blob: cd703bcf19d648f8d05c7460b5999918f16885d7 [file] [log] [blame]
// Copyright (c) 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/core/congestion_control/cubic_bytes.h"
#include <cstdint>
#include "net/quic/core/quic_flags.h"
#include "net/quic/platform/api/quic_str_cat.h"
#include "net/quic/test_tools/mock_clock.h"
#include "testing/gtest/include/gtest/gtest.h"
using std::string;
namespace net {
namespace test {
namespace {
const float kBeta = 0.7f; // Default Cubic backoff factor.
const float kBetaLastMax = 0.85f; // Default Cubic backoff factor.
const uint32_t kNumConnections = 2;
const float kNConnectionBeta = (kNumConnections - 1 + kBeta) / kNumConnections;
const float kNConnectionBetaLastMax =
(kNumConnections - 1 + kBetaLastMax) / kNumConnections;
const float kNConnectionAlpha = 3 * kNumConnections * kNumConnections *
(1 - kNConnectionBeta) / (1 + kNConnectionBeta);
struct TestParams {
TestParams(bool fix_convex_mode,
bool fix_cubic_quantization,
bool fix_beta_last_max)
: fix_convex_mode(fix_convex_mode),
fix_cubic_quantization(fix_cubic_quantization),
fix_beta_last_max(fix_beta_last_max) {}
friend std::ostream& operator<<(std::ostream& os, const TestParams& p) {
os << "{ fix_convex_mode: " << p.fix_convex_mode
<< " fix_cubic_quantization: " << p.fix_cubic_quantization
<< " fix_beta_last_max: " << p.fix_beta_last_max;
os << " }";
return os;
}
bool fix_convex_mode;
bool fix_cubic_quantization;
bool fix_beta_last_max;
};
string TestParamToString(const testing::TestParamInfo<TestParams>& params) {
return QuicStrCat("convex_mode_", params.param.fix_convex_mode, "_",
"cubic_quantization_", params.param.fix_cubic_quantization,
"_", "beta_last_max_", params.param.fix_beta_last_max);
}
std::vector<TestParams> GetTestParams() {
std::vector<TestParams> params;
for (bool fix_convex_mode : {true, false}) {
for (bool fix_cubic_quantization : {true, false}) {
for (bool fix_beta_last_max : {true, false}) {
if (!FLAGS_quic_reloadable_flag_quic_fix_cubic_convex_mode &&
fix_convex_mode) {
continue;
}
if (!FLAGS_quic_reloadable_flag_quic_fix_cubic_bytes_quantization &&
fix_cubic_quantization) {
continue;
}
if (!FLAGS_quic_reloadable_flag_quic_fix_beta_last_max &&
fix_beta_last_max) {
continue;
}
TestParams param(fix_convex_mode, fix_cubic_quantization,
fix_beta_last_max);
params.push_back(param);
}
}
}
return params;
}
} // namespace
class CubicBytesTest : public ::testing::TestWithParam<TestParams> {
protected:
CubicBytesTest()
: one_ms_(QuicTime::Delta::FromMilliseconds(1)),
hundred_ms_(QuicTime::Delta::FromMilliseconds(100)),
cubic_(&clock_) {
cubic_.SetFixConvexMode(GetParam().fix_convex_mode);
cubic_.SetFixCubicQuantization(GetParam().fix_cubic_quantization);
cubic_.SetFixBetaLastMax(GetParam().fix_beta_last_max);
}
QuicByteCount RenoCwndInBytes(QuicByteCount current_cwnd) {
QuicByteCount reno_estimated_cwnd =
current_cwnd +
kDefaultTCPMSS * (kNConnectionAlpha * kDefaultTCPMSS) / current_cwnd;
return reno_estimated_cwnd;
}
QuicByteCount ConservativeCwndInBytes(QuicByteCount current_cwnd) {
QuicByteCount conservative_cwnd = current_cwnd + kDefaultTCPMSS / 2;
return conservative_cwnd;
}
QuicByteCount CubicConvexCwndInBytes(QuicByteCount initial_cwnd,
QuicTime::Delta rtt,
QuicTime::Delta elapsed_time) {
const int64_t offset =
((elapsed_time + rtt).ToMicroseconds() << 10) / 1000000;
const QuicByteCount delta_congestion_window =
GetParam().fix_cubic_quantization
? ((410 * offset * offset * offset) * kDefaultTCPMSS >> 40)
: ((410 * offset * offset * offset) >> 40) * kDefaultTCPMSS;
const QuicByteCount cubic_cwnd = initial_cwnd + delta_congestion_window;
return cubic_cwnd;
}
QuicByteCount LastMaxCongestionWindow() {
return cubic_.last_max_congestion_window();
}
const QuicTime::Delta one_ms_;
const QuicTime::Delta hundred_ms_;
MockClock clock_;
CubicBytes cubic_;
};
INSTANTIATE_TEST_CASE_P(CubicBytesTests,
CubicBytesTest,
::testing::ValuesIn(GetTestParams()),
TestParamToString);
// TODO(jokulik): The original "AboveOrigin" test, below, is very
// loose. It's nearly impossible to make the test tighter without
// deploying the fix for convex mode. Once cubic convex is deployed,
// replace "AboveOrigin" with this test.
