blob: 58994f2db30c6b9a873f30478b549a91ef02bd61 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register offset) {
ASSERT_EQ(8, kPointerSize);
ASSERT_EQ(16, sizeof(StubCache::Entry));
// The offset register holds the entry offset times four (due to masking
// and shifting optimizations).
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
Label miss;
__ LoadAddress(kScratchRegister, key_offset);
// Check that the key in the entry matches the name.
// Multiply entry offset by 16 to get the entry address. Since the
// offset register already holds the entry offset times four, multiply
// by a further four.
__ cmpl(name, Operand(kScratchRegister, offset, times_4, 0));
__ j(not_equal, &miss);
// Get the code entry from the cache.
// Use key_offset + kPointerSize, rather than loading value_offset.
__ movq(kScratchRegister,
Operand(kScratchRegister, offset, times_4, kPointerSize));
// Check that the flags match what we're looking for.
__ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset));
__ and_(offset, Immediate(~Code::kFlagsNotUsedInLookup));
__ cmpl(offset, Immediate(flags));
__ j(not_equal, &miss);
// Jump to the first instruction in the code stub.
__ addq(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(kScratchRegister);
__ bind(&miss);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<String> name,
Register r0,
Register r1) {
ASSERT(name->IsSymbol());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ movq(r0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ testb(FieldOperand(r0, Map::kBitFieldOffset),
Immediate(kInterceptorOrAccessCheckNeededMask));
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(r0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = r0;
__ movq(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, miss_label);
Label done;
StringDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
r1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2) {
Isolate* isolate = masm->isolate();
Label miss;
USE(extra); // The register extra is not used on the X64 platform.
USE(extra2); // The register extra2 is not used on the X64 platform.
// Make sure that code is valid. The shifting code relies on the
// entry size being 16.
ASSERT(sizeof(Entry) == 16);
// Make sure the flags do not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
// Check scratch register is valid, extra and extra2 are unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ movl(scratch, FieldOperand(name, String::kHashFieldOffset));
// Use only the low 32 bits of the map pointer.
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, Immediate(flags));
__ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, name, scratch);
// Primary miss: Compute hash for secondary probe.
__ movl(scratch, FieldOperand(name, String::kHashFieldOffset));
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, Immediate(flags));
__ and_(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
__ subl(scratch, name);
__ addl(scratch, Immediate(flags));
__ and_(scratch, Immediate((kSecondaryTableSize - 1) << kHeapObjectTagSize));
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, name, scratch);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ movq(prototype,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
__ movq(prototype,
FieldOperand(prototype, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
__ movq(prototype, Operand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ movq(prototype,
FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm,
int index,
Register prototype,
Label* miss) {
Isolate* isolate = masm->isolate();
// Check we're still in the same context.
__ Move(prototype, isolate->global());
__ cmpq(Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)),
prototype);
__ j(not_equal, miss);
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(isolate->global_context()->get(index)));
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ movq(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ movq(rax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ movq(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ testl(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch1, miss,
support_wrappers ? &check_wrapper : miss);
// Load length directly from the string.
__ movq(rax, FieldOperand(receiver, String::kLengthOffset));
__ ret(0);
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmpl(scratch1, Immediate(JS_VALUE_TYPE));
__ j(not_equal, miss);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ movq(scratch2, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch2, scratch1, miss, miss);
__ movq(rax, FieldOperand(scratch2, String::kLengthOffset));
__ ret(0);
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register result,
Register scratch,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, result, miss_label);
if (!result.is(rax)) __ movq(rax, result);
__ ret(0);
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
Handle<JSObject> holder,
int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ movq(dst, FieldOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ movq(dst, FieldOperand(src, JSObject::kPropertiesOffset));
__ movq(dst, FieldOperand(dst, offset));
}
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
__ push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
__ Move(kScratchRegister, interceptor);
__ push(kScratchRegister);
__ push(receiver);
__ push(holder);
__ push(FieldOperand(kScratchRegister, InterceptorInfo::kDataOffset));
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
masm->isolate());
__ Set(rax, 5);
__ LoadAddress(rbx, ref);
CEntryStub stub(1);
__ CallStub(&stub);
}
// Number of pointers to be reserved on stack for fast API call.
static const int kFastApiCallArguments = 3;
// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : last argument in the internal frame of the caller
// -----------------------------------
__ movq(scratch, Operand(rsp, 0));
__ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
__ movq(Operand(rsp, 0), scratch);
__ Move(scratch, Smi::FromInt(0));
for (int i = 1; i <= kFastApiCallArguments; i++) {
__ movq(Operand(rsp, i * kPointerSize), scratch);
}
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- rsp[0] : return address.
// -- rsp[8] : last fast api call extra argument.
// -- ...
// -- rsp[kFastApiCallArguments * 8] : first fast api call extra argument.
// -- rsp[kFastApiCallArguments * 8 + 8] : last argument in the internal
// frame.
// -----------------------------------
__ movq(scratch, Operand(rsp, 0));
__ movq(Operand(rsp, kFastApiCallArguments * kPointerSize), scratch);
__ addq(rsp, Immediate(kPointerSize * kFastApiCallArguments));
}
// Generates call to API function.
static void GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : object passing the type check
// (last fast api call extra argument,
// set by CheckPrototypes)
// -- rsp[16] : api function
// (first fast api call extra argument)
// -- rsp[24] : api call data
// -- rsp[32] : last argument
// -- ...
// -- rsp[(argc + 3) * 8] : first argument
// -- rsp[(argc + 4) * 8] : receiver
// -----------------------------------
// Get the function and setup the context.
Handle<JSFunction> function = optimization.constant_function();
__ Move(rdi, function);
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Pass the additional arguments.
__ movq(Operand(rsp, 2 * kPointerSize), rdi);
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data(api_call_info->data());
if (masm->isolate()->heap()->InNewSpace(*call_data)) {
__ Move(rcx, api_call_info);
__ movq(rbx, FieldOperand(rcx, CallHandlerInfo::kDataOffset));
__ movq(Operand(rsp, 3 * kPointerSize), rbx);
} else {
__ Move(Operand(rsp, 3 * kPointerSize), call_data);
}
// Prepare arguments.
__ lea(rbx, Operand(rsp, 3 * kPointerSize));
#ifdef _WIN64
// Win64 uses first register--rcx--for returned value.
Register arguments_arg = rdx;
#else
Register arguments_arg = rdi;
#endif
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
__ PrepareCallApiFunction(kApiStackSpace);
__ movq(StackSpaceOperand(0), rbx); // v8::Arguments::implicit_args_.
__ addq(rbx, Immediate(argc * kPointerSize));
__ movq(StackSpaceOperand(1), rbx); // v8::Arguments::values_.
__ Set(StackSpaceOperand(2), argc); // v8::Arguments::length_.
// v8::Arguments::is_construct_call_.
__ Set(StackSpaceOperand(3), 0);
// v8::InvocationCallback's argument.
__ lea(arguments_arg, StackSpaceOperand(0));
// Function address is a foreign pointer outside V8's heap.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
__ CallApiFunctionAndReturn(function_address,
argc + kFastApiCallArguments + 1);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
Code::ExtraICState extra_ic_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_ic_state_(extra_ic_state) {}
void Compile(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
CompileCacheable(masm, object, receiver, scratch1, scratch2, scratch3,
holder, lookup, name, optimization, miss);
} else {
CompileRegular(masm, object, receiver, scratch1, scratch2, scratch3,
name, holder, miss);
}
}
private:
void CompileCacheable(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<String> name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 = optimization.GetPrototypeDepthOfExpectedType(
object, interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 = optimization.GetPrototypeDepthOfExpectedType(
interceptor_holder, Handle<JSObject>(lookup->holder()));
}
can_do_fast_api_call =
depth1 != kInvalidProtoDepth || depth2 != kInvalidProtoDepth;
}
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->call_const_interceptor(), 1);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (*interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
Handle<JSObject>(lookup->holder()),
scratch1, scratch2, scratch3,
name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
GenerateFastApiCall(masm, optimization, arguments_.immediate());
} else {
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm, scratch1);
__ jmp(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
}
void CompileRegular(MacroAssembler* masm,
Handle<JSObject> object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<String> name,
Handle<JSObject> interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss_label);
FrameScope scope(masm, StackFrame::INTERNAL);
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm, receiver, holder, name_, interceptor_holder);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
masm->isolate()),
5);
// Restore the name_ register.
__ pop(name_);
// Leave the internal frame.
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Handle<JSObject> holder_obj,
Label* interceptor_succeeded) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(holder); // Save the holder.
__ push(name_); // Save the name.
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
// Leave the internal frame.
}
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(not_equal, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
Code::ExtraICState extra_ic_state_;
};
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Handle<Code> code = (kind == Code::LOAD_IC)
? masm->isolate()->builtins()->LoadIC_Miss()
: masm->isolate()->builtins()->KeyedLoadIC_Miss();
__ Jump(code, RelocInfo::CODE_TARGET);
}
void StubCompiler::GenerateKeyedLoadMissForceGeneric(MacroAssembler* masm) {
Handle<Code> code =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ Jump(code, RelocInfo::CODE_TARGET);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
int index,
Handle<Map> transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver_reg, miss_label);
// Check that the map of the object hasn't changed.
__ Cmp(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Handle<Map>(object->map()));
__ j(not_equal, miss_label);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if (!transition.is_null() && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ pop(scratch); // Return address.
__ push(receiver_reg);
__ Push(transition);
__ push(rax);
__ push(scratch);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
if (!transition.is_null()) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ Move(FieldOperand(receiver_reg, HeapObject::kMapOffset), transition);
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ movq(FieldOperand(receiver_reg, offset), rax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movq(name_reg, rax);
__ RecordWriteField(
receiver_reg, offset, name_reg, scratch, kDontSaveFPRegs);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ movq(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ movq(FieldOperand(scratch, offset), rax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movq(name_reg, rax);
__ RecordWriteField(
scratch, offset, name_reg, receiver_reg, kDontSaveFPRegs);
}
// Return the value (register rax).
__ ret(0);
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
static void GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<GlobalObject> global,
Handle<String> name,
Register scratch,
Label* miss) {
Handle<JSGlobalPropertyCell> cell =
GlobalObject::EnsurePropertyCell(global, name);
ASSERT(cell->value()->IsTheHole());
__ Move(scratch, cell);
__ Cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset),
masm->isolate()->factory()->the_hole_value());
__ j(not_equal, miss);
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
static void GenerateCheckPropertyCells(MacroAssembler* masm,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
Register scratch,
Label* miss) {
Handle<JSObject> current = object;
while (!current.is_identical_to(holder)) {
if (current->IsGlobalObject()) {
GenerateCheckPropertyCell(masm,
Handle<GlobalObject>::cast(current),
name,
scratch,
miss);
}
current = Handle<JSObject>(JSObject::cast(current->GetPrototype()));
}
}
#undef __
#define __ ACCESS_MASM((masm()))
Register StubCompiler::CheckPrototypes(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<String> name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg. On the first
// iteration, reg is an alias for object_reg, on later iterations,
// it is an alias for holder_reg.
Register reg = object_reg;
int depth = 0;
if (save_at_depth == depth) {
__ movq(Operand(rsp, kPointerSize), object_reg);
}
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
Handle<JSObject> current = object;
while (!current.is_identical_to(holder)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
Handle<JSObject> prototype(JSObject::cast(current->GetPrototype()));
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
name = factory()->LookupSymbol(name);
}
ASSERT(current->property_dictionary()->FindEntry(*name) ==
StringDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
Handle<Map> current_map(current->map());
if (in_new_space) {
// Save the map in scratch1 for later.
__ movq(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
__ Cmp(scratch1, current_map);
} else {
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset), current_map);
}
// Branch on the result of the map check.
__ j(not_equal, miss);
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (in_new_space) {
// The prototype is in new space; we cannot store a reference to it
// in the code. Load it from the map.
__ movq(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
__ Move(reg, prototype);
}
}
if (save_at_depth == depth) {
__ movq(Operand(rsp, kPointerSize), reg);
}
// Go to the next object in the prototype chain.
current = prototype;
}
ASSERT(current.is_identical_to(holder));
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
// Check the holder map.
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle<Map>(holder->map()));
__ j(not_equal, miss);
// Perform security check for access to the global object.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// If we've skipped any global objects, it's not enough to verify that
// their maps haven't changed. We also need to check that the property
// cell for the property is still empty.
GenerateCheckPropertyCells(masm(), object, holder, name, scratch1, miss);
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check the prototype chain.
Register reg = CheckPrototypes(
object, receiver, holder, scratch1, scratch2, scratch3, name, miss);
// Get the value from the properties.
