blob: d93306725a75c98d39e6d70aeb61ecd8a6b7dc98 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Decoder for strings encoded using the HPACK Huffman Code (see
// https://httpwg.github.io/specs/rfc7541.html#huffman.code).
//
// This implementation is inspired by the One-Shift algorithm described in
// "On the Implementation of Minimum Redundancy Prefix Codes", by Alistair
// Moffat and Andrew Turpin, 1997.
// See also https://en.wikipedia.org/wiki/Canonical_Huffman_code for background
// on canonical Huffman codes.
//
// This decoder differs from that in .../spdy/hpack/hpack_huffman_table.cc
// as follows:
// 1) It decodes only the code described in RFC7541, where as the older
// implementation supported any canonical Huffman code provided at run
// time.
// 2) It uses a fixed amount of memory allocated at build time; it doesn't
// construct a tree of of decoding tables based on an encoding
// table provided at run time.
// 3) In benchmarks it runs from 10% to 70% faster, based on the length
// of the strings (faster for longer strings). Some of the improvements
// could be back ported, but others are fundamental to the approach.
#include "net/spdy/hpack/hpack_huffman_decoder.h"
#include <bitset>
#include <limits>
#include <utility>
#include "base/logging.h"
#include "net/spdy/hpack/hpack_input_stream.h"
namespace net {
namespace {
typedef HpackHuffmanDecoder::HuffmanWord HuffmanWord;
typedef HpackHuffmanDecoder::HuffmanCodeLength HuffmanCodeLength;
const HuffmanCodeLength kHuffmanWordLength =
std::numeric_limits<HuffmanWord>::digits;
const HuffmanCodeLength kMinCodeLength = 5;
const HuffmanCodeLength kMaxCodeLength = 30;
const HuffmanWord kInvalidLJCode = ~static_cast<HuffmanWord>(0);
// Length of a code in bits to the first code with that length, left-justified.
// Note that this can be computed from kLengthToFirstCanonical.
const HuffmanWord kLengthToFirstLJCode[] = {
kInvalidLJCode, // There are no codes of length 0.
kInvalidLJCode, // There are no codes of length 1.
kInvalidLJCode, // There are no codes of length 2.
kInvalidLJCode, // There are no codes of length 3.
kInvalidLJCode, // There are no codes of length 4.
0x00000000, // Length 5.
0x50000000, // Length 6.
0xb8000000, // Length 7.
0xf8000000, // Length 8.
kInvalidLJCode, // There are no codes of length 9.
0xfe000000, // Length 10.
0xff400000, // Length 11.
0xffa00000, // Length 12.
0xffc00000, // Length 13.
0xfff00000, // Length 14.
0xfff80000, // Length 15.
kInvalidLJCode, // There are no codes of length 16.
kInvalidLJCode, // There are no codes of length 17.
kInvalidLJCode, // There are no codes of length 18.
0xfffe0000, // Length 19.
0xfffe6000, // Length 20.
0xfffee000, // Length 21.
0xffff4800, // Length 22.
0xffffb000, // Length 23.
0xffffea00, // Length 24.
0xfffff600, // Length 25.
0xfffff800, // Length 26.
0xfffffbc0, // Length 27.
0xfffffe20, // Length 28.
kInvalidLJCode, // There are no codes of length 29.
0xfffffff0, // Length 30.
};
// TODO(jamessynge): Determine the performance impact of different types for
// the elements of this array (i.e. a larger type uses more cache, yet might
// better on some architectures).
const uint8_t kInvalidCanonical = 255;
// Maps from length of a code to the first 'canonical symbol' with that length.
const uint8_t kLengthToFirstCanonical[] = {
kInvalidCanonical, // Length 0, 0 codes.
kInvalidCanonical, // Length 1, 0 codes.
kInvalidCanonical, // Length 2, 0 codes.
kInvalidCanonical, // Length 3, 0 codes.
kInvalidCanonical, // Length 4, 0 codes.
0, // Length 5, 10 codes.
10, // Length 6, 26 codes.