TEST_P(CubicBytesTest, AboveOriginWithTighterBounds) {
if (!GetParam().fix_convex_mode) {
// Without convex mode fixed, the behavior of the algorithm is so
// far from expected, there's no point in doing a tighter test.
return;
}
// Convex growth.
const QuicTime::Delta rtt_min = hundred_ms_;
int64_t rtt_min_ms = rtt_min.ToMilliseconds();
float rtt_min_s = rtt_min_ms / 1000.0;
QuicByteCount current_cwnd = 10 * kDefaultTCPMSS;
const QuicByteCount initial_cwnd = current_cwnd;
clock_.AdvanceTime(one_ms_);
const QuicTime initial_time = clock_.ApproximateNow();
const QuicByteCount expected_first_cwnd = RenoCwndInBytes(current_cwnd);
current_cwnd = cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd,
rtt_min, initial_time);
ASSERT_EQ(expected_first_cwnd, current_cwnd);
// Normal TCP phase.
// The maximum number of expected Reno RTTs is calculated by
// finding the point where the cubic curve and the reno curve meet.
const int max_reno_rtts =
GetParam().fix_cubic_quantization
? std::sqrt(kNConnectionAlpha /
(.4 * rtt_min_s * rtt_min_s * rtt_min_s)) -
2
: std::sqrt(kNConnectionAlpha /
(.4 * rtt_min_s * rtt_min_s * rtt_min_s)) -
1;
for (int i = 0; i < max_reno_rtts; ++i) {
// Alternatively, we expect it to increase by one, every time we
// receive current_cwnd/Alpha acks back. (This is another way of
// saying we expect cwnd to increase by approximately Alpha once
// we receive current_cwnd number ofacks back).
const uint64_t num_acks_this_epoch =
current_cwnd / kDefaultTCPMSS / kNConnectionAlpha;
const QuicByteCount initial_cwnd_this_epoch = current_cwnd;
for (QuicPacketCount n = 0; n < num_acks_this_epoch; ++n) {
// Call once per ACK.
const QuicByteCount expected_next_cwnd = RenoCwndInBytes(current_cwnd);
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
ASSERT_EQ(expected_next_cwnd, current_cwnd);
}
// Our byte-wise Reno implementation is an estimate. We expect
// the cwnd to increase by approximately one MSS every
// cwnd/kDefaultTCPMSS/Alpha acks, but it may be off by as much as
// half a packet for smaller values of current_cwnd.
const QuicByteCount cwnd_change_this_epoch =
current_cwnd - initial_cwnd_this_epoch;
ASSERT_NEAR(kDefaultTCPMSS, cwnd_change_this_epoch, kDefaultTCPMSS / 2);
clock_.AdvanceTime(hundred_ms_);
}
if (!GetParam().fix_cubic_quantization) {
// Because our byte-wise Reno under-estimates the cwnd, we switch to
// conservative increases for a few acks before switching to true
// cubic increases.
for (int i = 0; i < 3; ++i) {
const QuicByteCount next_expected_cwnd =
ConservativeCwndInBytes(current_cwnd);
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
ASSERT_EQ(next_expected_cwnd, current_cwnd);
}
}
for (int i = 0; i < 54; ++i) {
const uint64_t max_acks_this_epoch = current_cwnd / kDefaultTCPMSS;
const QuicByteCount expected_cwnd = CubicConvexCwndInBytes(
initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time));
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
ASSERT_EQ(expected_cwnd, current_cwnd);
for (QuicPacketCount n = 1; n < max_acks_this_epoch; ++n) {
// Call once per ACK.
