blob: 86fcd0399198605620dc72ba2bf71c9280a726f5 [file] [log] [blame]
/*
* Copyright (C) 2014 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "platform/PurgeableVector.h"
#include "public/platform/Platform.h"
#include "public/platform/WebDiscardableMemory.h"
#include "wtf/Assertions.h"
#include "wtf/OwnPtr.h"
#include "wtf/PassOwnPtr.h"
#include <cstring>
namespace blink {
// WebDiscardableMemory allocations are expensive and page-grained. We only use
// them when there's a reasonable amount of memory to be saved by the OS
// discarding the memory.
static const size_t minimumDiscardableAllocationSize = 4 * 4096;
PurgeableVector::PurgeableVector(PurgeableOption purgeable)
: m_discardableCapacity(0),
m_discardableSize(0),
m_isPurgeable(purgeable == Purgeable),
m_locksCount(1) // The buffer is locked at creation.
{}
PurgeableVector::~PurgeableVector() {}
void PurgeableVector::reserveCapacity(size_t capacity) {
ASSERT(isLocked());
if (m_isPurgeable) {
if (reservePurgeableCapacity(capacity, UseExactCapacity))
return;
// Fallback to non-purgeable buffer allocation in case discardable memory
// allocation failed.
}
if (!m_vector.capacity()) {
// Using reserveInitialCapacity() on the underlying vector ensures that the
// vector uses the
// exact specified capacity to avoid consuming too much memory for small
// resources.
m_vector.reserveInitialCapacity(capacity);
} else {
m_vector.reserveCapacity(capacity);
}
moveDataFromDiscardableToVector();
}
void PurgeableVector::moveDataFromDiscardableToVector() {
if (m_discardable) {
m_vector.append(static_cast<const char*>(m_discardable->data()),
m_discardableSize);
clearDiscardable();
}
}
void PurgeableVector::clearDiscardable() {
m_discardable.clear();
m_discardableCapacity = 0;
m_discardableSize = 0;
}
void PurgeableVector::append(const char* data, size_t length) {
ASSERT(isLocked());
if (!m_isPurgeable) {
m_vector.append(data, length);
return;
}
const size_t currentSize =
m_discardable ? m_discardableSize : m_vector.size();
const size_t newBufferSize = currentSize + length;
if (!reservePurgeableCapacity(newBufferSize, UseExponentialGrowth)) {
moveDataFromDiscardableToVector();
m_vector.append(data, length);
return;
}
ASSERT(m_discardableSize + length <= m_discardableCapacity);
memcpy(static_cast<char*>(m_discardable->data()) + m_discardableSize, data,
length);
m_discardableSize += length;
}
void PurgeableVector::grow(size_t newSize) {
ASSERT(newSize >= size());
if (m_isPurgeable) {
if (reservePurgeableCapacity(newSize, UseExponentialGrowth)) {
m_discardableSize = newSize;
return;
}
moveDataFromDiscardableToVector();
}
m_vector.resize(newSize);
}
void PurgeableVector::clear() {
clearDiscardable();
m_vector.clear();
}
char* PurgeableVector::data() {
ASSERT(isLocked());
return m_discardable ? static_cast<char*>(m_discardable->data())
: m_vector.data();
}
size_t PurgeableVector::size() const {
return m_discardable ? m_discardableSize : m_vector.size();
}
void PurgeableVector::adopt(Vector<char>& other) {
if (size() > 0)
clear();
if (!m_isPurgeable) {
m_vector.swap(other);
return;
}
if (other.isEmpty())
return;
append(other.data(), other.size());
other.clear();
}
bool PurgeableVector::lock() {
++m_locksCount;
if (m_locksCount > 1)
return true;
ASSERT(m_locksCount == 1);
if (!m_discardable)
return true;
return m_discardable->lock();
}
void PurgeableVector::unlock() {
ASSERT(isLocked());
--m_locksCount;
if (m_locksCount > 0)
return;
if (!m_vector.isEmpty()) {
ASSERT(!m_discardable);
m_isPurgeable = true;
if (!reservePurgeableCapacity(m_vector.size(), UseExactCapacity))
return;
}
if (m_discardable)
m_discardable->unlock();
}
bool PurgeableVector::isLocked() const {
ASSERT(m_locksCount >= 0);
return m_locksCount > 0;
}
bool PurgeableVector::reservePurgeableCapacity(
size_t capacity,
PurgeableAllocationStrategy allocationStrategy) {
ASSERT(m_isPurgeable);
if (m_discardable && m_discardableCapacity >= capacity) {
ASSERT(!m_vector.capacity());
return true;
}
if (capacity < minimumDiscardableAllocationSize)
return false;
if (allocationStrategy == UseExponentialGrowth)
capacity = adjustPurgeableCapacity(capacity);
OwnPtr<WebDiscardableMemory> discardable =
adoptPtr(Platform::current()->allocateAndLockDiscardableMemory(capacity));
if (!discardable) {
// Discardable memory is not supported.
m_isPurgeable = false;
return false;
}
m_discardableCapacity = capacity;
// Copy the data that was either in the previous purgeable buffer or in the
// vector to the new
// purgeable buffer.
if (m_discardable) {
memcpy(discardable->data(), m_discardable->data(), m_discardableSize);
} else {
memcpy(discardable->data(), m_vector.data(), m_vector.size());
m_discardableSize = m_vector.size();
m_vector.clear();
}
m_discardable.swap(discardable);
ASSERT(!m_vector.capacity());
return true;
}
size_t PurgeableVector::adjustPurgeableCapacity(size_t capacity) const {
ASSERT(capacity >= minimumDiscardableAllocationSize);
const float growthFactor = 1.5;
size_t newCapacity = std::max(
capacity, static_cast<size_t>(m_discardableCapacity * growthFactor));
// Discardable memory has page-granularity so align to the next page here to
// minimize
// fragmentation.
// Since the page size is only used below to minimize fragmentation it's still
// safe to use it
// even if it gets out of sync (e.g. due to the use of huge pages).
const size_t kPageSize = 4096;
newCapacity = (newCapacity + kPageSize - 1) & ~(kPageSize - 1);
return std::max(capacity, newCapacity); // Overflow check.
}
} // namespace blink