blob: f3aa680a36dff25b3bec605ba37c814300eb6f0a [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/core/congestion_control/bbr_sender.h"
#include <algorithm>
#include <map>
#include <memory>
#include "net/quic/core/congestion_control/rtt_stats.h"
#include "net/quic/core/quic_packets.h"
#include "net/quic/core/quic_utils.h"
#include "net/quic/platform/api/quic_logging.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "net/quic/test_tools/quic_connection_peer.h"
#include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/simulator/quic_endpoint.h"
#include "net/quic/test_tools/simulator/simulator.h"
#include "net/quic/test_tools/simulator/switch.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace test {
// Use the initial CWND of 10, as 32 is too much for the test network.
const uint32_t kInitialCongestionWindowPackets = 10;
const uint32_t kDefaultWindowTCP =
kInitialCongestionWindowPackets * kDefaultTCPMSS;
// Test network parameters. Here, the topology of the network is:
//
// BBR sender
// |
// | <-- local link (10 Mbps, 2 ms delay)
// |
// Network switch
// * <-- the bottleneck queue in the direction
// | of the receiver
// |
// | <-- test link (4 Mbps, 30 ms delay)
// |
// |
// Receiver
//
// The reason the bandwidths chosen are relatively low is the fact that the
// connection simulator uses QuicTime for its internal clock, and as such has
// the granularity of 1us, meaning that at bandwidth higher than 20 Mbps the
// packets can start to land on the same timestamp.
const QuicBandwidth kTestLinkBandwidth =
QuicBandwidth::FromKBitsPerSecond(4000);
const QuicBandwidth kLocalLinkBandwidth =
QuicBandwidth::FromKBitsPerSecond(10000);
const QuicTime::Delta kTestPropagationDelay =
QuicTime::Delta::FromMilliseconds(30);
const QuicTime::Delta kLocalPropagationDelay =
QuicTime::Delta::FromMilliseconds(2);
const QuicTime::Delta kTestTransferTime =
kTestLinkBandwidth.TransferTime(kMaxPacketSize) +
kLocalLinkBandwidth.TransferTime(kMaxPacketSize);
const QuicTime::Delta kTestRtt =
(kTestPropagationDelay + kLocalPropagationDelay + kTestTransferTime) * 2;
const QuicByteCount kTestBdp = kTestRtt * kTestLinkBandwidth;
class BbrSenderTest : public ::testing::Test {
protected:
BbrSenderTest()
: simulator_(),
bbr_sender_(&simulator_,
"BBR sender",
"Receiver",
Perspective::IS_CLIENT,
42),
receiver_(&simulator_,
"Receiver",
"BBR sender",
Perspective::IS_SERVER,
42) {
rtt_stats_ = bbr_sender_.connection()->sent_packet_manager().GetRttStats();
sender_ = new BbrSender(
rtt_stats_,
QuicSentPacketManagerPeer::GetUnackedPacketMap(
QuicConnectionPeer::GetSentPacketManager(bbr_sender_.connection())),
kInitialCongestionWindowPackets, kDefaultMaxCongestionWindowPackets,
&random_);
QuicConnectionPeer::SetSendAlgorithm(bbr_sender_.connection(), sender_);
clock_ = simulator_.GetClock();
simulator_.set_random_generator(&random_);
uint64_t seed = QuicRandom::GetInstance()->RandUint64();
random_.set_seed(seed);
QUIC_LOG(INFO) << "BbrSenderTest simulator set up. Seed: " << seed;
}
simulator::Simulator simulator_;
simulator::QuicEndpoint bbr_sender_;
simulator::QuicEndpoint receiver_;
std::unique_ptr<simulator::Switch> switch_;
std::unique_ptr<simulator::SymmetricLink> bbr_sender_link_;
std::unique_ptr<simulator::SymmetricLink> receiver_link_;
SimpleRandom random_;
// Owned by different components of the connection.
const QuicClock* clock_;
const RttStats* rtt_stats_;
BbrSender* sender_;
QuicFlagSaver flags_;
// Creates a default setup, which is a network with a bottleneck between the
// receiver and the switch. The switch has the buffers four times larger than
// the bottleneck BDP, which should guarantee a lack of losses.