GenerateFastPropertyLoad(masm(), rax, reg, holder, index);
__ ret(0);
}
void StubCompiler::GenerateLoadCallback(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<AccessorInfo> callback,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg = CheckPrototypes(object, receiver, holder, scratch1,
scratch2, scratch3, name, miss);
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch2.is(reg));
__ pop(scratch2); // Get return address to place it below.
__ push(receiver); // receiver
__ push(reg); // holder
if (heap()->InNewSpace(callback->data())) {
__ Move(scratch1, callback);
__ push(FieldOperand(scratch1, AccessorInfo::kDataOffset)); // data
} else {
__ Push(Handle<Object>(callback->data()));
}
__ push(name_reg); // name
// Save a pointer to where we pushed the arguments pointer.
// This will be passed as the const AccessorInfo& to the C++ callback.
#ifdef _WIN64
// Win64 uses first register--rcx--for returned value.
Register accessor_info_arg = r8;
Register name_arg = rdx;
#else
Register accessor_info_arg = rsi;
Register name_arg = rdi;
#endif
ASSERT(!name_arg.is(scratch2));
__ movq(name_arg, rsp);
__ push(scratch2); // Restore return address.
// 3 elements array for v8::Agruments::values_ and handler for name.
const int kStackSpace = 4;
// Allocate v8::AccessorInfo in non-GCed stack space.
const int kArgStackSpace = 1;
__ PrepareCallApiFunction(kArgStackSpace);
__ lea(rax, Operand(name_arg, 3 * kPointerSize));
// v8::AccessorInfo::args_.
__ movq(StackSpaceOperand(0), rax);
// The context register (rsi) has been saved in PrepareCallApiFunction and
// could be used to pass arguments.
__ lea(accessor_info_arg, StackSpaceOperand(0));
Address getter_address = v8::ToCData<Address>(callback->getter());
__ CallApiFunctionAndReturn(getter_address, kStackSpace);
}
void StubCompiler::GenerateLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<Object> value,
Handle<String> name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
CheckPrototypes(
object, receiver, holder, scratch1, scratch2, scratch3, name, miss);
// Return the constant value.
__ Move(rax, value);
__ ret(0);
}
void StubCompiler::GenerateLoadInterceptor(Handle<JSObject> object,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Handle<String> name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsProperty() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo()) {
compile_followup_inline =
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
// CALLBACKS case needs a receiver to be passed into C++ callback.
__ push(receiver);
}
__ push(holder_reg);
__ push(name_reg);
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ pop(name_reg);
__ pop(holder_reg);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
__ pop(receiver);
}
// Leave the internal frame.
}
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into |holder| register.
if (*interceptor_holder != lookup->holder()) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
Handle<JSObject>(lookup->holder()),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), rax, holder_reg,
Handle<JSObject>(lookup->holder()),
lookup->GetFieldIndex());
__ ret(0);
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
Handle<AccessorInfo> callback(
AccessorInfo::cast(lookup->GetCallbackObject()));
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ pop(scratch2); // return address
__ push(receiver);
__ push(holder_reg);
__ Move(holder_reg, callback);
__ push(FieldOperand(holder_reg, AccessorInfo::kDataOffset));
__ push(holder_reg);
__ push(name_reg);
__ push(scratch2); // restore return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty),
isolate());
__ TailCallExternalReference(ref, 5, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
__ pop(scratch2); // save old return address
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
__ push(scratch2); // restore old return address
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForLoad), isolate());
__ TailCallExternalReference(ref, 5, 1);
}
}
void CallStubCompiler::GenerateNameCheck(Handle<String> name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ Cmp(rcx, name);
__ j(not_equal, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (!object.is_identical_to(holder)) {
__ JumpIfSmi(rdx, miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, rdx, holder, rbx, rax, rdi, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Label* miss) {
// Get the value from the cell.
__ Move(rdi, cell);
__ movq(rdi, FieldOperand(rdi, JSGlobalPropertyCell::kValueOffset));
// Check that the cell contains the same function.
if (heap()->InNewSpace(*function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(rdi, miss);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax);
__ j(not_equal, miss);
// Check the shared function info. Make sure it hasn't changed.
__ Move(rax, Handle<SharedFunctionInfo>(function->shared()));
__ cmpq(FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset), rax);
} else {
__ Cmp(rdi, function);
}
__ j(not_equal, miss);
}
void CallStubCompiler::GenerateMissBranch() {
Handle<Code> code =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_state_);
__ Jump(code, RelocInfo::CODE_TARGET);
}
Handle<Code> CallStubCompiler::CompileCallField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, rdx, holder, rbx, rax, rdi,
name, &miss);
GenerateFastPropertyLoad(masm(), rdi, reg, holder, index);
// Check that the function really is a function.
__ JumpIfSmi(rdi, &miss);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rbx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(rdi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> CallStubCompiler::CompileArrayPushCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rcx : name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) return Handle<Code>::null();
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), rdx, holder, rbx, rax, rdi,
name, &miss);
if (argc == 0) {
// Noop, return the length.
__ movq(rax, FieldOperand(rdx, JSArray::kLengthOffset));
__ ret((argc + 1) * kPointerSize);
} else {
Label call_builtin;
// Get the elements array of the object.
__ movq(rbx, FieldOperand(rdx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
factory()->fixed_array_map());
__ j(not_equal, &call_builtin);
if (argc == 1) { // Otherwise fall through to call builtin.
Label attempt_to_grow_elements, with_write_barrier;
// Get the array's length into rax and calculate new length.
__ SmiToInteger32(rax, FieldOperand(rdx, JSArray::kLengthOffset));
STATIC_ASSERT(FixedArray::kMaxLength < Smi::kMaxValue);
__ addl(rax, Immediate(argc));
// Get the element's length into rcx.
__ SmiToInteger32(rcx, FieldOperand(rbx, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmpl(rax, rcx);
__ j(greater, &attempt_to_grow_elements);
// Check if value is a smi.
__ movq(rcx, Operand(rsp, argc * kPointerSize));
__ JumpIfNotSmi(rcx, &with_write_barrier);
// Save new length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
// Push the element.
__ lea(rdx, FieldOperand(rbx,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ movq(Operand(rdx, 0), rcx);
__ Integer32ToSmi(rax, rax); // Return new length as smi.
__ ret((argc + 1) * kPointerSize);
__ bind(&with_write_barrier);
__ movq(rdi, FieldOperand(rdx, HeapObject::kMapOffset));
__ CheckFastObjectElements(rdi, &call_builtin);
// Save new length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rax);
// Push the element.
__ lea(rdx, FieldOperand(rbx,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ movq(Operand(rdx, 0), rcx);
__ RecordWrite(rbx, rdx, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Integer32ToSmi(rax, rax); // Return new length as smi.
__ ret((argc + 1) * kPointerSize);
__ bind(&attempt_to_grow_elements);
if (!FLAG_inline_new) {
__ jmp(&call_builtin);
}
__ movq(rdi, Operand(rsp, argc * kPointerSize));
// Growing elements that are SMI-only requires special handling in case
// the new element is non-Smi. For now, delegate to the builtin.
Label no_fast_elements_check;
__ JumpIfSmi(rdi, &no_fast_elements_check);
__ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ CheckFastObjectElements(rcx, &call_builtin, Label::kFar);
__ bind(&no_fast_elements_check);
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
const int kAllocationDelta = 4;
// Load top.
__ Load(rcx, new_space_allocation_top);
// Check if it's the end of elements.
__ lea(rdx, FieldOperand(rbx,
rax, times_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ cmpq(rdx, rcx);
__ j(not_equal, &call_builtin);
__ addq(rcx, Immediate(kAllocationDelta * kPointerSize));
Operand limit_operand =
masm()->ExternalOperand(new_space_allocation_limit);
__ cmpq(rcx, limit_operand);
__ j(above, &call_builtin);
// We fit and could grow elements.
__ Store(new_space_allocation_top, rcx);
// Push the argument...
__ movq(Operand(rdx, 0), rdi);
// ... and fill the rest with holes.
__ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < kAllocationDelta; i++) {
__ movq(Operand(rdx, i * kPointerSize), kScratchRegister);
}
// We know the elements array is in new space so we don't need the
// remembered set, but we just pushed a value onto it so we may have to
// tell the incremental marker to rescan the object that we just grew. We
// don't need to worry about the holes because they are in old space and
// already marked black.
__ RecordWrite(rbx, rdx, rdi, kDontSaveFPRegs, OMIT_REMEMBERED_SET);
// Restore receiver to rdx as finish sequence assumes it's here.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Increment element's and array's sizes.
__ SmiAddConstant(FieldOperand(rbx, FixedArray::kLengthOffset),
Smi::FromInt(kAllocationDelta));
// Make new length a smi before returning it.
__ Integer32ToSmi(rax, rax);
__ movq(FieldOperand(rdx, JSArray::kLengthOffset), rax);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush,
isolate()),
argc + 1,
1);
}
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileArrayPopCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rcx : name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || !cell.is_null()) return Handle<Code>::null();
Label miss, return_undefined, call_builtin;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), rdx, holder, rbx, rax, rdi,
name, &miss);
// Get the elements array of the object.
__ movq(rbx, FieldOperand(rdx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &call_builtin);
// Get the array's length into rcx and calculate new length.
__ SmiToInteger32(rcx, FieldOperand(rdx, JSArray::kLengthOffset));
__ subl(rcx, Immediate(1));
__ j(negative, &return_undefined);
// Get the last element.
__ LoadRoot(r9, Heap::kTheHoleValueRootIndex);
__ movq(rax, FieldOperand(rbx,
rcx, times_pointer_size,
FixedArray::kHeaderSize));
// Check if element is already the hole.
__ cmpq(rax, r9);
// If so, call slow-case to also check prototypes for value.
__ j(equal, &call_builtin);
// Set the array's length.
__ Integer32ToSmiField(FieldOperand(rdx, JSArray::kLengthOffset), rcx);
// Fill with the hole and return original value.
__ movq(FieldOperand(rbx,
rcx, times_pointer_size,
FixedArray::kHeaderSize),
r9);
__ ret((argc + 1) * kPointerSize);
__ bind(&return_undefined);
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret((argc + 1) * kPointerSize);
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPop, isolate()),
argc + 1,
1);
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringCharCodeAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
rax,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
rax, holder, rbx, rdx, rdi, name, &miss);
Register receiver = rbx;
Register index = rdi;
Register result = rax;
__ movq(receiver, Operand(rsp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ movq(index, Operand(rsp, (argc - 0) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharCodeAtGenerator generator(receiver,
index,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kNanValueRootIndex);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in rcx.
__ Move(rcx, name);
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringCharAtCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || !cell.is_null()) return Handle<Code>::null();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
rax,
&miss);
ASSERT(!object.is_identical_to(holder));
CheckPrototypes(Handle<JSObject>(JSObject::cast(object->GetPrototype())),
rax, holder, rbx, rdx, rdi, name, &miss);
Register receiver = rax;
Register index = rdi;
Register scratch = rdx;
Register result = rax;
__ movq(receiver, Operand(rsp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ movq(index, Operand(rsp, (argc - 0) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharAtGenerator generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(rax, Heap::kEmptyStringRootIndex);
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in rcx.
__ Move(rcx, name);
__ bind(&name_miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileStringFromCharCodeCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
const int argc = arguments().immediate();
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), rdx, holder, rbx, rax, rdi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = rbx;
__ movq(code, Operand(rsp, 1 * kPointerSize));
// Check the code is a smi.
Label slow;
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ SmiAndConstant(code, code, Smi::FromInt(0xffff));
StringCharFromCodeGenerator generator(code, rax);
generator.GenerateFast(masm());
__ ret(2 * kPointerSize);
StubRuntimeCallHelper call_helper;
generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
__ bind(&miss);
// rcx: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileMathFloorCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// TODO(872): implement this.
return Handle<Code>::null();
}
Handle<Code> CallStubCompiler::CompileMathAbsCall(
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rcx : function name
// -- rsp[0] : return address
// -- rsp[(argc - n) * 8] : arg[n] (zero-based)
// -- ...
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
const int argc = arguments().immediate();
if (!object->IsJSObject() || argc != 1) return Handle<Code>::null();
Label miss;
GenerateNameCheck(name, &miss);
if (cell.is_null()) {
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rdx, &miss);
CheckPrototypes(Handle<JSObject>::cast(object), rdx, holder, rbx, rax, rdi,
name, &miss);
} else {
ASSERT(cell->value() == *function);
GenerateGlobalReceiverCheck(Handle<JSObject>::cast(object), holder, name,
&miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into rax.
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(rax, &not_smi);
__ SmiToInteger32(rax, rax);
// Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0
// otherwise.
__ movl(rbx, rax);
__ sarl(rbx, Immediate(kBitsPerInt - 1));
// Do bitwise not or do nothing depending on ebx.
