blob: d46893fb85990d49a009cc81572c247a34e10726 [file] [log] [blame]
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_MEMORY_ALLOCATOR_H_
#define V8_HEAP_MEMORY_ALLOCATOR_H_
#include <atomic>
#include <memory>
#include <set>
#include <unordered_set>
#include <utility>
#include "include/v8-platform.h"
#include "src/base/bounded-page-allocator.h"
#include "src/base/export-template.h"
#include "src/base/functional.h"
#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/base/platform/semaphore.h"
#include "src/common/globals.h"
#include "src/heap/code-range.h"
#include "src/heap/memory-chunk-metadata.h"
#include "src/heap/mutable-page.h"
#include "src/heap/spaces.h"
#include "src/tasks/cancelable-task.h"
#include "src/utils/allocation.h"
namespace v8 {
namespace internal {
namespace heap {
class TestMemoryAllocatorScope;
} // namespace heap
class Heap;
class Isolate;
class ReadOnlyPageMetadata;
// ----------------------------------------------------------------------------
// A space acquires chunks of memory from the operating system. The memory
// allocator allocates and deallocates pages for the paged heap spaces and large
// pages for large object space.
class MemoryAllocator {
public:
// Pool keeps pages allocated and accessible until explicitly flushed.
class V8_EXPORT_PRIVATE Pool {
public:
explicit Pool(MemoryAllocator* allocator) : allocator_(allocator) {}
Pool(const Pool&) = delete;
Pool& operator=(const Pool&) = delete;
void Add(MutablePageMetadata* chunk) {
// This method is called only on the main thread and only during the
// atomic pause so a lock is not needed.
DCHECK_NOT_NULL(chunk);
DCHECK_EQ(chunk->size(), PageMetadata::kPageSize);
DCHECK(!chunk->Chunk()->IsLargePage());
DCHECK(!chunk->Chunk()->IsTrusted());
DCHECK_NE(chunk->Chunk()->executable(), EXECUTABLE);
chunk->ReleaseAllAllocatedMemory();
pooled_chunks_.push_back(chunk);
}
MutablePageMetadata* TryGetPooled() {
base::MutexGuard guard(&mutex_);
if (pooled_chunks_.empty()) return nullptr;
MutablePageMetadata* chunk = pooled_chunks_.back();
pooled_chunks_.pop_back();
return chunk;
}
void ReleasePooledChunks();
size_t NumberOfCommittedChunks() const;
size_t CommittedBufferedMemory() const;
private:
MemoryAllocator* const allocator_;
std::vector<MutablePageMetadata*> pooled_chunks_;
mutable base::Mutex mutex_;
friend class MemoryAllocator;
};
enum class AllocationMode {
// Regular allocation path. Does not use pool.
kRegular,
// Uses the pool for allocation first.
kUsePool,
};
enum class FreeMode {
// Frees page immediately on the main thread.
kImmediately,
// Postpone freeing, until MemoryAllocator::ReleaseQueuedPages() is called.
// This is used in the major GC to allow the pointer-update phase to touch
// dead memory.
kPostpone,
// Pool page.
kPool,
};
// Initialize page sizes field in V8::Initialize.
static void InitializeOncePerProcess();
V8_INLINE static intptr_t GetCommitPageSize() {
DCHECK_LT(0, commit_page_size_);
return commit_page_size_;
}
V8_INLINE static intptr_t GetCommitPageSizeBits() {
DCHECK_LT(0, commit_page_size_bits_);
return commit_page_size_bits_;
}
// Computes the memory area of discardable memory within a given memory area
// [addr, addr+size) and returns the result as base::AddressRegion. If the
// memory is not discardable base::AddressRegion is an empty region.
V8_EXPORT_PRIVATE static base::AddressRegion ComputeDiscardMemoryArea(
Address addr, size_t size);
V8_EXPORT_PRIVATE MemoryAllocator(Isolate* isolate,
v8::PageAllocator* code_page_allocator,
v8::PageAllocator* trusted_page_allocator,
size_t max_capacity);
V8_EXPORT_PRIVATE void TearDown();
// Allocates a Page from the allocator. AllocationMode is used to indicate
// whether pooled allocation, which only works for MemoryChunk::kPageSize,
// should be tried first.