void CreateDefaultSetup() {
switch_.reset(
new simulator::Switch(&simulator_, "Switch", 8, 2 * kTestBdp));
bbr_sender_link_.reset(new simulator::SymmetricLink(
&bbr_sender_, switch_->port(1), kLocalLinkBandwidth,
kLocalPropagationDelay));
receiver_link_.reset(new simulator::SymmetricLink(
&receiver_, switch_->port(2), kTestLinkBandwidth,
kTestPropagationDelay));
}
// Same as the default setup, except the buffer now is half of the BDP.
void CreateSmallBufferSetup() {
switch_.reset(
new simulator::Switch(&simulator_, "Switch", 8, 0.5 * kTestBdp));
bbr_sender_link_.reset(new simulator::SymmetricLink(
&bbr_sender_, switch_->port(1), kLocalLinkBandwidth,
kTestPropagationDelay));
receiver_link_.reset(new simulator::SymmetricLink(
&receiver_, switch_->port(2), kTestLinkBandwidth,
kTestPropagationDelay));
}
void EnableAggregation(QuicByteCount aggregation_bytes,
QuicTime::Delta aggregation_timeout) {
// Enable aggregation on the path from the receiver to the sender.
switch_->port_queue(1)->EnableAggregation(aggregation_bytes,
aggregation_timeout);
}
void DoSimpleTransfer(QuicByteCount transfer_size, QuicTime::Delta deadline) {
bbr_sender_.AddBytesToTransfer(transfer_size);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return bbr_sender_.bytes_to_transfer() == 0; }, deadline);
EXPECT_TRUE(simulator_result)
<< "Simple transfer failed. Bytes remaining: "
<< bbr_sender_.bytes_to_transfer();
QUIC_LOG(INFO) << "Simple transfer state: " << sender_->ExportDebugState();
}
// Drive the simulator by sending enough data to enter PROBE_BW.
void DriveOutOfStartup() {
ASSERT_FALSE(sender_->ExportDebugState().is_at_full_bandwidth);
DoSimpleTransfer(1024 * 1024, QuicTime::Delta::FromSeconds(15));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
ExpectApproxEq(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
}
// Send |bytes|-sized bursts of data |number_of_bursts| times, waiting for
// |wait_time| between each burst.
void SendBursts(size_t number_of_bursts,
QuicByteCount bytes,
QuicTime::Delta wait_time) {
ASSERT_EQ(0u, bbr_sender_.bytes_to_transfer());
for (size_t i = 0; i < number_of_bursts; i++) {
bbr_sender_.AddBytesToTransfer(bytes);
// Transfer data and wait for three seconds between each transfer.
simulator_.RunFor(wait_time);
// Ensure the connection did not time out.
ASSERT_TRUE(bbr_sender_.connection()->connected());
ASSERT_TRUE(receiver_.connection()->connected());
}
simulator_.RunFor(wait_time + kTestRtt);
ASSERT_EQ(0u, bbr_sender_.bytes_to_transfer());
}
};
// Test a simple long data transfer in the default setup.
TEST_F(BbrSenderTest, SimpleTransfer) {
CreateDefaultSetup();
// At startup make sure we are at the default.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_->Now(), 0).IsZero());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_->Now(), 0).IsZero());
// And that window is un-affected.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// Verify that Sender is in slow start.
EXPECT_TRUE(sender_->InSlowStart());
// Verify that pacing rate is based on the initial RTT.
QuicBandwidth expected_pacing_rate = QuicBandwidth::FromBytesAndTimeDelta(
2.885 * kDefaultWindowTCP,
QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us()));
ExpectApproxEq(expected_pacing_rate.ToBitsPerSecond(),
sender_->PacingRate(0).ToBitsPerSecond(), 0.01f);
ASSERT_GE(kTestBdp, kDefaultWindowTCP + kDefaultTCPMSS);
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(30));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is quite high, since there exists a possibility that the
// connection just exited high gain cycle.
