curr->op = AddVecF64x2; break;
case BinaryConsts::F64x2Sub: curr = allocator.alloc<Binary>(); curr->op = SubVecF64x2; break;
case BinaryConsts::F64x2Mul: curr = allocator.alloc<Binary>(); curr->op = MulVecF64x2; break;
case BinaryConsts::F64x2Div: curr = allocator.alloc<Binary>(); curr->op = DivVecF64x2; break;
case BinaryConsts::F64x2Min: curr = allocator.alloc<Binary>(); curr->op = MinVecF64x2; break;
case BinaryConsts::F64x2Max: curr = allocator.alloc<Binary>(); curr->op = MaxVecF64x2; break;
default: return false;
}
if (debug) std::cerr << "zz node: Binary" << std::endl;
curr->right = popNonVoidExpression();
curr->left = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDUnary(Expression*& out, uint32_t code) {
Unary* curr;
switch (code) {
case BinaryConsts::I8x16Splat: curr = allocator.alloc<Unary>(); curr->op = SplatVecI8x16; break;
case BinaryConsts::I16x8Splat: curr = allocator.alloc<Unary>(); curr->op = SplatVecI16x8; break;
case BinaryConsts::I32x4Splat: curr = allocator.alloc<Unary>(); curr->op = SplatVecI32x4; break;
case BinaryConsts::I64x2Splat: curr = allocator.alloc<Unary>(); curr->op = SplatVecI64x2; break;
case BinaryConsts::F32x4Splat: curr = allocator.alloc<Unary>(); curr->op = SplatVecF32x4; break;
case BinaryConsts::F64x2Splat: curr = allocator.alloc<Unary>(); curr->op = SplatVecF64x2; break;
case BinaryConsts::V128Not: curr = allocator.alloc<Unary>(); curr->op = NotVec128; break;
case BinaryConsts::I8x16Neg: curr = allocator.alloc<Unary>(); curr->op = NegVecI8x16; break;
case BinaryConsts::I8x16AnyTrue: curr = allocator.alloc<Unary>(); curr->op = AnyTrueVecI8x16; break;
case BinaryConsts::I8x16AllTrue: curr = allocator.alloc<Unary>(); curr->op = AllTrueVecI8x16; break;
case BinaryConsts::I16x8Neg: curr = allocator.alloc<Unary>(); curr->op = NegVecI16x8; break;
case BinaryConsts::I16x8AnyTrue: curr = allocator.alloc<Unary>(); curr->op = AnyTrueVecI16x8; break;
case BinaryConsts::I16x8AllTrue: curr = allocator.alloc<Unary>(); curr->op = AllTrueVecI16x8; break;
case BinaryConsts::I32x4Neg: curr = allocator.alloc<Unary>(); curr->op = NegVecI32x4; break;
case BinaryConsts::I32x4AnyTrue: curr = allocator.alloc<Unary>(); curr->op = AnyTrueVecI32x4; break;
case BinaryConsts::I32x4AllTrue: curr = allocator.alloc<Unary>(); curr->op = AllTrueVecI32x4; break;
case BinaryConsts::I64x2Neg: curr = allocator.alloc<Unary>(); curr->op = NegVecI64x2; break;
case BinaryConsts::I64x2AnyTrue: curr = allocator.alloc<Unary>(); curr->op = AnyTrueVecI64x2; break;
case BinaryConsts::I64x2AllTrue: curr = allocator.alloc<Unary>(); curr->op = AllTrueVecI64x2; break;
case BinaryConsts::F32x4Abs: curr = allocator.alloc<Unary>(); curr->op = AbsVecF32x4; break;
case BinaryConsts::F32x4Neg: curr = allocator.alloc<Unary>(); curr->op = NegVecF32x4; break;
case BinaryConsts::F32x4Sqrt: curr = allocator.alloc<Unary>(); curr->op = SqrtVecF32x4; break;
case BinaryConsts::F64x2Abs: curr = allocator.alloc<Unary>(); curr->op = AbsVecF64x2; break;
case BinaryConsts::F64x2Neg: curr = allocator.alloc<Unary>(); curr->op = NegVecF64x2; break;
case BinaryConsts::F64x2Sqrt: curr = allocator.alloc<Unary>(); curr->op = SqrtVecF64x2; break;
case BinaryConsts::I32x4TruncSatSF32x4: curr = allocator.alloc<Unary>(); curr->op = TruncSatSVecF32x4ToVecI32x4; break;
case BinaryConsts::I32x4TruncSatUF32x4: curr = allocator.alloc<Unary>(); curr->op = TruncSatUVecF32x4ToVecI32x4; break;
case BinaryConsts::I64x2TruncSatSF64x2: curr = allocator.alloc<Unary>(); curr->op = TruncSatSVecF64x2ToVecI64x2; break;
case BinaryConsts::I64x2TruncSatUF64x2: curr = allocator.alloc<Unary>(); curr->op = TruncSatUVecF64x2ToVecI64x2; break;