V8_EXPORT_PRIVATE PageMetadata* AllocatePage(
MemoryAllocator::AllocationMode alloc_mode, Space* space,
Executability executable);
V8_EXPORT_PRIVATE LargePageMetadata* AllocateLargePage(
LargeObjectSpace* space, size_t object_size, Executability executable);
ReadOnlyPageMetadata* AllocateReadOnlyPage(ReadOnlySpace* space,
Address hint = kNullAddress);
std::unique_ptr<::v8::PageAllocator::SharedMemoryMapping> RemapSharedPage(
::v8::PageAllocator::SharedMemory* shared_memory, Address new_address);
V8_EXPORT_PRIVATE void Free(MemoryAllocator::FreeMode mode,
MutablePageMetadata* chunk);
void FreeReadOnlyPage(ReadOnlyPageMetadata* chunk);
// Returns allocated spaces in bytes.
size_t Size() const { return size_; }
// Returns allocated executable spaces in bytes.
size_t SizeExecutable() const { return size_executable_; }
// Returns the maximum available bytes of heaps.
size_t Available() const {
const size_t size = Size();
return capacity_ < size ? 0 : capacity_ - size;
}
// Returns an indication of whether a pointer is in a space that has
// been allocated by this MemoryAllocator. It is conservative, allowing
// false negatives (i.e., if a pointer is outside the allocated space, it may
// return false) but not false positives (i.e., if a pointer is inside the
// allocated space, it will definitely return false).
V8_INLINE bool IsOutsideAllocatedSpace(Address address) const {
return IsOutsideAllocatedSpace(address, NOT_EXECUTABLE) &&
IsOutsideAllocatedSpace(address, EXECUTABLE);
}
V8_INLINE bool IsOutsideAllocatedSpace(Address address,
Executability executable) const {
switch (executable) {
case NOT_EXECUTABLE:
return address < lowest_not_executable_ever_allocated_ ||
address >= highest_not_executable_ever_allocated_;
case EXECUTABLE:
return address < lowest_executable_ever_allocated_ ||
address >= highest_executable_ever_allocated_;
}
}
// Partially release |bytes_to_free| bytes starting at |start_free|. Note that
// internally memory is freed from |start_free| to the end of the reservation.
// Additional memory beyond the page is not accounted though, so
// |bytes_to_free| is computed by the caller.
void PartialFreeMemory(MemoryChunkMetadata* chunk, Address start_free,
size_t bytes_to_free, Address new_area_end);
#ifdef DEBUG
// Checks if an allocated MemoryChunk was intended to be used for executable
// memory.
bool IsMemoryChunkExecutable(MutablePageMetadata* chunk) {
base::MutexGuard guard(&executable_memory_mutex_);
return executable_memory_.find(chunk) != executable_memory_.end();
}
#endif // DEBUG
// Page allocator instance for allocating non-executable pages.
// Guaranteed to be a valid pointer.
v8::PageAllocator* data_page_allocator() { return data_page_allocator_; }
// Page allocator instance for allocating executable pages.
// Guaranteed to be a valid pointer.
v8::PageAllocator* code_page_allocator() { return code_page_allocator_; }
// Page allocator instance for allocating "trusted" pages. When the sandbox is
// enabled, these pages are guaranteed to be allocated outside of the sandbox,
// so their content cannot be corrupted by an attacker.
// Guaranteed to be a valid pointer.
v8::PageAllocator* trusted_page_allocator() {
return trusted_page_allocator_;
}
// Returns page allocator suitable for allocating pages for the given space.
v8::PageAllocator* page_allocator(AllocationSpace space) {
switch (space) {
case CODE_SPACE:
case CODE_LO_SPACE:
return code_page_allocator_;
case TRUSTED_SPACE:
case TRUSTED_LO_SPACE:
return trusted_page_allocator_;
default:
return data_page_allocator_;
}
}
Pool* pool() { return &pool_; }
void UnregisterReadOnlyPage(ReadOnlyPageMetadata* page);
Address HandleAllocationFailure(Executability executable);
#if defined(V8_ENABLE_CONSERVATIVE_STACK_SCANNING) || defined(DEBUG)
// Return the normal or large page that contains this address, if it is owned
// by this heap, otherwise a nullptr.
V8_EXPORT_PRIVATE const MemoryChunk* LookupChunkContainingAddress(
Address addr) const;
#endif // V8_ENABLE_CONSERVATIVE_STACK_SCANNING || DEBUG
// Insert and remove normal and large pages that are owned by this heap.
void RecordMemoryChunkCreated(const MemoryChunk* chunk);
void RecordMemoryChunkDestroyed(const MemoryChunk* chunk);
// We postpone page freeing until the pointer-update phase is done (updating
// slots may happen for dead objects which point to dead memory).
void ReleaseQueuedPages();
private:
// Used to store all data about MemoryChunk allocation, e.g. in
// AllocateUninitializedChunk.
struct MemoryChunkAllocationResult {
void* chunk;
// If we reuse a pooled chunk return the metadata allocation here to be
// reused.
void* optional_metadata;
size_t size;
size_t area_start;
size_t area_end;
VirtualMemory reservation;
};
// Computes the size of a MemoryChunk from the size of the object_area.
static size_t ComputeChunkSize(size_t area_size, AllocationSpace space);
// Internal allocation method for all pages/memory chunks. Returns data about
// the unintialized memory region.
V8_WARN_UNUSED_RESULT base::Optional<MemoryChunkAllocationResult>
AllocateUninitializedChunk(BaseSpace* space, size_t area_size,
Executability executable, PageSize page_size) {
return AllocateUninitializedChunkAt(space, area_size, executable,
kNullAddress, page_size);
}
V8_WARN_UNUSED_RESULT base::Optional<MemoryChunkAllocationResult>
AllocateUninitializedChunkAt(BaseSpace* space, size_t area_size,
Executability executable, Address hint,
PageSize page_size);
// Internal raw allocation method that allocates an aligned MemoryChunk and
// sets the right memory permissions.
Address AllocateAlignedMemory(size_t chunk_size, size_t area_size,
size_t alignment, AllocationSpace space,
Executability executable, void* hint,
VirtualMemory* controller);
// Commit memory region owned by given reservation object. Returns true if
// it succeeded and false otherwise.
bool CommitMemory(VirtualMemory* reservation, Executability executable);
// Sets memory permissions on executable memory chunks. This entails page
// header (RW), guard pages (no access) and the object area (code modification
// permissions).
V8_WARN_UNUSED_RESULT bool SetPermissionsOnExecutableMemoryChunk(
VirtualMemory* vm, Address start, size_t reserved_size);
// Disallows any access on memory region owned by given reservation object.
// Returns true if it succeeded and false otherwise.
bool UncommitMemory(VirtualMemory* reservation);
// Frees the given memory region.
void FreeMemoryRegion(v8::PageAllocator* page_allocator, Address addr,
size_t size);
// PreFreeMemory logically frees the object, i.e., it unregisters the
// memory, logs a delete event and adds the chunk to remembered unmapped
// pages.
void PreFreeMemory(MutablePageMetadata* chunk);
// PerformFreeMemory can be called concurrently when PreFree was executed
// before.
void PerformFreeMemory(MutablePageMetadata* chunk);
// See AllocatePage for public interface. Note that currently we only
// support pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize.
base::Optional<MemoryChunkAllocationResult> AllocateUninitializedPageFromPool(
Space* space);
// Initializes pages in a chunk. Returns the first page address.
// This function and GetChunkId() are provided for the mark-compact
// collector to rebuild page headers in the from space, which is
// used as a marking stack and its page headers are destroyed.
PageMetadata* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
PagedSpace* space);
void UpdateAllocatedSpaceLimits(Address low, Address high,
Executability executable) {
// The use of atomic primitives does not guarantee correctness (wrt.
// desired semantics) by default. The loop here ensures that we update the
// values only if they did not change in between.
Address ptr;
switch (executable) {
case NOT_EXECUTABLE:
ptr = lowest_not_executable_ever_allocated_.load(
std::memory_order_relaxed);
while ((low < ptr) &&
!lowest_not_executable_ever_allocated_.compare_exchange_weak(
ptr, low, std::memory_order_acq_rel)) {
}
ptr = highest_not_executable_ever_allocated_.load(
std::memory_order_relaxed);
while ((high > ptr) &&
!highest_not_executable_ever_allocated_.compare_exchange_weak(
ptr, high, std::memory_order_acq_rel)) {
}
break;
case EXECUTABLE:
ptr = lowest_executable_ever_allocated_.load(std::memory_order_relaxed);
while ((low < ptr) &&
!lowest_executable_ever_allocated_.compare_exchange_weak(
ptr, low, std::memory_order_acq_rel)) {
}
ptr =
highest_executable_ever_allocated_.load(std::memory_order_relaxed);
while ((high > ptr) &&
!highest_executable_ever_allocated_.compare_exchange_weak(
ptr, high, std::memory_order_acq_rel)) {
}
break;
}
}
// Performs all necessary bookkeeping to free the memory, but does not free
// it.