__ xorl(rax, rbx);
// Add 1 or do nothing depending on ebx.
__ subl(rax, rbx);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ j(negative, &slow);
// Smi case done.
__ Integer32ToSmi(rax, rax);
__ ret(2 * kPointerSize);
// Check if the argument is a heap number and load its value.
__ bind(&not_smi);
__ CheckMap(rax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
const int sign_mask_shift =
(HeapNumber::kExponentOffset - HeapNumber::kValueOffset) * kBitsPerByte;
__ movq(rdi, static_cast<int64_t>(HeapNumber::kSignMask) << sign_mask_shift,
RelocInfo::NONE);
__ testq(rbx, rdi);
__ j(not_zero, &negative_sign);
__ ret(2 * kPointerSize);
// If the argument is negative, clear the sign, and return a new
// number. We still have the sign mask in rdi.
__ bind(&negative_sign);
__ xor_(rbx, rdi);
__ AllocateHeapNumber(rax, rdx, &slow);
__ movq(FieldOperand(rax, HeapNumber::kValueOffset), rbx);
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
__ bind(&miss);
// rcx: function name.
GenerateMissBranch();
// Return the generated code.
return cell.is_null() ? GetCode(function) : GetCode(NORMAL, name);
}
Handle<Code> CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return Handle<Code>::null();
if (!cell.is_null()) return Handle<Code>::null();
if (!object->IsJSObject()) return Handle<Code>::null();
int depth = optimization.GetPrototypeDepthOfExpectedType(
Handle<JSObject>::cast(object), holder);
if (depth == kInvalidProtoDepth) return Handle<Code>::null();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(rdx, &miss_before_stack_reserved);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_const(), 1);
__ IncrementCounter(counters->call_const_fast_api(), 1);
// Allocate space for v8::Arguments implicit values. Must be initialized
// before calling any runtime function.
__ subq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(Handle<JSObject>::cast(object), rdx, holder, rbx, rax, rdi,
name, depth, &miss);
// Move the return address on top of the stack.
__ movq(rax, Operand(rsp, 3 * kPointerSize));
__ movq(Operand(rsp, 0 * kPointerSize), rax);
GenerateFastApiCall(masm(), optimization, argc);
__ bind(&miss);
__ addq(rsp, Immediate(kFastApiCallArguments * kPointerSize));
__ bind(&miss_before_stack_reserved);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallConstant(Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function,
Handle<String> name,
CheckType check) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder,
Handle<JSGlobalPropertyCell>::null(),
function, name);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(rdx, &miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
Counters* counters = isolate()->counters();
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(counters->call_const(), 1);
// Check that the maps haven't changed.
CheckPrototypes(Handle<JSObject>::cast(object), rdx, holder, rbx, rax,
rdi, name, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
break;
case STRING_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
// Check that the object is a two-byte string or a symbol.
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, rax);
__ j(above_equal, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, rax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
rax, holder, rbx, rdx, rdi, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
case NUMBER_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(rdx, &fast);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rax);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, rax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
rax, holder, rbx, rdx, rdi, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
case BOOLEAN_CHECK:
if (function->IsBuiltin() || !function->shared()->is_classic_mode()) {
Label fast;
// Check that the object is a boolean.
__ CompareRoot(rdx, Heap::kTrueValueRootIndex);
__ j(equal, &fast);
__ CompareRoot(rdx, Heap::kFalseValueRootIndex);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, rax, &miss);
CheckPrototypes(
Handle<JSObject>(JSObject::cast(object->GetPrototype())),
rax, holder, rbx, rdx, rdi, name, &miss);
} else {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
}
break;
}
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(function);
}
Handle<Code> CallStubCompiler::CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), rcx, extra_state_);
compiler.Compile(masm(), object, holder, name, &lookup, rdx, rbx, rdi, rax,
&miss);
// Restore receiver.
__ movq(rdx, Operand(rsp, (argc + 1) * kPointerSize));
// Check that the function really is a function.
__ JumpIfSmi(rax, &miss);
__ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Invoke the function.
__ movq(rdi, rax);
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(rdi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle load cache miss.
__ bind(&miss);
GenerateMissBranch();
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> CallStubCompiler::CompileCallGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name) {
// ----------- S t a t e -------------
// rcx : function name
// rsp[0] : return address
// rsp[8] : argument argc
// rsp[16] : argument argc - 1
// ...
// rsp[argc * 8] : argument 1
// rsp[(argc + 1) * 8] : argument 0 = receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
Handle<Code> code = CompileCustomCall(object, holder, cell, function, name);
// A null handle means bail out to the regular compiler code below.
if (!code.is_null()) return code;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy.
if (object->IsGlobalObject()) {
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalReceiverOffset));
__ movq(Operand(rsp, (argc + 1) * kPointerSize), rdx);
}
// Setup the context (function already in rdi).
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1);
ParameterCount expected(function->shared()->formal_parameter_count());
CallKind call_kind = CallICBase::Contextual::decode(extra_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
__ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ InvokeCode(rdx, expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(counters->call_global_inline_miss(), 1);
GenerateMissBranch();
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> StoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Generate store field code. Preserves receiver and name on jump to miss.
GenerateStoreField(masm(), object, index, transition, rdx, rcx, rbx, &miss);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name);
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<AccessorInfo> callback,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Check that the map of the object hasn't changed.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Handle<Map>(object->map()));
__ j(not_equal, &miss);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(rdx, rbx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ pop(rbx); // remove the return address
__ push(rdx); // receiver
__ Push(callback); // callback info
__ push(rcx); // name
__ push(rax); // value
__ push(rbx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
Handle<JSObject> receiver,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(rdx, &miss);
// Check that the map of the object hasn't changed.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Handle<Map>(receiver->map()));
__ j(not_equal, &miss);
// Perform global security token check if needed.
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(rdx, rbx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ pop(rbx); // remove the return address
__ push(rdx); // receiver
__ push(rcx); // name
__ push(rax); // value
__ Push(Smi::FromInt(strict_mode_));
__ push(rbx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate());
__ TailCallExternalReference(store_ic_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> StoreStubCompiler::CompileStoreGlobal(
Handle<GlobalObject> object,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : name
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Handle<Map>(object->map()));
__ j(not_equal, &miss);
// Compute the cell operand to use.
__ Move(rbx, cell);
Operand cell_operand = FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset);
// Check that the value in the cell is not the hole. If it is, this
// cell could have been deleted and reintroducing the global needs
// to update the property details in the property dictionary of the
// global object. We bail out to the runtime system to do that.