36, // Length 7, 32 codes.
68, // Length 8, 6 codes.
kInvalidCanonical, // Length 9, 0 codes.
74, // Length 10, 5 codes.
79, // Length 11, 3 codes.
82, // Length 12, 2 codes.
84, // Length 13, 6 codes.
90, // Length 14, 2 codes.
92, // Length 15, 3 codes.
kInvalidCanonical, // Length 16, 0 codes.
kInvalidCanonical, // Length 17, 0 codes.
kInvalidCanonical, // Length 18, 0 codes.
95, // Length 19, 3 codes.
98, // Length 20, 8 codes.
106, // Length 21, 13 codes.
119, // Length 22, 26 codes.
145, // Length 23, 29 codes.
174, // Length 24, 12 codes.
186, // Length 25, 4 codes.
190, // Length 26, 15 codes.
205, // Length 27, 19 codes.
224, // Length 28, 29 codes.
kInvalidCanonical, // Length 29, 0 codes.
253, // Length 30, 4 codes.
};
// Mapping from canonical symbol (0 to 255) to actual symbol.
// clang-format off
const uint8_t kCanonicalToSymbol[] = {
'0', '1', '2', 'a', 'c', 'e', 'i', 'o',
's', 't', 0x20, '%', '-', '.', '/', '3',
'4', '5', '6', '7', '8', '9', '=', 'A',
'_', 'b', 'd', 'f', 'g', 'h', 'l', 'm',
'n', 'p', 'r', 'u', ':', 'B', 'C', 'D',
'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T',
'U', 'V', 'W', 'Y', 'j', 'k', 'q', 'v',
'w', 'x', 'y', 'z', '&', '*', ',', ';',
'X', 'Z', '!', '\"', '(', ')', '?', '\'',
'+', '|', '#', '>', 0x00, '$', '@', '[',
']', '~', '^', '}', '<', '`', '{', '\\',
0xc3, 0xd0, 0x80, 0x82, 0x83, 0xa2, 0xb8, 0xc2,
0xe0, 0xe2, 0x99, 0xa1, 0xa7, 0xac, 0xb0, 0xb1,
0xb3, 0xd1, 0xd8, 0xd9, 0xe3, 0xe5, 0xe6, 0x81,
0x84, 0x85, 0x86, 0x88, 0x92, 0x9a, 0x9c, 0xa0,
0xa3, 0xa4, 0xa9, 0xaa, 0xad, 0xb2, 0xb5, 0xb9,
0xba, 0xbb, 0xbd, 0xbe, 0xc4, 0xc6, 0xe4, 0xe8,
0xe9, 0x01, 0x87, 0x89, 0x8a, 0x8b, 0x8c, 0x8d,
0x8f, 0x93, 0x95, 0x96, 0x97, 0x98, 0x9b, 0x9d,
0x9e, 0xa5, 0xa6, 0xa8, 0xae, 0xaf, 0xb4, 0xb6,
0xb7, 0xbc, 0xbf, 0xc5, 0xe7, 0xef, 0x09, 0x8e,
0x90, 0x91, 0x94, 0x9f, 0xab, 0xce, 0xd7, 0xe1,
0xec, 0xed, 0xc7, 0xcf, 0xea, 0xeb, 0xc0, 0xc1,
0xc8, 0xc9, 0xca, 0xcd, 0xd2, 0xd5, 0xda, 0xdb,
0xee, 0xf0, 0xf2, 0xf3, 0xff, 0xcb, 0xcc, 0xd3,
0xd4, 0xd6, 0xdd, 0xde, 0xdf, 0xf1, 0xf4, 0xf5,
0xf6, 0xf7, 0xf8, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe,
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x0b,
0x0c, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14,
0x15, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d,
0x1e, 0x1f, 0x7f, 0xdc, 0xf9, 0x0a, 0x0d, 0x16,
};
// clang-format on
#if DCHECK_IS_ON()
// Only used in DLOG.
bool IsEOSPrefix(HuffmanWord bits, HuffmanCodeLength bits_available) {
if (bits_available == 0) {
return true;
}
// We expect all the bits below the high order |bits_available| bits
// to be cleared.
