blob: 91fde2fbcd05a5c1449602b7208b4959fab6e85a [file] [log] [blame]
//===- lld/Core/Parallel.h - Parallel utilities ---------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_CORE_PARALLEL_H
#define LLD_CORE_PARALLEL_H
#include "lld/Core/Instrumentation.h"
#include "lld/Core/LLVM.h"
#include "lld/Core/range.h"
#include "llvm/Support/MathExtras.h"
#ifdef _MSC_VER
// concrt.h depends on eh.h for __uncaught_exception declaration
// even if we disable exceptions.
#include <eh.h>
#endif
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <stack>
#ifdef _MSC_VER
#include <concrt.h>
#include <ppl.h>
#endif
namespace lld {
/// \brief Allows one or more threads to wait on a potentially unknown number of
/// events.
///
/// A latch starts at \p count. inc() increments this, and dec() decrements it.
/// All calls to sync() will block while the count is not 0.
///
/// Calling dec() on a Latch with a count of 0 has undefined behaivor.
class Latch {
uint32_t _count;
mutable std::mutex _condMut;
mutable std::condition_variable _cond;
public:
explicit Latch(uint32_t count = 0) : _count(count) {}
~Latch() { sync(); }
void inc() {
std::unique_lock<std::mutex> lock(_condMut);
++_count;
}
void dec() {
std::unique_lock<std::mutex> lock(_condMut);
if (--_count == 0)
_cond.notify_all();
}
void sync() const {
std::unique_lock<std::mutex> lock(_condMut);
_cond.wait(lock, [&] {
return _count == 0;
});
}
};
/// \brief An implementation of future. std::future and std::promise in
/// old libstdc++ have a threading bug; there is a small chance that a
/// call of future::get throws an exception in the normal use case.
/// We want to use our own future implementation until we drop support
/// of old versions of libstdc++.
/// https://gcc.gnu.org/ml/gcc-patches/2014-05/msg01389.html
template<typename T> class Future {
public:
Future() : _hasValue(false) {}
void set(T &&val) {
assert(!_hasValue);
{
std::unique_lock<std::mutex> lock(_mutex);
_val = val;
_hasValue = true;
}
_cond.notify_all();
}
T &get() {
std::unique_lock<std::mutex> lock(_mutex);
if (_hasValue)
return _val;
_cond.wait(lock, [&] { return _hasValue; });
return _val;
}
private:
T _val;
bool _hasValue;
std::mutex _mutex;
std::condition_variable _cond;
};
// Classes in this namespace are implementation details of this header.
namespace internal {
/// \brief An abstract class that takes closures and runs them asynchronously.
class Executor {
public:
virtual ~Executor() {}
virtual void add(std::function<void()> func) = 0;
};
#if !defined(LLVM_ENABLE_THREADS) || LLVM_ENABLE_THREADS == 0
class SyncExecutor : public Executor {
public:
virtual void add(std::function<void()> func) {
func();
}
};
inline Executor *getDefaultExecutor() {
static SyncExecutor exec;
return &exec;
}
#elif defined(_MSC_VER)
/// \brief An Executor that runs tasks via ConcRT.
class ConcRTExecutor : public Executor {
struct Taskish {
Taskish(std::function<void()> task) : _task(task) {}
std::function<void()> _task;
static void run(void *p) {
Taskish *self = static_cast<Taskish *>(p);
self->_task();
concurrency::Free(self);
}
};
public:
virtual void add(std::function<void()> func) {
Concurrency::CurrentScheduler::ScheduleTask(Taskish::run,
new (concurrency::Alloc(sizeof(Taskish))) Taskish(func));
}
};
inline Executor *getDefaultExecutor() {
static ConcRTExecutor exec;
return &exec;
}
#else
/// \brief An implementation of an Executor that runs closures on a thread pool
/// in filo order.
class ThreadPoolExecutor : public Executor {
public:
explicit ThreadPoolExecutor(unsigned threadCount =
std::thread::hardware_concurrency())
: _stop(false), _done(threadCount) {
// Spawn all but one of the threads in another thread as spawning threads
// can take a while.
std::thread([&, threadCount] {
for (std::size_t i = 1; i < threadCount; ++i) {
std::thread([=] {
work();
}).detach();
}
work();
}).detach();
}
~ThreadPoolExecutor() {
std::unique_lock<std::mutex> lock(_mutex);
_stop = true;
lock.unlock();
_cond.notify_all();
// Wait for ~Latch.
