blob: 60f62ceb6dcfa9bb6f303c56cf6c59170b49ffe7 [file] [log] [blame]
//
// Copyright (c) 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// StateManager11.cpp: Defines a class for caching D3D11 state
#include "libANGLE/renderer/d3d/d3d11/StateManager11.h"
#include "common/bitset_utils.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/Query.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/renderer/d3d/TextureD3D.h"
#include "libANGLE/renderer/d3d/d3d11/Buffer11.h"
#include "libANGLE/renderer/d3d/d3d11/Context11.h"
#include "libANGLE/renderer/d3d/d3d11/Framebuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/IndexBuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/RenderTarget11.h"
#include "libANGLE/renderer/d3d/d3d11/Renderer11.h"
#include "libANGLE/renderer/d3d/d3d11/ShaderExecutable11.h"
#include "libANGLE/renderer/d3d/d3d11/TextureStorage11.h"
#include "libANGLE/renderer/d3d/d3d11/TransformFeedback11.h"
#include "libANGLE/renderer/d3d/d3d11/VertexArray11.h"
namespace rx
{
namespace
{
bool ImageIndexConflictsWithSRV(const gl::ImageIndex &index, D3D11_SHADER_RESOURCE_VIEW_DESC desc)
{
unsigned mipLevel = index.mipIndex;
GLint layerIndex = index.layerIndex;
GLenum type = index.type;
switch (desc.ViewDimension)
{
case D3D11_SRV_DIMENSION_TEXTURE2D:
{
bool allLevels = (desc.Texture2D.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip = desc.Texture2D.MipLevels + desc.Texture2D.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
unsigned mipMin = index.mipIndex;
unsigned mipMax = (layerIndex == -1) ? INT_MAX : layerIndex;
return type == GL_TEXTURE_2D &&
gl::RangeUI(mipMin, mipMax)
.intersects(gl::RangeUI(desc.Texture2D.MostDetailedMip, maxSrvMip));
}
case D3D11_SRV_DIMENSION_TEXTURE2DARRAY:
{
bool allLevels = (desc.Texture2DArray.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip =
desc.Texture2DArray.MipLevels + desc.Texture2DArray.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
unsigned maxSlice = desc.Texture2DArray.FirstArraySlice + desc.Texture2DArray.ArraySize;
// Cube maps can be mapped to Texture2DArray SRVs
return (type == GL_TEXTURE_2D_ARRAY || gl::IsCubeMapTextureTarget(type)) &&
desc.Texture2DArray.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip &&
desc.Texture2DArray.FirstArraySlice <= static_cast<UINT>(layerIndex) &&
static_cast<UINT>(layerIndex) < maxSlice;
}
case D3D11_SRV_DIMENSION_TEXTURECUBE:
{
bool allLevels = (desc.TextureCube.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip = desc.TextureCube.MipLevels + desc.TextureCube.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
return gl::IsCubeMapTextureTarget(type) &&
desc.TextureCube.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip;
}
case D3D11_SRV_DIMENSION_TEXTURE3D:
{
bool allLevels = (desc.Texture3D.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip = desc.Texture3D.MipLevels + desc.Texture3D.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
return type == GL_TEXTURE_3D && desc.Texture3D.MostDetailedMip <= mipLevel &&
mipLevel < maxSrvMip;
}
default:
// We only handle the cases corresponding to valid image indexes
UNIMPLEMENTED();
}
return false;
}
// Does *not* increment the resource ref count!!
