blob: a5e2d6f5de760909093733ace3b13f2168c7f546 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/video_engine/overuse_frame_detector.h"
#include <assert.h>
#include <math.h>
#include <algorithm>
#include <list>
#include "webrtc/modules/video_coding/utility/include/exp_filter.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/trace.h"
#include "webrtc/video_engine/include/vie_base.h"
namespace webrtc {
// TODO(mflodman) Test different values for all of these to trigger correctly,
// avoid fluctuations etc.
namespace {
const int64_t kProcessIntervalMs = 5000;
// Consecutive checks above threshold to trigger overuse.
const int kConsecutiveChecksAboveThreshold = 2;
// Minimum samples required to perform a check.
const size_t kMinFrameSampleCount = 15;
// Weight factor to apply to the standard deviation.
const float kWeightFactor = 0.997f;
// Weight factor to apply to the average.
const float kWeightFactorMean = 0.98f;
// Delay between consecutive rampups. (Used for quick recovery.)
const int kQuickRampUpDelayMs = 10 * 1000;
// Delay between rampup attempts. Initially uses standard, scales up to max.
const int kStandardRampUpDelayMs = 30 * 1000;
const int kMaxRampUpDelayMs = 120 * 1000;
// Expontential back-off factor, to prevent annoying up-down behaviour.
const double kRampUpBackoffFactor = 2.0;
// The initial average encode time (set to a fairly small value).
const float kInitialAvgEncodeTimeMs = 5.0f;
// The maximum exponent to use in VCMExpFilter.
const float kSampleDiffMs = 33.0f;
const float kMaxExp = 7.0f;
} // namespace
Statistics::Statistics() :
sum_(0.0),
count_(0),
filtered_samples_(new VCMExpFilter(kWeightFactorMean)),
filtered_variance_(new VCMExpFilter(kWeightFactor)) {
}
void Statistics::Reset() {
sum_ = 0.0;
count_ = 0;
}
void Statistics::AddSample(float sample_ms) {
sum_ += sample_ms;
++count_;
if (count_ < kMinFrameSampleCount) {
// Initialize filtered samples.
filtered_samples_->Reset(kWeightFactorMean);
filtered_samples_->Apply(1.0f, InitialMean());
filtered_variance_->Reset(kWeightFactor);
filtered_variance_->Apply(1.0f, InitialVariance());
return;
}
float exp = sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_samples_->Apply(exp, sample_ms);
filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->Value()) *
(sample_ms - filtered_samples_->Value()));
}
float Statistics::InitialMean() const {
if (count_ == 0)
return 0.0;
return sum_ / count_;
}
float Statistics::InitialVariance() const {
// Start in between the underuse and overuse threshold.
float average_stddev = (kNormalUseStdDevMs + kOveruseStdDevMs)/2.0f;
return average_stddev * average_stddev;
}
float Statistics::Mean() const { return filtered_samples_->Value(); }
float Statistics::StdDev() const {
return sqrt(std::max(filtered_variance_->Value(), 0.0f));
}
uint64_t Statistics::Count() const { return count_; }
// Class for calculating the average encode time.
class OveruseFrameDetector::EncodeTimeAvg {
public:
EncodeTimeAvg()
: kWeightFactor(0.5f),
filtered_encode_time_ms_(new VCMExpFilter(kWeightFactor)) {
filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
}
~EncodeTimeAvg() {}
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
float exp = diff_last_sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
}
int filtered_encode_time_ms() const {
return static_cast<int>(filtered_encode_time_ms_->Value() + 0.5);
}
private:
const float kWeightFactor;
scoped_ptr<VCMExpFilter> filtered_encode_time_ms_;
};
// Class for calculating the encode usage.
class OveruseFrameDetector::EncodeUsage {
public:
EncodeUsage()
: kWeightFactorFrameDiff(0.998f),
kWeightFactorEncodeTime(0.995f),
filtered_encode_time_ms_(new VCMExpFilter(kWeightFactorEncodeTime)),
filtered_frame_diff_ms_(new VCMExpFilter(kWeightFactorFrameDiff)) {
filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
filtered_frame_diff_ms_->Apply(1.0f, kSampleDiffMs);
}
~EncodeUsage() {}
void AddSample(float sample_ms) {
float exp = sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_frame_diff_ms_->Apply(exp, sample_ms);
}
void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
float exp = diff_last_sample_ms / kSampleDiffMs;
exp = std::min(exp, kMaxExp);
filtered_encode_time_ms_->Apply(exp, encode_time_ms);
}
int UsageInPercent() const {
float frame_diff_ms = std::max(filtered_frame_diff_ms_->Value(), 1.0f);
float encode_usage_percent =
100.0f * filtered_encode_time_ms_->Value() / frame_diff_ms;
return static_cast<int>(encode_usage_percent + 0.5);
}
private:
const float kWeightFactorFrameDiff;
const float kWeightFactorEncodeTime;
scoped_ptr<VCMExpFilter> filtered_encode_time_ms_;
scoped_ptr<VCMExpFilter> filtered_frame_diff_ms_;
};
// Class for calculating the capture queue delay change.
class OveruseFrameDetector::CaptureQueueDelay {
public:
CaptureQueueDelay()
: kWeightFactor(0.5f),
delay_ms_(0),
filtered_delay_ms_per_s_(new VCMExpFilter(kWeightFactor)) {
filtered_delay_ms_per_s_->Apply(1.0f, 0.0f);
}
~CaptureQueueDelay() {}
void FrameCaptured(int64_t now) {
const size_t kMaxSize = 200;
if (frames_.size() > kMaxSize) {
frames_.pop_front();
}
frames_.push_back(now);
}
void FrameProcessingStarted(int64_t now) {
if (frames_.empty()) {
return;
}
delay_ms_ = now - frames_.front();
frames_.pop_front();
}
void CalculateDelayChange(int64_t diff_last_sample_ms) {
if (diff_last_sample_ms <= 0) {
return;
}
float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs;
exp = std::min(exp, kMaxExp);
filtered_delay_ms_per_s_->Apply(exp,
delay_ms_ * 1000.0f / diff_last_sample_ms);
ClearFrames();
}
void ClearFrames() {
frames_.clear();
}
int delay_ms() const {
return delay_ms_;
}
int filtered_delay_ms_per_s() const {
return static_cast<int>(filtered_delay_ms_per_s_->Value() + 0.5);
}
private:
const float kWeightFactor;
std::list<int64_t> frames_;
int delay_ms_;
scoped_ptr<VCMExpFilter> filtered_delay_ms_per_s_;
};
OveruseFrameDetector::OveruseFrameDetector(Clock* clock,
float normaluse_stddev_ms,
float overuse_stddev_ms)
: crit_(CriticalSectionWrapper::CreateCriticalSection()),
normaluse_stddev_ms_(normaluse_stddev_ms),
overuse_stddev_ms_(overuse_stddev_ms),
observer_(NULL),
clock_(clock),
next_process_time_(clock_->TimeInMilliseconds()),
last_capture_time_(0),
last_overuse_time_(0),
checks_above_threshold_(0),
last_rampup_time_(0),
in_quick_rampup_(false),
current_rampup_delay_ms_(kStandardRampUpDelayMs),
num_pixels_(0),
last_capture_jitter_ms_(-1),
last_encode_sample_ms_(0),
encode_time_(new EncodeTimeAvg()),
encode_usage_(new EncodeUsage()),
capture_queue_delay_(new CaptureQueueDelay()) {
}
OveruseFrameDetector::~OveruseFrameDetector() {
}
void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
CriticalSectionScoped cs(crit_.get());
observer_ = observer;
}
int OveruseFrameDetector::AvgEncodeTimeMs() const {
CriticalSectionScoped cs(crit_.get());
return encode_time_->filtered_encode_time_ms();
}
int OveruseFrameDetector::EncodeUsagePercent() const {
CriticalSectionScoped cs(crit_.get());
return encode_usage_->UsageInPercent();
}
int OveruseFrameDetector::AvgCaptureQueueDelayMsPerS() const {
CriticalSectionScoped cs(crit_.get());
return capture_queue_delay_->filtered_delay_ms_per_s();
}
int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
CriticalSectionScoped cs(crit_.get());
return capture_queue_delay_->delay_ms();
}
int32_t OveruseFrameDetector::TimeUntilNextProcess() {
CriticalSectionScoped cs(crit_.get());
return next_process_time_ - clock_->TimeInMilliseconds();
}
void OveruseFrameDetector::FrameCaptured(int width, int height) {
CriticalSectionScoped cs(crit_.get());
int num_pixels = width * height;
if (num_pixels != num_pixels_) {
// Frame size changed, reset statistics.
num_pixels_ = num_pixels;
capture_deltas_.Reset();
last_capture_time_ = 0;
capture_queue_delay_->ClearFrames();
}
int64_t time = clock_->TimeInMilliseconds();
if (last_capture_time_ != 0) {
capture_deltas_.AddSample(time - last_capture_time_);
encode_usage_->AddSample(time - last_capture_time_);
}
last_capture_time_ = time;
capture_queue_delay_->FrameCaptured(time);
}
void OveruseFrameDetector::FrameProcessingStarted() {
CriticalSectionScoped cs(crit_.get());
capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds());
}
void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
CriticalSectionScoped cs(crit_.get());
int64_t time = clock_->TimeInMilliseconds();
if (last_encode_sample_ms_ != 0) {
int64_t diff_ms = time - last_encode_sample_ms_;
encode_time_->AddEncodeSample(encode_time_ms, diff_ms);
encode_usage_->AddEncodeSample(encode_time_ms, diff_ms);
}
last_encode_sample_ms_ = time;
}
int OveruseFrameDetector::last_capture_jitter_ms() const {
CriticalSectionScoped cs(crit_.get());
return last_capture_jitter_ms_;
}
int32_t OveruseFrameDetector::Process() {
CriticalSectionScoped cs(crit_.get());
int64_t now = clock_->TimeInMilliseconds();
// Used to protect against Process() being called too often.
if (now < next_process_time_)
return 0;
int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs;
next_process_time_ = now + kProcessIntervalMs;
// Don't trigger overuse unless we've seen a certain number of frames.
if (capture_deltas_.Count() < kMinFrameSampleCount)
return 0;
capture_queue_delay_->CalculateDelayChange(diff_ms);
if (IsOverusing()) {
// If the last thing we did was going up, and now have to back down, we need
// to check if this peak was short. If so we should back off to avoid going
// back and forth between this load, the system doesn't seem to handle it.
bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
if (check_for_backoff) {
if (now - last_rampup_time_ < kStandardRampUpDelayMs) {
// Going up was not ok for very long, back off.
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
} else {
// Not currently backing off, reset rampup delay.
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
}
}
last_overuse_time_ = now;
in_quick_rampup_ = false;
checks_above_threshold_ = 0;
if (observer_ != NULL)
observer_->OveruseDetected();
} else if (IsUnderusing(now)) {
last_rampup_time_ = now;
in_quick_rampup_ = true;
if (observer_ != NULL)
observer_->NormalUsage();
}
WEBRTC_TRACE(
webrtc::kTraceInfo,
webrtc::kTraceVideo,
-1,
"Capture input stats: avg: %.2fms, std_dev: %.2fms (rampup delay: "
"%dms, overuse: >=%.2fms, "
"underuse: <%.2fms)",
capture_deltas_.Mean(),
capture_deltas_.StdDev(),
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_,
overuse_stddev_ms_,
normaluse_stddev_ms_);
last_capture_jitter_ms_ = static_cast<int>(capture_deltas_.StdDev() + 0.5);
return 0;
}
bool OveruseFrameDetector::IsOverusing() {
if (capture_deltas_.StdDev() >= overuse_stddev_ms_) {
++checks_above_threshold_;
} else {
checks_above_threshold_ = 0;
}
return checks_above_threshold_ >= kConsecutiveChecksAboveThreshold;
}
bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
if (time_now < last_rampup_time_ + delay)
return false;
return capture_deltas_.StdDev() < normaluse_stddev_ms_;
}
} // namespace webrtc