void UnregisterMemoryChunk(MutablePageMetadata* chunk);
void UnregisterSharedBasicMemoryChunk(MemoryChunkMetadata* chunk);
void UnregisterBasicMemoryChunk(MemoryChunkMetadata* chunk,
Executability executable = NOT_EXECUTABLE);
void RegisterReadOnlyMemory(ReadOnlyPageMetadata* page);
#ifdef DEBUG
void RegisterExecutableMemoryChunk(MutablePageMetadata* chunk) {
base::MutexGuard guard(&executable_memory_mutex_);
DCHECK(chunk->Chunk()->IsFlagSet(MemoryChunk::IS_EXECUTABLE));
DCHECK_EQ(executable_memory_.find(chunk), executable_memory_.end());
executable_memory_.insert(chunk);
}
void UnregisterExecutableMemoryChunk(MutablePageMetadata* chunk) {
base::MutexGuard guard(&executable_memory_mutex_);
DCHECK_NE(executable_memory_.find(chunk), executable_memory_.end());
executable_memory_.erase(chunk);
}
#endif // DEBUG
Isolate* isolate_;
// Page allocator used for allocating data pages. Depending on the
// configuration it may be a page allocator instance provided by v8::Platform
// or a BoundedPageAllocator (when pointer compression is enabled).
v8::PageAllocator* data_page_allocator_;
// Page allocator used for allocating code pages. Depending on the
// configuration it may be a page allocator instance provided by v8::Platform
// or a BoundedPageAllocator from Heap::code_range_ (when pointer compression
// is enabled or on those 64-bit architectures where pc-relative 32-bit
// displacement can be used for call and jump instructions).
v8::PageAllocator* code_page_allocator_;
// Page allocator used for allocating trusted pages. When the sandbox is
// enabled, trusted pages are allocated outside of the sandbox so that their
// content cannot be corrupted by an attacker. When the sandbox is disabled,
// this is the same as data_page_allocator_.
v8::PageAllocator* trusted_page_allocator_;
// Maximum space size in bytes.
size_t capacity_;
// Allocated space size in bytes.
std::atomic<size_t> size_ = 0;
// Allocated executable space size in bytes.
std::atomic<size_t> size_executable_ = 0;
// We keep the lowest and highest addresses allocated as a quick way
// of determining that pointers are outside the heap. The estimate is
// conservative, i.e. not all addresses in 'allocated' space are allocated
// to our heap. The range is [lowest, highest[, inclusive on the low end
// and exclusive on the high end. Addresses are distinguished between
// executable and not-executable, as they may generally be placed in distinct
// areas of the heap.
std::atomic<Address> lowest_not_executable_ever_allocated_{
static_cast<Address>(-1ll)};
std::atomic<Address> highest_not_executable_ever_allocated_{kNullAddress};
std::atomic<Address> lowest_executable_ever_allocated_{
static_cast<Address>(-1ll)};
std::atomic<Address> highest_executable_ever_allocated_{kNullAddress};
base::Optional<VirtualMemory> reserved_chunk_at_virtual_memory_limit_;
Pool pool_;
std::vector<MutablePageMetadata*> queued_pages_to_be_freed_;
#ifdef DEBUG
// Data structure to remember allocated executable memory chunks.
// This data structure is used only in DCHECKs.
std::unordered_set<MutablePageMetadata*, base::hash<MutablePageMetadata*>>
executable_memory_;
base::Mutex executable_memory_mutex_;
#endif // DEBUG
#if defined(V8_ENABLE_CONSERVATIVE_STACK_SCANNING) || defined(DEBUG)
// Allocated normal and large pages are stored here, to be used during
// conservative stack scanning.
std::unordered_set<const MemoryChunk*, base::hash<const MemoryChunk*>>
normal_pages_;
std::set<const MemoryChunk*> large_pages_;
mutable base::Mutex chunks_mutex_;
#endif // V8_ENABLE_CONSERVATIVE_STACK_SCANNING || DEBUG
V8_EXPORT_PRIVATE static size_t commit_page_size_;
V8_EXPORT_PRIVATE static size_t commit_page_size_bits_;
friend class heap::TestCodePageAllocatorScope;
friend class heap::TestMemoryAllocatorScope;
DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator);
};
} // namespace internal
} // namespace v8
#endif // V8_HEAP_MEMORY_ALLOCATOR_H_