__ CompareRoot(cell_operand, Heap::kTheHoleValueRootIndex);
__ j(equal, &miss);
// Store the value in the cell.
__ movq(cell_operand, rax);
// Cells are always rescanned, so no write barrier here.
// Return the value (register rax).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_store_global_inline(), 1);
__ ret(0);
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(counters->named_store_global_inline_miss(), 1);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreField(Handle<JSObject> object,
int index,
Handle<Map> transition,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_store_field(), 1);
// Check that the name has not changed.
__ Cmp(rcx, name);
__ j(not_equal, &miss);
// Generate store field code. Preserves receiver and name on jump to miss.
GenerateStoreField(masm(), object, index, transition, rdx, rcx, rbx, &miss);
// Handle store cache miss.
__ bind(&miss);
__ DecrementCounter(counters->keyed_store_field(), 1);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition.is_null() ? FIELD : MAP_TRANSITION, name);
}
Handle<Code> KeyedStoreStubCompiler::CompileStoreElement(
Handle<Map> receiver_map) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
ElementsKind elements_kind = receiver_map->elements_kind();
bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
Handle<Code> stub =
KeyedStoreElementStub(is_js_array, elements_kind).GetCode();
__ DispatchMap(rdx, receiver_map, stub, DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string());
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ JumpIfSmi(rdx, &miss, Label::kNear);
__ movq(rdi, FieldOperand(rdx, HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
for (int i = 0; i < receiver_count; ++i) {
// Check map and tail call if there's a match
__ Cmp(rdi, receiver_maps->at(i));
if (transitioned_maps->at(i).is_null()) {
__ j(equal, handler_stubs->at(i), RelocInfo::CODE_TARGET);
} else {
Label next_map;
__ j(not_equal, &next_map, Label::kNear);
__ movq(rbx, transitioned_maps->at(i), RelocInfo::EMBEDDED_OBJECT);
__ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET);
__ bind(&next_map);
}
}
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC);
}
Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> last) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// Check that receiver is not a smi.
__ JumpIfSmi(rax, &miss);
// Check the maps of the full prototype chain. Also check that
// global property cells up to (but not including) the last object
// in the prototype chain are empty.
CheckPrototypes(object, rax, last, rbx, rdx, rdi, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
GenerateCheckPropertyCell(
masm(), Handle<GlobalObject>::cast(last), name, rdx, &miss);
}
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret(0);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, factory()->empty_string());
}
Handle<Code> LoadStubCompiler::CompileLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
int index,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadField(object, holder, rax, rbx, rdx, rdi, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> LoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadCallback(object, holder, rax, rcx, rdx, rbx, rdi, callback,
name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> LoadStubCompiler::CompileLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Object> value,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, rax, rbx, rdx, rdi, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Handle<Code> LoadStubCompiler::CompileLoadInterceptor(Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(receiver, holder, &lookup, rax, rcx, rdx, rbx, rdi,
name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> LoadStubCompiler::CompileLoadGlobal(
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<String> name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
Label miss;
// If the object is the holder then we know that it's a global
// object which can only happen for contextual loads. In this case,
// the receiver cannot be a smi.
if (!object.is_identical_to(holder)) {
__ JumpIfSmi(rax, &miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, rax, holder, rbx, rdx, rdi, name, &miss);
// Get the value from the cell.
__ Move(rbx, cell);
__ movq(rbx, FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ Check(not_equal, "DontDelete cells can't contain the hole");
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
__ movq(rax, rbx);
__ ret(0);
__ bind(&miss);
__ IncrementCounter(counters->named_load_global_stub_miss(), 1);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadField(Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
int index) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_field(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
GenerateLoadField(receiver, holder, rdx, rbx, rcx, rdi, index, name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_field(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadCallback(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<AccessorInfo> callback) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_callback(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
GenerateLoadCallback(receiver, holder, rdx, rax, rbx, rcx, rdi, callback,
name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_callback(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadConstant(
Handle<String> name,
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<Object> value) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_constant_function(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
GenerateLoadConstant(receiver, holder, rdx, rbx, rcx, rdi,
value, name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_constant_function(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadInterceptor(
Handle<JSObject> receiver,
Handle<JSObject> holder,
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_interceptor(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
LookupResult lookup(isolate());
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver, holder, &lookup, rdx, rax, rcx, rbx, rdi,
name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_interceptor(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadArrayLength(
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_array_length(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
GenerateLoadArrayLength(masm(), rdx, rcx, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_array_length(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadStringLength(
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_string_length(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
GenerateLoadStringLength(masm(), rdx, rcx, rbx, &miss, true);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_string_length(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadFunctionPrototype(
Handle<String> name) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_function_prototype(), 1);
// Check that the name has not changed.
__ Cmp(rax, name);
__ j(not_equal, &miss);
GenerateLoadFunctionPrototype(masm(), rdx, rcx, rbx, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_function_prototype(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadElement(
Handle<Map> receiver_map) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
ElementsKind elements_kind = receiver_map->elements_kind();
Handle<Code> stub = KeyedLoadElementStub(elements_kind).GetCode();
__ DispatchMap(rdx, receiver_map, stub, DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string());
}
Handle<Code> KeyedLoadStubCompiler::CompileLoadPolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_ics) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss;
__ JumpIfSmi(rdx, &miss);
Register map_reg = rbx;
__ movq(map_reg, FieldOperand(rdx, HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
for (int current = 0; current < receiver_count; ++current) {
// Check map and tail call if there's a match
__ Cmp(map_reg, receiver_maps->at(current));
__ j(equal, handler_ics->at(current), RelocInfo::CODE_TARGET);
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, factory()->empty_string(), MEGAMORPHIC);
}
// Specialized stub for constructing objects from functions which only have only
// simple assignments of the form this.x = ...; in their body.
Handle<Code> ConstructStubCompiler::CompileConstructStub(
Handle<JSFunction> function) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[4] : last argument
// -----------------------------------
Label generic_stub_call;
// Use r8 for holding undefined which is used in several places below.