}
void add(std::function<void()> f) override {
std::unique_lock<std::mutex> lock(_mutex);
_workStack.push(f);
lock.unlock();
_cond.notify_one();
}
private:
void work() {
while (true) {
std::unique_lock<std::mutex> lock(_mutex);
_cond.wait(lock, [&] {
return _stop || !_workStack.empty();
});
if (_stop)
break;
auto task = _workStack.top();
_workStack.pop();
lock.unlock();
task();
}
_done.dec();
}
std::atomic<bool> _stop;
std::stack<std::function<void()>> _workStack;
std::mutex _mutex;
std::condition_variable _cond;
Latch _done;
};
inline Executor *getDefaultExecutor() {
static ThreadPoolExecutor exec;
return &exec;
}
#endif
} // namespace internal
/// \brief Allows launching a number of tasks and waiting for them to finish
/// either explicitly via sync() or implicitly on destruction.
class TaskGroup {
Latch _latch;
public:
void spawn(std::function<void()> f) {
_latch.inc();
internal::getDefaultExecutor()->add([&, f] {
f();
_latch.dec();
});
}
void sync() const { _latch.sync(); }
};
#if !defined(LLVM_ENABLE_THREADS) || LLVM_ENABLE_THREADS == 0
template <class RandomAccessIterator, class Comp>
void parallel_sort(
RandomAccessIterator start, RandomAccessIterator end,
const Comp &comp = std::less<
typename std::iterator_traits<RandomAccessIterator>::value_type>()) {
std::sort(start, end, comp);
}
#elif defined(_MSC_VER)
// Use ppl parallel_sort on Windows.
template <class RandomAccessIterator, class Comp>
void parallel_sort(
RandomAccessIterator start, RandomAccessIterator end,
const Comp &comp = std::less<
typename std::iterator_traits<RandomAccessIterator>::value_type>()) {
concurrency::parallel_sort(start, end, comp);
}
#else
namespace detail {
const ptrdiff_t minParallelSize = 1024;
/// \brief Inclusive median.
template <class RandomAccessIterator, class Comp>
RandomAccessIterator medianOf3(RandomAccessIterator start,
RandomAccessIterator end, const Comp &comp) {
RandomAccessIterator mid = start + (std::distance(start, end) / 2);
return comp(*start, *(end - 1))
? (comp(*mid, *(end - 1)) ? (comp(*start, *mid) ? mid : start)
: end - 1)
: (comp(*mid, *start) ? (comp(*(end - 1), *mid) ? mid : end - 1)
: start);
}
template <class RandomAccessIterator, class Comp>
void parallel_quick_sort(RandomAccessIterator start, RandomAccessIterator end,
const Comp &comp, TaskGroup &tg, size_t depth) {
// Do a sequential sort for small inputs.
if (std::distance(start, end) < detail::minParallelSize || depth == 0) {
std::sort(start, end, comp);
return;
}
// Partition.
auto pivot = medianOf3(start, end, comp);
// Move pivot to end.
std::swap(*(end - 1), *pivot);
pivot = std::partition(start, end - 1, [&comp, end](decltype(*start) v) {
return comp(v, *(end - 1));
});
// Move pivot to middle of partition.
std::swap(*pivot, *(end - 1));
// Recurse.
tg.spawn([=, &comp, &tg] {
parallel_quick_sort(start, pivot, comp, tg, depth - 1);
});
parallel_quick_sort(pivot + 1, end, comp, tg, depth - 1);
}
}
template <class RandomAccessIterator, class Comp>
void parallel_sort(
RandomAccessIterator start, RandomAccessIterator end,
const Comp &comp = std::less<
typename std::iterator_traits<RandomAccessIterator>::value_type>()) {
TaskGroup tg;
detail::parallel_quick_sort(start, end, comp, tg,
llvm::Log2_64(std::distance(start, end)) + 1);
}
#endif
template <class T> void parallel_sort(T *start, T *end) {
parallel_sort(start, end, std::less<T>());
}
#if !defined(LLVM_ENABLE_THREADS) || LLVM_ENABLE_THREADS == 0
template <class Iterator, class Func>
void parallel_for_each(Iterator begin, Iterator end, Func func) {
std::for_each(begin, end, func);
}
#elif defined(_MSC_VER)
// Use ppl parallel_for_each on Windows.
template <class Iterator, class Func>
void parallel_for_each(Iterator begin, Iterator end, Func func) {
concurrency::parallel_for_each(begin, end, func);
}
#else
template <class Iterator, class Func>
void parallel_for_each(Iterator begin, Iterator end, Func func) {
TaskGroup tg;
ptrdiff_t taskSize = 1024;
while (taskSize <= std::distance(begin, end)) {
tg.spawn([=, &func] { std::for_each(begin, begin + taskSize, func); });
begin += taskSize;
}
std::for_each(begin, end, func);
}
#endif
} // end namespace lld
#endif