case BinaryConsts::F32x4ConvertSI32x4: curr = allocator.alloc<Unary>(); curr->op = ConvertSVecI32x4ToVecF32x4; break;
case BinaryConsts::F32x4ConvertUI32x4: curr = allocator.alloc<Unary>(); curr->op = ConvertUVecI32x4ToVecF32x4; break;
case BinaryConsts::F64x2ConvertSI64x2: curr = allocator.alloc<Unary>(); curr->op = ConvertSVecI64x2ToVecF64x2; break;
case BinaryConsts::F64x2ConvertUI64x2: curr = allocator.alloc<Unary>(); curr->op = ConvertUVecI64x2ToVecF64x2; break;
default: return false;
}
curr->value = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDConst(Expression*& out, uint32_t code) {
if (code != BinaryConsts::V128Const) {
return false;
}
auto* curr = allocator.alloc<Const>();
curr->value = getVec128Literal();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDLoad(Expression*& out, uint32_t code) {
if (code != BinaryConsts::V128Load) {
return false;
}
auto* curr = allocator.alloc<Load>();
curr->type = v128;
curr->bytes = 16;
readMemoryAccess(curr->align, curr->offset);
curr->isAtomic = false;
curr->ptr = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDStore(Expression*& out, uint32_t code) {
if (code != BinaryConsts::V128Store) {
return false;
}
auto* curr = allocator.alloc<Store>();
curr->bytes = 16;
curr->valueType = v128;
readMemoryAccess(curr->align, curr->offset);
curr->isAtomic = false;
curr->value = popNonVoidExpression();
curr->ptr = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDExtract(Expression*& out, uint32_t code) {
SIMDExtract* curr;
switch (code) {
case BinaryConsts::I8x16ExtractLaneS: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneSVecI8x16; curr->index = getLaneIndex(16); break;
case BinaryConsts::I8x16ExtractLaneU: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneUVecI8x16; curr->index = getLaneIndex(16); break;
case BinaryConsts::I16x8ExtractLaneS: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneSVecI16x8; curr->index = getLaneIndex(8); break;
case BinaryConsts::I16x8ExtractLaneU: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneUVecI16x8; curr->index = getLaneIndex(8); break;
case BinaryConsts::I32x4ExtractLane: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneVecI32x4; curr->index = getLaneIndex(4); break;
case BinaryConsts::I64x2ExtractLane: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneVecI64x2; curr->index = getLaneIndex(2); break;
case BinaryConsts::F32x4ExtractLane: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneVecF32x4; curr->index = getLaneIndex(4); break;
case BinaryConsts::F64x2ExtractLane: curr = allocator.alloc<SIMDExtract>(); curr->op = ExtractLaneVecF64x2; curr->index = getLaneIndex(2); break;
default: return false;
}
curr->vec = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDReplace(Expression*& out, uint32_t code) {
SIMDReplace* curr;
switch (code) {
case BinaryConsts::I8x16ReplaceLane: curr = allocator.alloc<SIMDReplace>(); curr->op = ReplaceLaneVecI8x16; curr->index = getLaneIndex(16); break;
case BinaryConsts::I16x8ReplaceLane: curr = allocator.alloc<SIMDReplace>(); curr->op = ReplaceLaneVecI16x8; curr->index = getLaneIndex(8); break;
case BinaryConsts::I32x4ReplaceLane: curr = allocator.alloc<SIMDReplace>(); curr->op = ReplaceLaneVecI32x4; curr->index = getLaneIndex(4); break;
case BinaryConsts::I64x2ReplaceLane: curr = allocator.alloc<SIMDReplace>(); curr->op = ReplaceLaneVecI64x2; curr->index = getLaneIndex(2); break;
case BinaryConsts::F32x4ReplaceLane: curr = allocator.alloc<SIMDReplace>(); curr->op = ReplaceLaneVecF32x4; curr->index = getLaneIndex(4); break;
case BinaryConsts::F64x2ReplaceLane: curr = allocator.alloc<SIMDReplace>(); curr->op = ReplaceLaneVecF64x2; curr->index = getLaneIndex(2); break;
default: return false;
}
curr->value = popNonVoidExpression();