__ Move(r8, factory()->undefined_value());
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kDebugInfoOffset));
__ cmpq(rbx, r8);
__ j(not_equal, &generic_stub_call);
#endif
// Load the initial map and verify that it is in fact a map.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(rbx, &generic_stub_call);
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ j(not_equal, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// rdi: constructor
// rbx: initial map
__ CmpInstanceType(rbx, JS_FUNCTION_TYPE);
__ Assert(not_equal, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject in new space.
// rdi: constructor
// rbx: initial map
__ movzxbq(rcx, FieldOperand(rbx, Map::kInstanceSizeOffset));
__ shl(rcx, Immediate(kPointerSizeLog2));
__ AllocateInNewSpace(rcx, rdx, rcx, no_reg,
&generic_stub_call, NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields and add the heap tag.
// rbx: initial map
// rdx: JSObject (untagged)
__ movq(Operand(rdx, JSObject::kMapOffset), rbx);
__ Move(rbx, factory()->empty_fixed_array());
__ movq(Operand(rdx, JSObject::kPropertiesOffset), rbx);
__ movq(Operand(rdx, JSObject::kElementsOffset), rbx);
// rax: argc
// rdx: JSObject (untagged)
// Load the address of the first in-object property into r9.
__ lea(r9, Operand(rdx, JSObject::kHeaderSize));
// Calculate the location of the first argument. The stack contains only the
// return address on top of the argc arguments.
__ lea(rcx, Operand(rsp, rax, times_pointer_size, 0));
// rax: argc
// rcx: first argument
// rdx: JSObject (untagged)
// r8: undefined
// r9: first in-object property of the JSObject
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
Handle<SharedFunctionInfo> shared(function->shared());
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
// Check if the argument assigned to the property is actually passed.
// If argument is not passed the property is set to undefined,
// otherwise find it on the stack.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ movq(rbx, r8);
__ cmpq(rax, Immediate(arg_number));
__ cmovq(above, rbx, Operand(rcx, arg_number * -kPointerSize));
// Store value in the property.
__ movq(Operand(r9, i * kPointerSize), rbx);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ Move(Operand(r9, i * kPointerSize), constant);
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ movq(Operand(r9, i * kPointerSize), r8);
}
// rax: argc
// rdx: JSObject (untagged)
// Move argc to rbx and the JSObject to return to rax and tag it.
__ movq(rbx, rax);
__ movq(rax, rdx);
__ or_(rax, Immediate(kHeapObjectTag));
// rax: JSObject
// rbx: argc
// Remove caller arguments and receiver from the stack and return.
__ pop(rcx);
__ lea(rsp, Operand(rsp, rbx, times_pointer_size, 1 * kPointerSize));
__ push(rcx);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
__ IncrementCounter(counters->constructed_objects_stub(), 1);
__ ret(0);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Handle<Code> code = isolate()->builtins()->JSConstructStubGeneric();
__ Jump(code, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(rax, &miss_force_generic);
__ SmiToInteger32(rbx, rax);
__ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check whether the elements is a number dictionary.
// rdx: receiver
// rax: key
// rbx: key as untagged int32
// rcx: elements
__ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax);
__ ret(0);
__ bind(&slow);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &miss_force_generic);
// Check that the index is in range.
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ SmiToInteger32(rcx, rax);
__ cmpq(rax, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &miss_force_generic);
// rax: index (as a smi)
// rdx: receiver (JSObject)
// rcx: untagged index
// rbx: elements array
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
__ movsxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ movzxbq(rcx, Operand(rbx, rcx, times_1, 0));
break;
case EXTERNAL_SHORT_ELEMENTS:
__ movsxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ movzxwq(rcx, Operand(rbx, rcx, times_2, 0));
break;
case EXTERNAL_INT_ELEMENTS:
__ movsxlq(rcx, Operand(rbx, rcx, times_4, 0));
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ movl(rcx, Operand(rbx, rcx, times_4, 0));
break;
case EXTERNAL_FLOAT_ELEMENTS:
__ cvtss2sd(xmm0, Operand(rbx, rcx, times_4, 0));
break;
case EXTERNAL_DOUBLE_ELEMENTS:
__ movsd(xmm0, Operand(rbx, rcx, times_8, 0));
break;
default:
UNREACHABLE();
break;
}
// rax: index
// rdx: receiver
// For integer array types:
// rcx: value
// For floating-point array type:
// xmm0: value as double.
ASSERT(kSmiValueSize == 32);
if (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
// For the UnsignedInt array type, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
__ JumpIfUIntNotValidSmiValue(rcx, &box_int, Label::kNear);
__ Integer32ToSmi(rax, rcx);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
// The value is zero-extended since we loaded the value from memory
// with movl.
__ cvtqsi2sd(xmm0, rcx);
__ AllocateHeapNumber(rcx, rbx, &slow);
// Set the value.
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(rcx, rbx, &slow);
// Set the value.
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
} else {
__ Integer32ToSmi(rax, rcx);
__ ret(0);
}
// Slow case: Jump to runtime.
__ bind(&slow);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_load_external_array_slow(), 1);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Miss case: Jump to runtime.
__ bind(&miss_force_generic);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreExternalArray(
MacroAssembler* masm,
ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &miss_force_generic);
// Check that the index is in range.
__ movq(rbx, FieldOperand(rdx, JSObject::kElementsOffset));
__ SmiToInteger32(rdi, rcx); // Untag the index.
__ cmpq(rcx, FieldOperand(rbx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &miss_force_generic);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
Label check_heap_number;
if (elements_kind == EXTERNAL_PIXEL_ELEMENTS) {
// Float to pixel conversion is only implemented in the runtime for now.
__ JumpIfNotSmi(rax, &slow);
} else {
__ JumpIfNotSmi(rax, &check_heap_number, Label::kNear);
}
// No more branches to slow case on this path. Key and receiver not needed.
__ SmiToInteger32(rdx, rax);
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rbx: base pointer of external storage
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS:
{ // Clamp the value to [0..255].
Label done;
__ testl(rdx, Immediate(0xFFFFFF00));
__ j(zero, &done, Label::kNear);
__ setcc(negative, rdx); // 1 if negative, 0 if positive.
__ decb(rdx); // 0 if negative, 255 if positive.
__ bind(&done);
}
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
case EXTERNAL_FLOAT_ELEMENTS:
// Need to perform int-to-float conversion.
__ cvtlsi2ss(xmm0, rdx);
__ movss(Operand(rbx, rdi, times_4, 0), xmm0);
break;
case EXTERNAL_DOUBLE_ELEMENTS:
// Need to perform int-to-float conversion.