ASSERT_EQ(current_cwnd, cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min,
clock_.ApproximateNow()));
}
clock_.AdvanceTime(hundred_ms_);
}
const QuicByteCount expected_cwnd = CubicConvexCwndInBytes(
initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time));
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
ASSERT_EQ(expected_cwnd, current_cwnd);
}
TEST_P(CubicBytesTest, AboveOrigin) {
if (!GetParam().fix_convex_mode && GetParam().fix_cubic_quantization) {
// Without convex mode fixed, the behavior of the algorithm does
// not fit the exact pattern of this test.
// TODO(jokulik): Once the convex mode fix becomes default, this
// test can be replaced with the better AboveOriginTighterBounds
// test.
return;
}
// Convex growth.
const QuicTime::Delta rtt_min = hundred_ms_;
QuicByteCount current_cwnd = 10 * kDefaultTCPMSS;
// Without the signed-integer, cubic-convex fix, we start out in the
// wrong mode.
QuicPacketCount expected_cwnd = GetParam().fix_convex_mode
? RenoCwndInBytes(current_cwnd)
: ConservativeCwndInBytes(current_cwnd);
// Initialize the state.
clock_.AdvanceTime(one_ms_);
ASSERT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd,
rtt_min, clock_.ApproximateNow()));
current_cwnd = expected_cwnd;
const QuicPacketCount initial_cwnd = expected_cwnd;
// Normal TCP phase.
for (int i = 0; i < 48; ++i) {
for (QuicPacketCount n = 1;
n < current_cwnd / kDefaultTCPMSS / kNConnectionAlpha; ++n) {
// Call once per ACK.
ASSERT_NEAR(current_cwnd, cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min,
clock_.ApproximateNow()),
kDefaultTCPMSS);
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
if (GetParam().fix_convex_mode) {
// When we fix convex mode and the uint64 arithmetic, we
// increase the expected_cwnd only after after the first 100ms,
// rather than after the initial 1ms.
expected_cwnd += kDefaultTCPMSS;
ASSERT_NEAR(expected_cwnd, current_cwnd, kDefaultTCPMSS);
} else {
ASSERT_NEAR(expected_cwnd, current_cwnd, kDefaultTCPMSS);
expected_cwnd += kDefaultTCPMSS;
}
}
// Cubic phase.
for (int i = 0; i < 52; ++i) {
for (QuicPacketCount n = 1; n < current_cwnd / kDefaultTCPMSS; ++n) {
// Call once per ACK.
ASSERT_NEAR(current_cwnd, cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min,
clock_.ApproximateNow()),
kDefaultTCPMSS);
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
}
// Total time elapsed so far; add min_rtt (0.1s) here as well.
float elapsed_time_s = 10.0f + 0.1f;
// |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4.
expected_cwnd =
initial_cwnd / kDefaultTCPMSS +
(elapsed_time_s * elapsed_time_s * elapsed_time_s * 410) / 1024;
// Without the convex mode fix, the result is off by one.
if (!GetParam().fix_convex_mode) {
++expected_cwnd;
}
EXPECT_EQ(expected_cwnd, current_cwnd / kDefaultTCPMSS);
}
// Constructs an artificial scenario to ensure that cubic-convex
// increases are truly fine-grained:
//
// - After starting the epoch, this test advances the elapsed time
// sufficiently far that cubic will do small increases at less than
// MaxCubicTimeInterval() intervals.
//
// - Sets an artificially large initial cwnd to prevent Reno from the
// convex increases on every ack.
TEST_P(CubicBytesTest, AboveOriginFineGrainedCubing) {
if (!GetParam().fix_convex_mode || !GetParam().fix_cubic_quantization) {
// Without these two fixes, this test cannot pass.
return;
}
// Start the test with an artificially large cwnd to prevent Reno
// from over-taking cubic.
QuicByteCount current_cwnd = 1000 * kDefaultTCPMSS;
const QuicByteCount initial_cwnd = current_cwnd;
const QuicTime::Delta rtt_min = hundred_ms_;
clock_.AdvanceTime(one_ms_);
QuicTime initial_time = clock_.ApproximateNow();
// Start the epoch and then artificially advance the time.
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(600));
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
// We expect the algorithm to perform only non-zero, fine-grained cubic
// increases on every ack in this case.
for (int i = 0; i < 100; ++i) {
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10));
const QuicByteCount expected_cwnd = CubicConvexCwndInBytes(
initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time));
const QuicByteCount next_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
// Make sure we are performing cubic increases.
ASSERT_EQ(expected_cwnd, next_cwnd);
// Make sure that these are non-zero, less-than-packet sized
// increases.
ASSERT_GT(next_cwnd, current_cwnd);
const QuicByteCount cwnd_delta = next_cwnd - current_cwnd;
ASSERT_GT(kDefaultTCPMSS * .1, cwnd_delta);
current_cwnd = next_cwnd;
}
}
TEST_P(CubicBytesTest, LossEvents) {
const QuicTime::Delta rtt_min = hundred_ms_;
QuicByteCount current_cwnd = 422 * kDefaultTCPMSS;
// Without the signed-integer, cubic-convex fix, we mistakenly
// increment cwnd after only one_ms_ and a single ack.
QuicPacketCount expected_cwnd = GetParam().fix_convex_mode
? RenoCwndInBytes(current_cwnd)
: current_cwnd + kDefaultTCPMSS / 2;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd,
rtt_min, clock_.ApproximateNow()));
// On the first loss, the last max congestion window is set to the
// congestion window before the loss.
QuicByteCount pre_loss_cwnd = current_cwnd;
ASSERT_EQ(0u, LastMaxCongestionWindow());
expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
ASSERT_EQ(pre_loss_cwnd, LastMaxCongestionWindow());
current_cwnd = expected_cwnd;
// On the second loss, the current congestion window has not yet
// reached the last max congestion window. The last max congestion
// window will be reduced by an additional backoff factor to allow
// for competition.
pre_loss_cwnd = current_cwnd;
expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta);
ASSERT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
current_cwnd = expected_cwnd;
EXPECT_GT(pre_loss_cwnd, LastMaxCongestionWindow());
QuicByteCount expected_last_max =
GetParam().fix_beta_last_max
? static_cast<QuicByteCount>(pre_loss_cwnd * kNConnectionBetaLastMax)
: static_cast<QuicByteCount>(pre_loss_cwnd * kBetaLastMax);
EXPECT_EQ(expected_last_max, LastMaxCongestionWindow());
if (GetParam().fix_beta_last_max) {
EXPECT_LT(expected_cwnd, LastMaxCongestionWindow());
} else {
// If we don't scale kLastBetaMax, the current window is exactly
// equal to the last max congestion window, which would cause us
// to land above the origin on the next increase.
EXPECT_EQ(expected_cwnd, LastMaxCongestionWindow());
}
// Simulate an increase, and check that we are below the origin.
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
if (GetParam().fix_beta_last_max) {
EXPECT_GT(LastMaxCongestionWindow(), current_cwnd);
} else {
// Without the bug fix, we will be at or above the origin.
EXPECT_LE(LastMaxCongestionWindow(), current_cwnd);
}
// On the final loss, simulate the condition where the congestion
// window had a chance to grow nearly to the last congestion window.
current_cwnd = LastMaxCongestionWindow() - 1;
pre_loss_cwnd = current_cwnd;
expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
expected_last_max =
GetParam().fix_beta_last_max
? pre_loss_cwnd
: static_cast<QuicByteCount>(pre_loss_cwnd * kBetaLastMax);
ASSERT_EQ(expected_last_max, LastMaxCongestionWindow());
}
TEST_P(CubicBytesTest, BelowOrigin) {
// Concave growth.
const QuicTime::Delta rtt_min = hundred_ms_;
QuicByteCount current_cwnd = 422 * kDefaultTCPMSS;
// Without the signed-integer, cubic-convex fix, we mistakenly
// increment cwnd after only one_ms_ and a single ack.
QuicPacketCount expected_cwnd = GetParam().fix_convex_mode
? RenoCwndInBytes(current_cwnd)
: current_cwnd + kDefaultTCPMSS / 2;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd,
rtt_min, clock_.ApproximateNow()));
expected_cwnd = static_cast<QuicPacketCount>(current_cwnd * kNConnectionBeta);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
current_cwnd = expected_cwnd;
// First update after loss to initialize the epoch.
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
// Cubic phase.
for (int i = 0; i < 40; ++i) {
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(
kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow());
}
expected_cwnd = 553632;
EXPECT_EQ(expected_cwnd, current_cwnd);
}
} // namespace test
} // namespace net