ID3D11Resource *GetViewResource(ID3D11View *view)
{
ID3D11Resource *resource = nullptr;
ASSERT(view);
view->GetResource(&resource);
resource->Release();
return resource;
}
int GetWrapBits(GLenum wrap)
{
switch (wrap)
{
case GL_CLAMP_TO_EDGE:
return 0x1;
case GL_REPEAT:
return 0x2;
case GL_MIRRORED_REPEAT:
return 0x3;
default:
UNREACHABLE();
return 0;
}
}
Optional<size_t> FindFirstNonInstanced(
const std::vector<const TranslatedAttribute *> &currentAttributes)
{
for (size_t index = 0; index < currentAttributes.size(); ++index)
{
if (currentAttributes[index]->divisor == 0)
{
return Optional<size_t>(index);
}
}
return Optional<size_t>::Invalid();
}
void SortAttributesByLayout(const gl::Program *program,
const std::vector<TranslatedAttribute> &vertexArrayAttribs,
const std::vector<TranslatedAttribute> &currentValueAttribs,
AttribIndexArray *sortedD3DSemanticsOut,
std::vector<const TranslatedAttribute *> *sortedAttributesOut)
{
sortedAttributesOut->clear();
const auto &locationToSemantic =
GetImplAs<ProgramD3D>(program)->getAttribLocationToD3DSemantics();
for (auto locationIndex : program->getActiveAttribLocationsMask())
{
int d3dSemantic = locationToSemantic[locationIndex];
if (sortedAttributesOut->size() <= static_cast<size_t>(d3dSemantic))
{
sortedAttributesOut->resize(d3dSemantic + 1);
}
(*sortedD3DSemanticsOut)[d3dSemantic] = d3dSemantic;
const auto *arrayAttrib = &vertexArrayAttribs[locationIndex];
if (arrayAttrib->attribute && arrayAttrib->attribute->enabled)
{
(*sortedAttributesOut)[d3dSemantic] = arrayAttrib;
}
else
{
ASSERT(currentValueAttribs[locationIndex].attribute);
(*sortedAttributesOut)[d3dSemantic] = &currentValueAttribs[locationIndex];
}
}
}
void UpdateUniformBuffer(ID3D11DeviceContext *deviceContext,
UniformStorage11 *storage,
const d3d11::Buffer *buffer)
{
deviceContext->UpdateSubresource(buffer->get(), 0, nullptr, storage->getDataPointer(0, 0), 0,
0);
}
} // anonymous namespace
// StateManager11::SRVCache Implementation.
void StateManager11::SRVCache::update(size_t resourceIndex, ID3D11ShaderResourceView *srv)
{
ASSERT(resourceIndex < mCurrentSRVs.size());
SRVRecord *record = &mCurrentSRVs[resourceIndex];
record->srv = reinterpret_cast<uintptr_t>(srv);
if (srv)
{
record->resource = reinterpret_cast<uintptr_t>(GetViewResource(srv));
srv->GetDesc(&record->desc);
mHighestUsedSRV = std::max(resourceIndex + 1, mHighestUsedSRV);
}
else
{
record->resource = 0;
if (resourceIndex + 1 == mHighestUsedSRV)
{
do
{
--mHighestUsedSRV;
} while (mHighestUsedSRV > 0 && mCurrentSRVs[mHighestUsedSRV].srv == 0);
}
}
}
void StateManager11::SRVCache::clear()
{
if (mCurrentSRVs.empty())
{
return;
}
memset(&mCurrentSRVs[0], 0, sizeof(SRVRecord) * mCurrentSRVs.size());
mHighestUsedSRV = 0;
}
// ShaderConstants11 implementation
ShaderConstants11::ShaderConstants11()
: mVertexDirty(true),
mPixelDirty(true),
mComputeDirty(true),
mSamplerMetadataVSDirty(true),
mSamplerMetadataPSDirty(true),
mSamplerMetadataCSDirty(true)
{
}
void ShaderConstants11::init(const gl::Caps &caps)
{
mSamplerMetadataVS.resize(caps.maxVertexTextureImageUnits);
mSamplerMetadataPS.resize(caps.maxTextureImageUnits);
mSamplerMetadataCS.resize(caps.maxComputeTextureImageUnits);
}
size_t ShaderConstants11::getRequiredBufferSize(gl::SamplerType samplerType) const
{
switch (samplerType)
{
case gl::SAMPLER_VERTEX:
return sizeof(Vertex) + mSamplerMetadataVS.size() * sizeof(SamplerMetadata);
case gl::SAMPLER_PIXEL:
return sizeof(Pixel) + mSamplerMetadataPS.size() * sizeof(SamplerMetadata);
case gl::SAMPLER_COMPUTE:
return sizeof(Compute) + mSamplerMetadataCS.size() * sizeof(SamplerMetadata);
default:
UNREACHABLE();
return 0;
}
}
void ShaderConstants11::markDirty()
{
mVertexDirty = true;
mPixelDirty = true;
mComputeDirty = true;
mSamplerMetadataVSDirty = true;
mSamplerMetadataPSDirty = true;
mSamplerMetadataCSDirty = true;
}
bool ShaderConstants11::updateSamplerMetadata(SamplerMetadata *data, const gl::Texture &texture)
{
bool dirty = false;
unsigned int baseLevel = texture.getTextureState().getEffectiveBaseLevel();
GLenum sizedFormat =
texture.getFormat(texture.getTarget(), baseLevel).info->sizedInternalFormat;
if (data->baseLevel != static_cast<int>(baseLevel))
{
data->baseLevel = static_cast<int>(baseLevel);
dirty = true;
}
// Some metadata is needed only for integer textures. We avoid updating the constant buffer
// unnecessarily by changing the data only in case the texture is an integer texture and
// the values have changed.