ExpectApproxEq(kTestRtt, rtt_stats_->smoothed_rtt(), 0.2f);
}
// Test a simple transfer in a situation when the buffer is less than BDP.
TEST_F(BbrSenderTest, SimpleTransferSmallBuffer) {
CreateSmallBufferSetup();
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(30));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
ExpectApproxEq(kTestLinkBandwidth, sender_->ExportDebugState().max_bandwidth,
0.01f);
EXPECT_GE(bbr_sender_.connection()->GetStats().packets_lost, 0u);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Test a simple long data transfer with 2 rtts of aggregation.
TEST_F(BbrSenderTest, SimpleTransfer2RTTAggregation) {
QuicFlagSaver flags;
FLAGS_quic_reloadable_flag_quic_bbr_ack_spacing2 = true;
CreateDefaultSetup();
// 2 RTTs of aggregation, with a max of 10kb.
EnableAggregation(10 * 1024, 2 * kTestRtt);
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
// It's possible to read a bandwidth as much as 50% too high with aggregation.
EXPECT_LE(kTestLinkBandwidth * 0.99f,
sender_->ExportDebugState().max_bandwidth);
// TODO(ianswett): Tighten this bound once we understand why BBR is
// overestimating bandwidth with aggregation. b/36022633
EXPECT_GE(kTestLinkBandwidth * 1.5f,
sender_->ExportDebugState().max_bandwidth);
// TODO(ianswett): Expect 0 packets are lost once BBR no longer measures
// bandwidth higher than the link rate.
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 4, rtt_stats_->smoothed_rtt());
ExpectApproxEq(kTestRtt, rtt_stats_->min_rtt(), 0.1f);
}
// Test a simple long data transfer with 2 rtts of aggregation.
TEST_F(BbrSenderTest, SimpleTransfer2RTTAggregationBytes) {
FLAGS_quic_reloadable_flag_quic_bbr_ack_spacing2 = false;
FLAGS_quic_reloadable_flag_quic_bbr_ack_aggregation_bytes = true;
CreateDefaultSetup();
// 2 RTTs of aggregation, with a max of 10kb.
EnableAggregation(10 * 1024, 2 * kTestRtt);
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
// It's possible to read a bandwidth as much as 50% too high with aggregation.
EXPECT_LE(kTestLinkBandwidth * 0.99f,
sender_->ExportDebugState().max_bandwidth);
// TODO(ianswett): Tighten this bound once we understand why BBR is
// overestimating bandwidth with aggregation. b/36022633
EXPECT_GE(kTestLinkBandwidth * 1.5f,
sender_->ExportDebugState().max_bandwidth);
// TODO(ianswett): Expect 0 packets are lost once BBR no longer measures
// bandwidth higher than the link rate.
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 4, rtt_stats_->smoothed_rtt());
ExpectApproxEq(kTestRtt, rtt_stats_->min_rtt(), 0.1f);
}
// Test a simple long data transfer with 2 rtts of aggregation.
TEST_F(BbrSenderTest, SimpleTransferAckDecimation) {
FLAGS_quic_reloadable_flag_quic_bbr_ack_spacing2 = false;
FLAGS_quic_reloadable_flag_quic_bbr_ack_aggregation_bytes = true;
// Decrease the CWND gain so extra CWND is required with stretch acks.
base::SetFlag(&FLAGS_quic_bbr_cwnd_gain, 1.0);
sender_ = new BbrSender(
rtt_stats_,
QuicSentPacketManagerPeer::GetUnackedPacketMap(
QuicConnectionPeer::GetSentPacketManager(bbr_sender_.connection())),
kInitialCongestionWindowPackets, kDefaultMaxCongestionWindowPackets,
&random_);
QuicConnectionPeer::SetSendAlgorithm(bbr_sender_.connection(), sender_);
// Enable Ack Decimation on the receiver.
QuicConnectionPeer::SetAckMode(receiver_.connection(),
QuicConnection::AckMode::ACK_DECIMATION);
CreateDefaultSetup();
// Transfer 12MB.
DoSimpleTransfer(12 * 1024 * 1024, QuicTime::Delta::FromSeconds(35));
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
// It's possible to read a bandwidth as much as 50% too high with aggregation.
EXPECT_LE(kTestLinkBandwidth * 0.99f,
sender_->ExportDebugState().max_bandwidth);
// TODO(ianswett): Tighten this bound once we understand why BBR is
// overestimating bandwidth with aggregation. b/36022633
EXPECT_GE(kTestLinkBandwidth * 1.5f,
sender_->ExportDebugState().max_bandwidth);
// TODO(ianswett): Expect 0 packets are lost once BBR no longer measures
// bandwidth higher than the link rate.
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
// The margin here is high, because the aggregation greatly increases
// smoothed rtt.
EXPECT_GE(kTestRtt * 2, rtt_stats_->smoothed_rtt());
ExpectApproxEq(kTestRtt, rtt_stats_->min_rtt(), 0.1f);
}
// Test the number of losses incurred by the startup phase in a situation when
// the buffer is less than BDP.
TEST_F(BbrSenderTest, PacketLossOnSmallBufferStartup) {
CreateSmallBufferSetup();
DriveOutOfStartup();
float loss_rate =
static_cast<float>(bbr_sender_.connection()->GetStats().packets_lost) /
bbr_sender_.connection()->GetStats().packets_sent;
EXPECT_LE(loss_rate, 0.27);
}
// Ensures the code transitions loss recovery states correctly (NOT_IN_RECOVERY
// -> CONSERVATION -> GROWTH -> NOT_IN_RECOVERY).
TEST_F(BbrSenderTest, RecoveryStates) {
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10);
bool simulator_result;
CreateSmallBufferSetup();
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
ASSERT_EQ(BbrSender::NOT_IN_RECOVERY,
sender_->ExportDebugState().recovery_state);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().recovery_state !=
BbrSender::NOT_IN_RECOVERY;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::CONSERVATION,
sender_->ExportDebugState().recovery_state);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().recovery_state !=
BbrSender::CONSERVATION;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::GROWTH, sender_->ExportDebugState().recovery_state);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().recovery_state != BbrSender::GROWTH;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::NOT_IN_RECOVERY,
sender_->ExportDebugState().recovery_state);
}
// Verify the behavior of the algorithm in the case when the connection sends
// small bursts of data after sending continuously for a while.
TEST_F(BbrSenderTest, ApplicationLimitedBursts) {
CreateDefaultSetup();
DriveOutOfStartup();
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
SendBursts(20, 512, QuicTime::Delta::FromSeconds(3));
EXPECT_TRUE(sender_->ExportDebugState().last_sample_is_app_limited);
ExpectApproxEq(kTestLinkBandwidth, sender_->ExportDebugState().max_bandwidth,
0.01f);
}
// Verify the behavior of the algorithm in the case when the connection sends
// small bursts of data and then starts sending continuously.
TEST_F(BbrSenderTest, ApplicationLimitedBurstsWithoutPrior) {
CreateDefaultSetup();
SendBursts(40, 512, QuicTime::Delta::FromSeconds(3));
EXPECT_TRUE(sender_->ExportDebugState().last_sample_is_app_limited);
DriveOutOfStartup();
ExpectApproxEq(kTestLinkBandwidth, sender_->ExportDebugState().max_bandwidth,
0.01f);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Verify that the DRAIN phase works correctly.
TEST_F(BbrSenderTest, Drain) {
CreateDefaultSetup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10);
// Get the queue at the bottleneck, which is the outgoing queue at the port to
// which the receiver is connected.
const simulator::Queue* queue = switch_->port_queue(2);
bool simulator_result;
// We have no intention of ever finishing this transfer.
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
// Run the startup, and verify that it fills up the queue.
ASSERT_EQ(BbrSender::STARTUP, sender_->ExportDebugState().mode);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().mode != BbrSender::STARTUP;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
// BBR uses CWND gain of 2.88 during STARTUP, hence it will fill the buffer
// with approximately 1.88 BDPs. Here, we use 1.5 to give some margin for
// error.