curr->vec = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDShuffle(Expression*& out, uint32_t code) {
if (code != BinaryConsts::V8x16Shuffle) {
return false;
}
auto* curr = allocator.alloc<SIMDShuffle>();
for (auto i = 0; i < 16; ++i) {
curr->mask[i] = getLaneIndex(32);
}
curr->right = popNonVoidExpression();
curr->left = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDBitselect(Expression*& out, uint32_t code) {
if (code != BinaryConsts::V128Bitselect) {
return false;
}
auto* curr = allocator.alloc<SIMDBitselect>();
curr->cond = popNonVoidExpression();
curr->right = popNonVoidExpression();
curr->left = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
bool WasmBinaryBuilder::maybeVisitSIMDShift(Expression*& out, uint32_t code) {
SIMDShift* curr;
switch (code) {
case BinaryConsts::I8x16Shl: curr = allocator.alloc<SIMDShift>(); curr->op = ShlVecI8x16; break;
case BinaryConsts::I8x16ShrS: curr = allocator.alloc<SIMDShift>(); curr->op = ShrSVecI8x16; break;
case BinaryConsts::I8x16ShrU: curr = allocator.alloc<SIMDShift>(); curr->op = ShrUVecI8x16; break;
case BinaryConsts::I16x8Shl: curr = allocator.alloc<SIMDShift>(); curr->op = ShlVecI16x8; break;
case BinaryConsts::I16x8ShrS: curr = allocator.alloc<SIMDShift>(); curr->op = ShrSVecI16x8; break;
case BinaryConsts::I16x8ShrU: curr = allocator.alloc<SIMDShift>(); curr->op = ShrUVecI16x8; break;
case BinaryConsts::I32x4Shl: curr = allocator.alloc<SIMDShift>(); curr->op = ShlVecI32x4; break;
case BinaryConsts::I32x4ShrS: curr = allocator.alloc<SIMDShift>(); curr->op = ShrSVecI32x4; break;
case BinaryConsts::I32x4ShrU: curr = allocator.alloc<SIMDShift>(); curr->op = ShrUVecI32x4; break;
case BinaryConsts::I64x2Shl: curr = allocator.alloc<SIMDShift>(); curr->op = ShlVecI64x2; break;
case BinaryConsts::I64x2ShrS: curr = allocator.alloc<SIMDShift>(); curr->op = ShrSVecI64x2; break;
case BinaryConsts::I64x2ShrU: curr = allocator.alloc<SIMDShift>(); curr->op = ShrUVecI64x2; break;
default: return false;
}
curr->shift = popNonVoidExpression();
curr->vec = popNonVoidExpression();
curr->finalize();
out = curr;
return true;
}
void WasmBinaryBuilder::visitSelect(Select* curr) {
if (debug) std::cerr << "zz node: Select" << std::endl;
curr->condition = popNonVoidExpression();
curr->ifFalse = popNonVoidExpression();
curr->ifTrue = popNonVoidExpression();
curr->finalize();
}
void WasmBinaryBuilder::visitReturn(Return* curr) {
if (debug) std::cerr << "zz node: Return" << std::endl;
requireFunctionContext("return");
if (currFunction->result != none) {
curr->value = popNonVoidExpression();
}
curr->finalize();
}
bool WasmBinaryBuilder::maybeVisitHost(Expression*& out, uint8_t code) {
Host* curr;
switch (code) {
case BinaryConsts::CurrentMemory: {
curr = allocator.alloc<Host>();
curr->op = CurrentMemory;
break;
}
case BinaryConsts::GrowMemory: {
curr = allocator.alloc<Host>();
curr->op = GrowMemory;
curr->operands.resize(1);
curr->operands[0] = popNonVoidExpression();
break;
}
default: return false;
}
if (debug) std::cerr << "zz node: Host" << std::endl;
auto reserved = getU32LEB();
if (reserved != 0) throwError("Invalid reserved field on grow_memory/current_memory");
curr->finalize();
out = curr;
return true;
}
void WasmBinaryBuilder::visitNop(Nop* curr) {
if (debug) std::cerr << "zz node: Nop" << std::endl;
}
void WasmBinaryBuilder::visitUnreachable(Unreachable* curr) {
if (debug) std::cerr << "zz node: Unreachable" << std::endl;
}
void WasmBinaryBuilder::visitDrop(Drop* curr) {
if (debug) std::cerr << "zz node: Drop" << std::endl;
curr->value = popNonVoidExpression();
curr->finalize();
}
void WasmBinaryBuilder::throwError(std::string text) {
throw ParseException(text, 0, pos);
}
} // namespace wasm