bool needIntegerTextureMetadata = false;
// internalFormatBits == 0 means a 32-bit texture in the case of integer textures.
int internalFormatBits = 0;
switch (sizedFormat)
{
case GL_RGBA32I:
case GL_RGBA32UI:
case GL_RGB32I:
case GL_RGB32UI:
case GL_RG32I:
case GL_RG32UI:
case GL_R32I:
case GL_R32UI:
needIntegerTextureMetadata = true;
break;
case GL_RGBA16I:
case GL_RGBA16UI:
case GL_RGB16I:
case GL_RGB16UI:
case GL_RG16I:
case GL_RG16UI:
case GL_R16I:
case GL_R16UI:
needIntegerTextureMetadata = true;
internalFormatBits = 16;
break;
case GL_RGBA8I:
case GL_RGBA8UI:
case GL_RGB8I:
case GL_RGB8UI:
case GL_RG8I:
case GL_RG8UI:
case GL_R8I:
case GL_R8UI:
needIntegerTextureMetadata = true;
internalFormatBits = 8;
break;
case GL_RGB10_A2UI:
needIntegerTextureMetadata = true;
internalFormatBits = 10;
break;
default:
break;
}
if (needIntegerTextureMetadata)
{
if (data->internalFormatBits != internalFormatBits)
{
data->internalFormatBits = internalFormatBits;
dirty = true;
}
// Pack the wrap values into one integer so we can fit all the metadata in one 4-integer
// vector.
GLenum wrapS = texture.getWrapS();
GLenum wrapT = texture.getWrapT();
GLenum wrapR = texture.getWrapR();
int wrapModes = GetWrapBits(wrapS) | (GetWrapBits(wrapT) << 2) | (GetWrapBits(wrapR) << 4);
if (data->wrapModes != wrapModes)
{
data->wrapModes = wrapModes;
dirty = true;
}
}
return dirty;
}
void ShaderConstants11::setComputeWorkGroups(GLuint numGroupsX,
GLuint numGroupsY,
GLuint numGroupsZ)
{
mCompute.numWorkGroups[0] = numGroupsX;
mCompute.numWorkGroups[1] = numGroupsY;
mCompute.numWorkGroups[2] = numGroupsZ;
mComputeDirty = true;
}
void ShaderConstants11::setMultiviewWriteToViewportIndex(GLfloat index)
{
mVertex.multiviewWriteToViewportIndex = index;
mVertexDirty = true;
mPixel.multiviewWriteToViewportIndex = index;
mPixelDirty = true;
}
void ShaderConstants11::onViewportChange(const gl::Rectangle &glViewport,
const D3D11_VIEWPORT &dxViewport,
bool is9_3,
bool presentPathFast)
{
mVertexDirty = true;
mPixelDirty = true;
// On Feature Level 9_*, we must emulate large and/or negative viewports in the shaders
// using viewAdjust (like the D3D9 renderer).
if (is9_3)
{
mVertex.viewAdjust[0] = static_cast<float>((glViewport.width - dxViewport.Width) +
2 * (glViewport.x - dxViewport.TopLeftX)) /
dxViewport.Width;
mVertex.viewAdjust[1] = static_cast<float>((glViewport.height - dxViewport.Height) +
2 * (glViewport.y - dxViewport.TopLeftY)) /
dxViewport.Height;
mVertex.viewAdjust[2] = static_cast<float>(glViewport.width) / dxViewport.Width;
mVertex.viewAdjust[3] = static_cast<float>(glViewport.height) / dxViewport.Height;
}
mPixel.viewCoords[0] = glViewport.width * 0.5f;
mPixel.viewCoords[1] = glViewport.height * 0.5f;
mPixel.viewCoords[2] = glViewport.x + (glViewport.width * 0.5f);
mPixel.viewCoords[3] = glViewport.y + (glViewport.height * 0.5f);
// Instanced pointsprite emulation requires ViewCoords to be defined in the
// the vertex shader.