EXPECT_GE(queue->bytes_queued(), 1.5 * kTestBdp);
// Observe increased RTT due to bufferbloat.
const QuicTime::Delta queueing_delay =
kTestLinkBandwidth.TransferTime(queue->bytes_queued());
ExpectApproxEq(kTestRtt + queueing_delay, rtt_stats_->latest_rtt(), 0.1f);
// Transition to the drain phase and verify that it makes the queue
// have at most a BDP worth of packets.
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().mode != BbrSender::DRAIN; },
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_LE(queue->bytes_queued(), kTestBdp);
// Wait for a few round trips and ensure we're in appropriate phase of gain
// cycling before taking an RTT measurement.
const QuicRoundTripCount start_round_trip =
sender_->ExportDebugState().round_trip_count;
simulator_result = simulator_.RunUntilOrTimeout(
[this, start_round_trip]() {
QuicRoundTripCount rounds_passed =
sender_->ExportDebugState().round_trip_count - start_round_trip;
return rounds_passed >= 4 &&
sender_->ExportDebugState().gain_cycle_index == 7;
},
timeout);
ASSERT_TRUE(simulator_result);
// Observe the bufferbloat go away.
ExpectApproxEq(kTestRtt, rtt_stats_->smoothed_rtt(), 0.1f);
}
// Verify that the connection enters and exits PROBE_RTT correctly.
TEST_F(BbrSenderTest, ProbeRtt) {
CreateDefaultSetup();
DriveOutOfStartup();
// We have no intention of ever finishing this transfer.
bbr_sender_.AddBytesToTransfer(100 * 1024 * 1024);
// Wait until the connection enters PROBE_RTT.
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(12);
bool simulator_result = simulator_.RunUntilOrTimeout(
[this]() {
return sender_->ExportDebugState().mode == BbrSender::PROBE_RTT;
},
timeout);
ASSERT_TRUE(simulator_result);
ASSERT_EQ(BbrSender::PROBE_RTT, sender_->ExportDebugState().mode);
// Exit PROBE_RTT.
const QuicTime probe_rtt_start = clock_->Now();
const QuicTime::Delta time_to_exit_probe_rtt =
kTestRtt + QuicTime::Delta::FromMilliseconds(200);
simulator_.RunFor(1.5 * time_to_exit_probe_rtt);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_GE(sender_->ExportDebugState().min_rtt_timestamp, probe_rtt_start);
}
// Ensure that a connection that is app-limited and is at sufficiently low
// bandwidth will not exit high gain phase, and similarly ensure that the
// connection will exit low gain early if the number of bytes in flight is low.
TEST_F(BbrSenderTest, InFlightAwareGainCycling) {
CreateDefaultSetup();
DriveOutOfStartup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result;
// Start a few cycles prior to the high gain one.
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().gain_cycle_index == 6; },
timeout);
// Send at 10% of available rate. Run for 3 seconds, checking in the middle
// and at the end. The pacing gain should be high throughout.
QuicBandwidth target_bandwidth = 0.1f * kTestLinkBandwidth;
QuicTime::Delta burst_interval = QuicTime::Delta::FromMilliseconds(300);
for (int i = 0; i < 2; i++) {
SendBursts(5, target_bandwidth * burst_interval, burst_interval);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(0, sender_->ExportDebugState().gain_cycle_index);
ExpectApproxEq(kTestLinkBandwidth,
sender_->ExportDebugState().max_bandwidth, 0.01f);
}
// Now that in-flight is almost zero and the pacing gain is still above 1,
// send approximately 1.25 BDPs worth of data. This should cause the
// PROBE_BW mode to enter low gain cycle, and exit it earlier than one min_rtt
// due to running out of data to send.
bbr_sender_.AddBytesToTransfer(1.3 * kTestBdp);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return sender_->ExportDebugState().gain_cycle_index == 1; },
timeout);
ASSERT_TRUE(simulator_result);
simulator_.RunFor(0.75 * sender_->ExportDebugState().min_rtt);
EXPECT_EQ(BbrSender::PROBE_BW, sender_->ExportDebugState().mode);
EXPECT_EQ(2, sender_->ExportDebugState().gain_cycle_index);
}
// Ensure that the pacing rate does not drop at startup.
TEST_F(BbrSenderTest, NoBandwidthDropOnStartup) {
CreateDefaultSetup();
const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5);
bool simulator_result;
QuicBandwidth initial_rate = QuicBandwidth::FromBytesAndTimeDelta(
kInitialCongestionWindowPackets * kDefaultTCPMSS,
QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us()));
EXPECT_GE(sender_->PacingRate(0), initial_rate);
// Send a packet.
bbr_sender_.AddBytesToTransfer(1000);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return receiver_.bytes_received() == 1000; }, timeout);
ASSERT_TRUE(simulator_result);
EXPECT_GE(sender_->PacingRate(0), initial_rate);
// Wait for a while.
simulator_.RunFor(QuicTime::Delta::FromSeconds(2));
EXPECT_GE(sender_->PacingRate(0), initial_rate);
// Send another packet.
bbr_sender_.AddBytesToTransfer(1000);
simulator_result = simulator_.RunUntilOrTimeout(
[this]() { return receiver_.bytes_received() == 2000; }, timeout);
ASSERT_TRUE(simulator_result);
EXPECT_GE(sender_->PacingRate(0), initial_rate);
}
// Test exiting STARTUP earlier due to the 1RTT connection option.
TEST_F(BbrSenderTest, SimpleTransfer1RTTStartup) {
FLAGS_quic_reloadable_flag_quic_allow_2_rtt_bbr_startup = true;
CreateDefaultSetup();
QuicConfig config;
QuicTagVector options;
options.push_back(k1RTT);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
sender_->SetFromConfig(config, Perspective::IS_SERVER);
EXPECT_EQ(1u, sender_->num_startup_rtts());
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
QuicRoundTripCount max_bw_round = 0;
QuicBandwidth max_bw(QuicBandwidth::Zero());
bool simulator_result = simulator_.RunUntilOrTimeout(
[this, &max_bw, &max_bw_round]() {
if (max_bw < sender_->ExportDebugState().max_bandwidth) {
max_bw = sender_->ExportDebugState().max_bandwidth;
max_bw_round = sender_->ExportDebugState().round_trip_count;
}
return sender_->ExportDebugState().is_at_full_bandwidth;
},
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(1u, sender_->ExportDebugState().round_trip_count - max_bw_round);
EXPECT_EQ(1u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
// Test exiting STARTUP earlier due to the 2RTT connection option.
TEST_F(BbrSenderTest, SimpleTransfer2RTTStartup) {
FLAGS_quic_reloadable_flag_quic_allow_2_rtt_bbr_startup = true;
CreateDefaultSetup();
QuicConfig config;
QuicTagVector options;
options.push_back(k2RTT);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
sender_->SetFromConfig(config, Perspective::IS_SERVER);
EXPECT_EQ(2u, sender_->num_startup_rtts());
// Run until the full bandwidth is reached and check how many rounds it was.
bbr_sender_.AddBytesToTransfer(12 * 1024 * 1024);
QuicRoundTripCount max_bw_round = 0;
QuicBandwidth max_bw(QuicBandwidth::Zero());
bool simulator_result = simulator_.RunUntilOrTimeout(
[this, &max_bw, &max_bw_round]() {
if (max_bw < sender_->ExportDebugState().max_bandwidth) {
max_bw = sender_->ExportDebugState().max_bandwidth;
max_bw_round = sender_->ExportDebugState().round_trip_count;
}
return sender_->ExportDebugState().is_at_full_bandwidth;
},
QuicTime::Delta::FromSeconds(5));
ASSERT_TRUE(simulator_result);
EXPECT_EQ(BbrSender::DRAIN, sender_->ExportDebugState().mode);
EXPECT_EQ(2u, sender_->ExportDebugState().round_trip_count - max_bw_round);
EXPECT_EQ(2u, sender_->ExportDebugState().rounds_without_bandwidth_gain);
EXPECT_EQ(0u, bbr_sender_.connection()->GetStats().packets_lost);
EXPECT_FALSE(sender_->ExportDebugState().last_sample_is_app_limited);
}
} // namespace test
} // namespace net