HuffmanWord expected = HuffmanWord(0xffffffff) << (32 - bits_available);
return bits == expected;
}
#endif // DCHECK_IS_ON()
} // namespace
// TODO(jamessynge): Should we read these magic numbers from
// kLengthToFirstLJCode? Would that reduce cache consumption? Slow decoding?
// TODO(jamessynge): Is this being inlined by the compiler? Should we inline
// into DecodeString the tests for code lengths 5 through 8 (> 99% of codes
// according to the HPACK spec)?
HpackHuffmanDecoder::HuffmanCodeLength HpackHuffmanDecoder::CodeLengthOfPrefix(
HpackHuffmanDecoder::HuffmanWord value) {
HuffmanCodeLength length;
if (value < 0xb8000000) {
if (value < 0x50000000) {
length = 5;
} else {
length = 6;
}
} else {
if (value < 0xfe000000) {
if (value < 0xf8000000) {
length = 7;
} else {
length = 8;
}
} else {
if (value < 0xffc00000) {
if (value < 0xffa00000) {
if (value < 0xff400000) {
length = 10;
} else {
length = 11;
}
} else {
length = 12;
}
} else {
if (value < 0xfffe0000) {
if (value < 0xfff80000) {
if (value < 0xfff00000) {
length = 13;
} else {
length = 14;
}
} else {
length = 15;
}
} else {
if (value < 0xffff4800) {
if (value < 0xfffee000) {
if (value < 0xfffe6000) {
length = 19;
} else {
length = 20;
}
} else {
length = 21;
}
} else {
if (value < 0xffffea00) {
if (value < 0xffffb000) {
length = 22;
} else {
length = 23;
}
} else {
if (value < 0xfffffbc0) {
if (value < 0xfffff800) {
if (value < 0xfffff600) {
length = 24;
} else {
length = 25;
}
} else {
length = 26;
}
} else {
if (value < 0xfffffff0) {
if (value < 0xfffffe20) {
length = 27;
} else {
length = 28;
}
} else {
length = 30;
}
}
}
}
}
}
}
}
return length;
}
HuffmanWord HpackHuffmanDecoder::DecodeToCanonical(
HuffmanCodeLength code_length,
HuffmanWord bits) {
DCHECK_LE(kMinCodeLength, code_length);
DCHECK_LE(code_length, kMaxCodeLength);
// What is the first left-justified code of length |code_length|?
HuffmanWord first_lj_code = kLengthToFirstLJCode[code_length];
DCHECK_NE(kInvalidLJCode, first_lj_code);
// Which canonical symbol corresponds to the high order |code_length|
// bits of |first_lj_code|?
HuffmanWord first_canonical = kLengthToFirstCanonical[code_length];
DCHECK_NE(kInvalidCanonical, first_canonical);
// What is the position of the canonical symbol being decoded within
// the canonical symbols of length |code_length|?
HuffmanWord ordinal_in_length =
((bits - first_lj_code) >> (kHuffmanWordLength - code_length));
// Combined these two to produce the position of the canonical symbol
// being decoded within all of the canonical symbols.
return first_canonical + ordinal_in_length;
}
char HpackHuffmanDecoder::CanonicalToSource(HuffmanWord canonical) {
DCHECK_LT(canonical, 256u);
return static_cast<char>(kCanonicalToSymbol[canonical]);
}
// TODO(jamessynge): Maybe further refactorings, including just passing in a
// SpdyStringPiece instead of an HpackInputStream, thus avoiding the PeekBits
// calls, and also allowing us to separate the code into portions dealing with
// long strings, and a later portion dealing with the last few bytes of strings.
// TODO(jamessynge): Determine if that is worth it by adding some counters to
// measure the distribution of string sizes seen in practice.
bool HpackHuffmanDecoder::DecodeString(HpackInputStream* in, std::string* out) {
out->clear();
// Load |bits| with the leading bits of the input stream, left justified
// (i.e. the bits of the first byte are the high-order bits of |bits|,
// and the bits of the fourth byte are the low-order bits of |bits|).
