blob: 430e1628509bb3da875b7ad5e3389b2ae3786b5c [file] [log] [blame]
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TYPED_CONSTRAINT_H
#define TYPED_CONSTRAINT_H
class btRigidBody;
#include "LinearMath/btScalar.h"
#include "btSolverConstraint.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
struct btSolverBody;
enum btTypedConstraintType
{
POINT2POINT_CONSTRAINT_TYPE=MAX_CONTACT_MANIFOLD_TYPE+1,
HINGE_CONSTRAINT_TYPE,
CONETWIST_CONSTRAINT_TYPE,
D6_CONSTRAINT_TYPE,
SLIDER_CONSTRAINT_TYPE,
CONTACT_CONSTRAINT_TYPE
};
///TypedConstraint is the baseclass for Bullet constraints and vehicles
class btTypedConstraint : public btTypedObject
{
int m_userConstraintType;
int m_userConstraintId;
bool m_needsFeedback;
btTypedConstraint& operator=(btTypedConstraint& other)
{
btAssert(0);
(void) other;
return *this;
}
protected:
btRigidBody& m_rbA;
btRigidBody& m_rbB;
btScalar m_appliedImpulse;
btScalar m_dbgDrawSize;
btVector3 m_appliedLinearImpulse;
btVector3 m_appliedAngularImpulseA;
btVector3 m_appliedAngularImpulseB;
public:
btTypedConstraint(btTypedConstraintType type);
virtual ~btTypedConstraint() {};
btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA);
btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA,btRigidBody& rbB);
struct btConstraintInfo1 {
int m_numConstraintRows,nub;
};
struct btConstraintInfo2 {
// integrator parameters: frames per second (1/stepsize), default error
// reduction parameter (0..1).
btScalar fps,erp;
// for the first and second body, pointers to two (linear and angular)
// n*3 jacobian sub matrices, stored by rows. these matrices will have
// been initialized to 0 on entry. if the second body is zero then the
// J2xx pointers may be 0.
btScalar *m_J1linearAxis,*m_J1angularAxis,*m_J2linearAxis,*m_J2angularAxis;
// elements to jump from one row to the next in J's
int rowskip;
// right hand sides of the equation J*v = c + cfm * lambda. cfm is the
// "constraint force mixing" vector. c is set to zero on entry, cfm is
// set to a constant value (typically very small or zero) value on entry.
btScalar *m_constraintError,*cfm;
// lo and hi limits for variables (set to -/+ infinity on entry).
btScalar *m_lowerLimit,*m_upperLimit;
// findex vector for variables. see the LCP solver interface for a
// description of what this does. this is set to -1 on entry.
// note that the returned indexes are relative to the first index of
// the constraint.
int *findex;
// number of solver iterations
int m_numIterations;
};
///internal method used by the constraint solver, don't use them directly
virtual void buildJacobian() = 0;
///internal method used by the constraint solver, don't use them directly
virtual void setupSolverConstraint(btConstraintArray& ca, int solverBodyA,int solverBodyB, btScalar timeStep)
{
}
///internal method used by the constraint solver, don't use them directly
virtual void getInfo1 (btConstraintInfo1* info)=0;
///internal method used by the constraint solver, don't use them directly
virtual void getInfo2 (btConstraintInfo2* info)=0;
///internal method used by the constraint solver, don't use them directly
void internalSetAppliedImpulse(btScalar appliedImpulse)
{
m_appliedImpulse = appliedImpulse;
}
///internal method used by the constraint solver, don't use them directly
virtual void solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep) = 0;
///internal method used by the constraint solver, don't use them directly
btScalar getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact);
const btRigidBody& getRigidBodyA() const
{
return m_rbA;
}
const btRigidBody& getRigidBodyB() const
{
return m_rbB;
}
btRigidBody& getRigidBodyA()
{
return m_rbA;
}
btRigidBody& getRigidBodyB()
{
return m_rbB;
}
int getUserConstraintType() const
{
return m_userConstraintType ;
}
void setUserConstraintType(int userConstraintType)
{
m_userConstraintType = userConstraintType;
};
void setUserConstraintId(int uid)
{
m_userConstraintId = uid;
}
int getUserConstraintId() const
{
return m_userConstraintId;
}
int getUid() const
{
return m_userConstraintId;
}
bool needsFeedback() const
{
return m_needsFeedback;
}
///enableFeedback will allow to read the applied linear and angular impulse
///use getAppliedImpulse, getAppliedLinearImpulse and getAppliedAngularImpulse to read feedback information
void enableFeedback(bool needsFeedback)
{
m_needsFeedback = needsFeedback;
}
///getAppliedImpulse is an estimated total applied impulse.
///This feedback could be used to determine breaking constraints or playing sounds.
btScalar getAppliedImpulse() const
{
btAssert(m_needsFeedback);
return m_appliedImpulse;
}
const btVector3& getAppliedLinearImpulse() const
{
btAssert(m_needsFeedback);
return m_appliedLinearImpulse;
}
btVector3& getAppliedLinearImpulse()
{
btAssert(m_needsFeedback);
return m_appliedLinearImpulse;
}
const btVector3& getAppliedAngularImpulseA() const
{
btAssert(m_needsFeedback);
return m_appliedAngularImpulseA;
}
btVector3& getAppliedAngularImpulseA()
{
btAssert(m_needsFeedback);
return m_appliedAngularImpulseA;
}
const btVector3& getAppliedAngularImpulseB() const
{
btAssert(m_needsFeedback);
return m_appliedAngularImpulseB;
}
btVector3& getAppliedAngularImpulseB()
{
btAssert(m_needsFeedback);
return m_appliedAngularImpulseB;
}
btTypedConstraintType getConstraintType () const
{
return btTypedConstraintType(m_objectType);
}
void setDbgDrawSize(btScalar dbgDrawSize)
{
m_dbgDrawSize = dbgDrawSize;
}
btScalar getDbgDrawSize()
{
return m_dbgDrawSize;
}
};
// returns angle in range [-SIMD_2_PI, SIMD_2_PI], closest to one of the limits
// all arguments should be normalized angles (i.e. in range [-SIMD_PI, SIMD_PI])
SIMD_FORCE_INLINE btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScalar angleLowerLimitInRadians, btScalar angleUpperLimitInRadians)
{
if(angleLowerLimitInRadians >= angleUpperLimitInRadians)
{
return angleInRadians;
}
else if(angleInRadians < angleLowerLimitInRadians)
{
btScalar diffLo = btNormalizeAngle(angleLowerLimitInRadians - angleInRadians); // this is positive
btScalar diffHi = btFabs(btNormalizeAngle(angleUpperLimitInRadians - angleInRadians));
return (diffLo < diffHi) ? angleInRadians : (angleInRadians + SIMD_2_PI);
}
else if(angleInRadians > angleUpperLimitInRadians)
{
btScalar diffHi = btNormalizeAngle(angleInRadians - angleUpperLimitInRadians); // this is positive
btScalar diffLo = btFabs(btNormalizeAngle(angleInRadians - angleLowerLimitInRadians));
return (diffLo < diffHi) ? (angleInRadians - SIMD_2_PI) : angleInRadians;
}
else
{
return angleInRadians;
}
}
#endif //TYPED_CONSTRAINT_H