__ cvtlsi2sd(xmm0, rdx);
__ movsd(Operand(rbx, rdi, times_8, 0), xmm0);
break;
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
__ ret(0);
// TODO(danno): handle heap number -> pixel array conversion
if (elements_kind != EXTERNAL_PIXEL_ELEMENTS) {
__ bind(&check_heap_number);
// rax: value
// rcx: key (a smi)
// rdx: receiver (a JSObject)
// rbx: elements array
// rdi: untagged key
__ CmpObjectType(rax, HEAP_NUMBER_TYPE, kScratchRegister);
__ j(not_equal, &slow);
// No more branches to slow case on this path.
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ movsd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rbx, ExternalArray::kExternalPointerOffset));
// rdi: untagged index
// rbx: base pointer of external storage
// top of FPU stack: value
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
__ cvtsd2ss(xmm0, xmm0);
__ movss(Operand(rbx, rdi, times_4, 0), xmm0);
__ ret(0);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ movsd(Operand(rbx, rdi, times_8, 0), xmm0);
__ ret(0);
} else {
// Perform float-to-int conversion with truncation (round-to-zero)
// behavior.
// Convert to int32 and store the low byte/word.
// If the value is NaN or +/-infinity, the result is 0x80000000,
// which is automatically zero when taken mod 2^n, n < 32.
// rdx: value (converted to an untagged integer)
// rdi: untagged index
// rbx: base pointer of external storage
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ cvttsd2si(rdx, xmm0);
__ movb(Operand(rbx, rdi, times_1, 0), rdx);
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ cvttsd2si(rdx, xmm0);
__ movw(Operand(rbx, rdi, times_2, 0), rdx);
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
// Convert to int64, so that NaN and infinities become
// 0x8000000000000000, which is zero mod 2^32.
__ cvttsd2siq(rdx, xmm0);
__ movl(Operand(rbx, rdi, times_4, 0), rdx);
break;
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
__ ret(0);
}
}
// Slow case: call runtime.
__ bind(&slow);
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Handle<Code> ic = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Miss case: call runtime.
__ bind(&miss_force_generic);
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &miss_force_generic);
// Get the elements array.
__ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset));
__ AssertFastElements(rcx);
// Check that the key is within bounds.
__ SmiCompare(rax, FieldOperand(rcx, FixedArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
// Load the result and make sure it's not the hole.
SmiIndex index = masm->SmiToIndex(rbx, rax, kPointerSizeLog2);
__ movq(rbx, FieldOperand(rcx,
index.reg,
index.scale,
FixedArray::kHeaderSize));
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ j(equal, &miss_force_generic);
__ movq(rax, rbx);
__ ret(0);
__ bind(&miss_force_generic);
Code* code = masm->isolate()->builtins()->builtin(
Builtins::kKeyedLoadIC_MissForceGeneric);
Handle<Code> ic(code);
__ jmp(ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss_force_generic, slow_allocate_heapnumber;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(rax, &miss_force_generic);
// Get the elements array.
__ movq(rcx, FieldOperand(rdx, JSObject::kElementsOffset));
__ AssertFastElements(rcx);
// Check that the key is within bounds.
__ SmiCompare(rax, FieldOperand(rcx, FixedArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
// Check for the hole
__ SmiToInteger32(kScratchRegister, rax);
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
__ cmpl(FieldOperand(rcx, kScratchRegister, times_8, offset),
Immediate(kHoleNanUpper32));
__ j(equal, &miss_force_generic);
// Always allocate a heap number for the result.
__ movsd(xmm0, FieldOperand(rcx, kScratchRegister, times_8,
FixedDoubleArray::kHeaderSize));
__ AllocateHeapNumber(rcx, rbx, &slow_allocate_heapnumber);
// Set the value.
__ movq(rax, rcx);
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ ret(0);
__ bind(&slow_allocate_heapnumber);
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastElement(
MacroAssembler* masm,
bool is_js_array,
ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss_force_generic, transition_elements_kind;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &miss_force_generic);
// Get the elements array and make sure it is a fast element array, not 'cow'.
__ movq(rdi, FieldOperand(rdx, JSObject::kElementsOffset));
__ CompareRoot(FieldOperand(rdi, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &miss_force_generic);
// Check that the key is within bounds.
if (is_js_array) {
__ SmiCompare(rcx, FieldOperand(rdx, JSArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
} else {
__ SmiCompare(rcx, FieldOperand(rdi, FixedArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
}
if (elements_kind == FAST_SMI_ONLY_ELEMENTS) {
__ JumpIfNotSmi(rax, &transition_elements_kind);
__ SmiToInteger32(rcx, rcx);
__ movq(FieldOperand(rdi, rcx, times_pointer_size, FixedArray::kHeaderSize),
rax);
} else {
// Do the store and update the write barrier.
ASSERT(elements_kind == FAST_ELEMENTS);
__ SmiToInteger32(rcx, rcx);
__ lea(rcx,
FieldOperand(rdi, rcx, times_pointer_size, FixedArray::kHeaderSize));
__ movq(Operand(rcx, 0), rax);
// Make sure to preserve the value in register rax.
__ movq(rdx, rax);
__ RecordWrite(rdi, rcx, rdx, kDontSaveFPRegs);
}
// Done.
__ ret(0);
// Handle store cache miss.
__ bind(&miss_force_generic);
Handle<Code> ic_force_generic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(ic_force_generic, RelocInfo::CODE_TARGET);
__ bind(&transition_elements_kind);
Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic_miss, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
MacroAssembler* masm,
bool is_js_array) {
// ----------- S t a t e -------------
// -- rax : value
// -- rcx : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label miss_force_generic, transition_elements_kind;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(rcx, &miss_force_generic);
// Get the elements array.
__ movq(rdi, FieldOperand(rdx, JSObject::kElementsOffset));
__ AssertFastElements(rdi);
// Check that the key is within bounds.
if (is_js_array) {
__ SmiCompare(rcx, FieldOperand(rdx, JSArray::kLengthOffset));
} else {
__ SmiCompare(rcx, FieldOperand(rdi, FixedDoubleArray::kLengthOffset));
}
__ j(above_equal, &miss_force_generic);
// Handle smi values specially
__ SmiToInteger32(rcx, rcx);
__ StoreNumberToDoubleElements(rax, rdi, rcx, xmm0,
&transition_elements_kind);
__ ret(0);
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic_force_generic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(ic_force_generic, RelocInfo::CODE_TARGET);
__ bind(&transition_elements_kind);
// Restore smi-tagging of rcx.
__ Integer32ToSmi(rcx, rcx);
Handle<Code> ic_miss = masm->isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic_miss, RelocInfo::CODE_TARGET);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64