|  | /* | 
|  | *  Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | *  contributor license agreements.  See the NOTICE file distributed with | 
|  | *  this work for additional information regarding copyright ownership. | 
|  | *  The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | *  (the "License"); you may not use this file except in compliance with | 
|  | *  the License.  You may obtain a copy of the License at | 
|  | * | 
|  | *     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | *  Unless required by applicable law or agreed to in writing, software | 
|  | *  distributed under the License is distributed on an "AS IS" BASIS, | 
|  | *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | *  See the License for the specific language governing permissions and | 
|  | *  limitations under the License. | 
|  | */ | 
|  |  | 
|  | package java.math; | 
|  |  | 
|  | import java.util.Arrays; | 
|  |  | 
|  | /** | 
|  | * Provides primality probabilistic methods. | 
|  | */ | 
|  | class Primality { | 
|  |  | 
|  | /** Just to denote that this class can't be instantiated. */ | 
|  | private Primality() {} | 
|  |  | 
|  | /** All prime numbers with bit length lesser than 10 bits. */ | 
|  | private static final int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, | 
|  | 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, | 
|  | 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, | 
|  | 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, | 
|  | 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, | 
|  | 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, | 
|  | 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, | 
|  | 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, | 
|  | 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, | 
|  | 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, | 
|  | 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, | 
|  | 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, | 
|  | 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, | 
|  | 1013, 1019, 1021 }; | 
|  |  | 
|  | /** All {@code BigInteger} prime numbers with bit length lesser than 10 bits. */ | 
|  | private static final BigInteger BIprimes[] = new BigInteger[primes.length]; | 
|  |  | 
|  | //    /** | 
|  | //     * It encodes how many iterations of Miller-Rabin test are need to get an | 
|  | //     * error bound not greater than {@code 2<sup>(-100)</sup>}. For example: | 
|  | //     * for a {@code 1000}-bit number we need {@code 4} iterations, since | 
|  | //     * {@code BITS[3] < 1000 <= BITS[4]}. | 
|  | //     */ | 
|  | //    private static final int[] BITS = { 0, 0, 1854, 1233, 927, 747, 627, 543, | 
|  | //            480, 431, 393, 361, 335, 314, 295, 279, 265, 253, 242, 232, 223, | 
|  | //            216, 181, 169, 158, 150, 145, 140, 136, 132, 127, 123, 119, 114, | 
|  | //            110, 105, 101, 96, 92, 87, 83, 78, 73, 69, 64, 59, 54, 49, 44, 38, | 
|  | //            32, 26, 1 }; | 
|  | // | 
|  | //    /** | 
|  | //     * It encodes how many i-bit primes there are in the table for | 
|  | //     * {@code i=2,...,10}. For example {@code offsetPrimes[6]} says that from | 
|  | //     * index {@code 11} exists {@code 7} consecutive {@code 6}-bit prime | 
|  | //     * numbers in the array. | 
|  | //     */ | 
|  | //    private static final int[][] offsetPrimes = { null, null, { 0, 2 }, | 
|  | //            { 2, 2 }, { 4, 2 }, { 6, 5 }, { 11, 7 }, { 18, 13 }, { 31, 23 }, | 
|  | //            { 54, 43 }, { 97, 75 } }; | 
|  |  | 
|  | static {// To initialize the dual table of BigInteger primes | 
|  | for (int i = 0; i < primes.length; i++) { | 
|  | BIprimes[i] = BigInteger.valueOf(primes[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * It uses the sieve of Eratosthenes to discard several composite numbers in | 
|  | * some appropriate range (at the moment {@code [this, this + 1024]}). After | 
|  | * this process it applies the Miller-Rabin test to the numbers that were | 
|  | * not discarded in the sieve. | 
|  | * | 
|  | * @see BigInteger#nextProbablePrime() | 
|  | */ | 
|  | static BigInteger nextProbablePrime(BigInteger n) { | 
|  | // PRE: n >= 0 | 
|  | int i, j; | 
|  | //        int certainty; | 
|  | int gapSize = 1024; // for searching of the next probable prime number | 
|  | int[] modules = new int[primes.length]; | 
|  | boolean isDivisible[] = new boolean[gapSize]; | 
|  | BigInt ni = n.getBigInt(); | 
|  | // If n < "last prime of table" searches next prime in the table | 
|  | if (ni.bitLength() <= 10) { | 
|  | int l = (int)ni.longInt(); | 
|  | if (l < primes[primes.length - 1]) { | 
|  | for (i = 0; l >= primes[i]; i++) {} | 
|  | return BIprimes[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | BigInt startPoint = ni.copy(); | 
|  | BigInt probPrime = new BigInt(); | 
|  |  | 
|  | // Fix startPoint to "next odd number": | 
|  | startPoint.addPositiveInt(BigInt.remainderByPositiveInt(ni, 2) + 1); | 
|  |  | 
|  | //        // To set the improved certainty of Miller-Rabin | 
|  | //        j = startPoint.bitLength(); | 
|  | //        for (certainty = 2; j < BITS[certainty]; certainty++) { | 
|  | //            ; | 
|  | //        } | 
|  |  | 
|  | // To calculate modules: N mod p1, N mod p2, ... for first primes. | 
|  | for (i = 0; i < primes.length; i++) { | 
|  | modules[i] = BigInt.remainderByPositiveInt(startPoint, primes[i]) - gapSize; | 
|  | } | 
|  | while (true) { | 
|  | // At this point, all numbers in the gap are initialized as | 
|  | // probably primes | 
|  | Arrays.fill(isDivisible, false); | 
|  | // To discard multiples of first primes | 
|  | for (i = 0; i < primes.length; i++) { | 
|  | modules[i] = (modules[i] + gapSize) % primes[i]; | 
|  | j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]); | 
|  | for (; j < gapSize; j += primes[i]) { | 
|  | isDivisible[j] = true; | 
|  | } | 
|  | } | 
|  | // To execute Miller-Rabin for non-divisible numbers by all first | 
|  | // primes | 
|  | for (j = 0; j < gapSize; j++) { | 
|  | if (!isDivisible[j]) { | 
|  | probPrime.putCopy(startPoint); | 
|  | probPrime.addPositiveInt(j); | 
|  | if (probPrime.isPrime(100)) { | 
|  | return new BigInteger(probPrime); | 
|  | } | 
|  | } | 
|  | } | 
|  | startPoint.addPositiveInt(gapSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | } |