blob: 2b023df370a0546dde3b226a0c399e58b56da97b [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/core/congestion_control/cubic.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include "net/quic/core/quic_flags.h"
#include "net/quic/core/quic_packets.h"
#include "net/quic/platform/api/quic_logging.h"
namespace net {
namespace {
// Constants based on TCP defaults.
// The following constants are in 2^10 fractions of a second instead of ms to
// allow a 10 shift right to divide.
const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
// where 0.100 is 100 ms which is the scaling
// round trip time.
const int kCubeCongestionWindowScale = 410;
const uint64_t kCubeFactor =
(UINT64_C(1) << kCubeScale) / kCubeCongestionWindowScale;
const uint32_t kDefaultNumConnections = 2;
const float kBeta = 0.7f; // Default Cubic backoff factor.
// Additional backoff factor when loss occurs in the concave part of the Cubic
// curve. This additional backoff factor is expected to give up bandwidth to
// new concurrent flows and speed up convergence.
const float kBetaLastMax = 0.85f;
} // namespace
Cubic::Cubic(const QuicClock* clock)
: clock_(clock),
num_connections_(kDefaultNumConnections),
epoch_(QuicTime::Zero()),
app_limited_start_time_(QuicTime::Zero()),
last_update_time_(QuicTime::Zero()),
fix_convex_mode_(false),
fix_beta_last_max_(false) {
Reset();
}
void Cubic::SetNumConnections(int num_connections) {
num_connections_ = num_connections;
}
float Cubic::Alpha() const {
// TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
// beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
// We derive the equivalent alpha for an N-connection emulation as:
const float beta = Beta();
return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
}
float Cubic::Beta() const {
// kNConnectionBeta is the backoff factor after loss for our N-connection
// emulation, which emulates the effective backoff of an ensemble of N
// TCP-Reno connections on a single loss event. The effective multiplier is
// computed as:
return (num_connections_ - 1 + kBeta) / num_connections_;
}
float Cubic::BetaLastMax() const {
// BetaLastMax is the additional backoff factor after loss for our
// N-connection emulation, which emulates the additional backoff of
// an ensemble of N TCP-Reno connections on a single loss event. The
// effective multiplier is computed as:
return fix_beta_last_max_
? (num_connections_ - 1 + kBetaLastMax) / num_connections_
: kBetaLastMax;
}
void Cubic::Reset() {
epoch_ = QuicTime::Zero(); // Reset time.
app_limited_start_time_ = QuicTime::Zero();
last_update_time_ = QuicTime::Zero(); // Reset time.
last_congestion_window_ = 0;
last_max_congestion_window_ = 0;
acked_packets_count_ = 0;
epoch_packets_count_ = 0;
estimated_tcp_congestion_window_ = 0;
origin_point_congestion_window_ = 0;
time_to_origin_point_ = 0;
last_target_congestion_window_ = 0;
}
void Cubic::OnApplicationLimited() {
// When sender is not using the available congestion window, Cubic's epoch
// should not continue growing. Reset the epoch when in such a period.
epoch_ = QuicTime::Zero();
}
void Cubic::SetFixConvexMode(bool fix_convex_mode) {
fix_convex_mode_ = fix_convex_mode;
}
void Cubic::SetFixBetaLastMax(bool fix_beta_last_max) {
fix_beta_last_max_ = fix_beta_last_max;
}
QuicPacketCount Cubic::CongestionWindowAfterPacketLoss(
QuicPacketCount current_congestion_window) {
if (current_congestion_window < last_max_congestion_window_) {
// We never reached the old max, so assume we are competing with another
// flow. Use our extra back off factor to allow the other flow to go up.
last_max_congestion_window_ =
static_cast<int>(BetaLastMax() * current_congestion_window);
} else {
last_max_congestion_window_ = current_congestion_window;
}
epoch_ = QuicTime::Zero(); // Reset time.
return static_cast<int>(current_congestion_window * Beta());
}
QuicPacketCount Cubic::CongestionWindowAfterAck(
QuicPacketCount current_congestion_window,
QuicTime::Delta delay_min,
QuicTime event_time) {
acked_packets_count_ += 1; // Packets acked.
epoch_packets_count_ += 1;
// Cubic is "independent" of RTT, the update is limited by the time elapsed.
if (last_congestion_window_ == current_congestion_window &&
(event_time - last_update_time_ <= MaxCubicTimeInterval())) {
return std::max(last_target_congestion_window_,
estimated_tcp_congestion_window_);
}
last_congestion_window_ = current_congestion_window;
last_update_time_ = event_time;
if (!epoch_.IsInitialized()) {
// First ACK after a loss event.
epoch_ = event_time; // Start of epoch.
acked_packets_count_ = 1; // Reset count.
epoch_packets_count_ = 1;
// Reset estimated_tcp_congestion_window_ to be in sync with cubic.
estimated_tcp_congestion_window_ = current_congestion_window;
if (last_max_congestion_window_ <= current_congestion_window) {
time_to_origin_point_ = 0;
origin_point_congestion_window_ = current_congestion_window;
} else {
time_to_origin_point_ = static_cast<uint32_t>(
cbrt(kCubeFactor *
(last_max_congestion_window_ - current_congestion_window)));
origin_point_congestion_window_ = last_max_congestion_window_;
}
}
// Change the time unit from microseconds to 2^10 fractions per second. Take
// the round trip time in account. This is done to allow us to use shift as a
// divide operator.
const int64_t elapsed_time =
((event_time + delay_min - epoch_).ToMicroseconds() << 10) /
kNumMicrosPerSecond;
DCHECK_GE(elapsed_time, 0);
int64_t offset = time_to_origin_point_ - elapsed_time;
if (fix_convex_mode_) {
// Right-shifts of negative, signed numbers have
// implementation-dependent behavior. Force the offset to be
// positive, similar to the kernel implementation.
offset = std::abs(time_to_origin_point_ - elapsed_time);
}
QuicPacketCount delta_congestion_window =
(kCubeCongestionWindowScale * offset * offset * offset) >> kCubeScale;
const bool add_delta = elapsed_time > time_to_origin_point_;
DCHECK(add_delta ||
(origin_point_congestion_window_ > delta_congestion_window));
QuicPacketCount target_congestion_window =
(fix_convex_mode_ && add_delta)
? origin_point_congestion_window_ + delta_congestion_window
: origin_point_congestion_window_ - delta_congestion_window;
// Limit the CWND increase to half the acked packets rounded up to the
// nearest packet.
target_congestion_window =
std::min(target_congestion_window,
current_congestion_window + (epoch_packets_count_ + 1) / 2);
DCHECK_LT(0u, estimated_tcp_congestion_window_);
// With dynamic beta/alpha based on number of active streams, it is possible
// for the required_ack_count to become much lower than acked_packets_count_
// suddenly, leading to more than one iteration through the following loop.
while (true) {
// Update estimated TCP congestion_window.
QuicPacketCount required_ack_count = static_cast<QuicPacketCount>(
estimated_tcp_congestion_window_ / Alpha());
if (acked_packets_count_ < required_ack_count) {
break;
}
acked_packets_count_ -= required_ack_count;
estimated_tcp_congestion_window_++;
}
epoch_packets_count_ = 0;
// We have a new cubic congestion window.
last_target_congestion_window_ = target_congestion_window;
// Compute target congestion_window based on cubic target and estimated TCP
// congestion_window, use highest (fastest).
if (target_congestion_window < estimated_tcp_congestion_window_) {
target_congestion_window = estimated_tcp_congestion_window_;
}
QUIC_DVLOG(1) << "Final target congestion_window: "
<< target_congestion_window;
return target_congestion_window;
}
} // namespace net