// |peeked_success| if there are more bits in |*in| (i.e. the encoding
// of the string to be decoded is more than 4 bytes).
auto bits_available_and_bits = in->InitializePeekBits();
HuffmanCodeLength bits_available = bits_available_and_bits.first;
HuffmanWord bits = bits_available_and_bits.second;
// |peeked_success| tracks whether the previous PeekBits call was able to
// store any new bits into |bits|. For the first pass through the loop below
// the value false is appropriate:
// If we have 32 bits (i.e. the input has at least 4 bytes), then:
// |peeked_sucess| is not examined because |code_length| is
// at most 30 in the HPACK Huffman Code.
// If we have at most 24 bits (i.e. the input has at most 3 bytes), then:
// It is possible that the very first |code_length| is greater than
// |bits_available|, in which case we need to read peeked_success to
// determine whether we should try to read more input, or have already
// loaded |bits| with the final bits of the input.
// After the first loop |peeked_success| has been set by a call to PeekBits.
bool peeked_success = false;
while (true) {
const HuffmanCodeLength code_length = CodeLengthOfPrefix(bits);
DCHECK_LE(kMinCodeLength, code_length);
DCHECK_LE(code_length, kMaxCodeLength);
DVLOG(2) << "bits: 0b" << std::bitset<32>(bits)
<< " (avail=" << bits_available << ")"
<< " prefix length: " << code_length
<< (code_length > bits_available ? " *****" : "");
if (code_length > bits_available) {
if (!peeked_success) {
// Unable to read enough input for a match. If only a portion of
// the last byte remains, this is a successful EOS condition.
// Note that this does NOT check whether the available bits are all
// set to 1, which the encoder is required to set at EOS, and the
// decoder is required to check.
// TODO(jamessynge): Discuss whether we should enforce this check,
// as required by the RFC, presumably flag guarded so that we can
// disable it should it occur a lot. From my testing it appears that
// our encoder may be doing this wrong. Sigh.
// TODO(jamessynge): Add a counter for how often the remaining bits
// are non-zero.
in->ConsumeByteRemainder();
DLOG_IF(WARNING,
(in->HasMoreData() || !IsEOSPrefix(bits, bits_available)))
<< "bits: 0b" << std::bitset<32>(bits)
<< " (avail=" << bits_available << ")"
<< " prefix length: " << code_length
<< " HasMoreData: " << in->HasMoreData();
return !in->HasMoreData();
}
// We're dealing with a long code. It *might* be useful to add a special
// method to HpackInputStream for getting more than "at most 8" bits
// at a time.
do {
peeked_success = in->PeekBits(&bits_available, &bits);
} while (peeked_success && bits_available < 32);
} else {
// Convert from the prefix code of length |code_length| to the
// canonical symbol (i.e. where the input symbols (bytes) are ordered by
// increasing code length and then by their increasing uint8 value).
HuffmanWord canonical = DecodeToCanonical(code_length, bits);
bits = bits << code_length;
bits_available -= code_length;
in->ConsumeBits(code_length);
if (canonical < 256) {
out->push_back(CanonicalToSource(canonical));
} else {
// Encoder is not supposed to explicity encode the EOS symbol (30
// 1-bits).
// TODO(jamessynge): Discuss returning false here, as required by HPACK.
DCHECK(false) << "EOS explicitly encoded!\n"
<< "bits: 0b" << std::bitset<32>(bits)
<< " (avail=" << bits_available << ")"
<< " prefix length: " << code_length
<< " canonical: " << canonical;
}
// Get some more bits for decoding (up to 8). |peeked_success| is true
// if we got any bits.
peeked_success = in->PeekBits(&bits_available, &bits);
}
DLOG_IF(WARNING, (VLOG_IS_ON(2) && bits_available < 32 && !peeked_success))
<< "no more peeking possible";
}
}
} // namespace net