mVertex.viewCoords[0] = mPixel.viewCoords[0];
mVertex.viewCoords[1] = mPixel.viewCoords[1];
mVertex.viewCoords[2] = mPixel.viewCoords[2];
mVertex.viewCoords[3] = mPixel.viewCoords[3];
const float zNear = dxViewport.MinDepth;
const float zFar = dxViewport.MaxDepth;
mPixel.depthFront[0] = (zFar - zNear) * 0.5f;
mPixel.depthFront[1] = (zNear + zFar) * 0.5f;
mVertex.depthRange[0] = zNear;
mVertex.depthRange[1] = zFar;
mVertex.depthRange[2] = zFar - zNear;
mPixel.depthRange[0] = zNear;
mPixel.depthRange[1] = zFar;
mPixel.depthRange[2] = zFar - zNear;
mPixel.viewScale[0] = 1.0f;
mPixel.viewScale[1] = presentPathFast ? 1.0f : -1.0f;
// Updates to the multiviewWriteToViewportIndex member are to be handled whenever the draw
// framebuffer's layout is changed.
mVertex.viewScale[0] = mPixel.viewScale[0];
mVertex.viewScale[1] = mPixel.viewScale[1];
}
void ShaderConstants11::onSamplerChange(gl::SamplerType samplerType,
unsigned int samplerIndex,
const gl::Texture &texture)
{
switch (samplerType)
{
case gl::SAMPLER_VERTEX:
if (updateSamplerMetadata(&mSamplerMetadataVS[samplerIndex], texture))
{
mSamplerMetadataVSDirty = true;
}
break;
case gl::SAMPLER_PIXEL:
if (updateSamplerMetadata(&mSamplerMetadataPS[samplerIndex], texture))
{
mSamplerMetadataPSDirty = true;
}
break;
case gl::SAMPLER_COMPUTE:
if (updateSamplerMetadata(&mSamplerMetadataCS[samplerIndex], texture))
{
mSamplerMetadataCSDirty = true;
}
break;
default:
UNREACHABLE();
break;
}
}
gl::Error ShaderConstants11::updateBuffer(ID3D11DeviceContext *deviceContext,
gl::SamplerType samplerType,
const ProgramD3D &programD3D,
const d3d11::Buffer &driverConstantBuffer)
{
bool dirty = false;
size_t dataSize = 0;
const uint8_t *data = nullptr;
const uint8_t *samplerData = nullptr;
switch (samplerType)
{
case gl::SAMPLER_VERTEX:
dirty = mVertexDirty || mSamplerMetadataVSDirty;
dataSize = sizeof(Vertex);
data = reinterpret_cast<const uint8_t *>(&mVertex);
samplerData = reinterpret_cast<const uint8_t *>(mSamplerMetadataVS.data());
mVertexDirty = false;
mSamplerMetadataVSDirty = false;
break;
case gl::SAMPLER_PIXEL:
dirty = mPixelDirty || mSamplerMetadataPSDirty;
dataSize = sizeof(Pixel);
data = reinterpret_cast<const uint8_t *>(&mPixel);
samplerData = reinterpret_cast<const uint8_t *>(mSamplerMetadataPS.data());
mPixelDirty = false;
mSamplerMetadataPSDirty = false;
break;
case gl::SAMPLER_COMPUTE:
dirty = mComputeDirty || mSamplerMetadataCSDirty;
dataSize = sizeof(Compute);
data = reinterpret_cast<const uint8_t *>(&mCompute);
samplerData = reinterpret_cast<const uint8_t *>(mSamplerMetadataCS.data());
mComputeDirty = false;
mSamplerMetadataCSDirty = false;
break;
default:
UNREACHABLE();
break;
}
ASSERT(driverConstantBuffer.valid());
if (!dirty)
{
return gl::NoError();
}
// Previous buffer contents are discarded, so we need to refresh the whole buffer.
D3D11_MAPPED_SUBRESOURCE mapping = {0};
HRESULT result =
deviceContext->Map(driverConstantBuffer.get(), 0, D3D11_MAP_WRITE_DISCARD, 0, &mapping);
if (FAILED(result))
{
return gl::OutOfMemory() << "Internal error mapping constant buffer: " << gl::FmtHR(result);
}
size_t samplerDataBytes = sizeof(SamplerMetadata) * programD3D.getUsedSamplerRange(samplerType);
memcpy(mapping.pData, data, dataSize);
memcpy(reinterpret_cast<uint8_t *>(mapping.pData) + dataSize, samplerData, samplerDataBytes);
deviceContext->Unmap(driverConstantBuffer.get(), 0);
return gl::NoError();
}
static const GLenum QueryTypes[] = {GL_ANY_SAMPLES_PASSED, GL_ANY_SAMPLES_PASSED_CONSERVATIVE,
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, GL_TIME_ELAPSED_EXT,
GL_COMMANDS_COMPLETED_CHROMIUM};
StateManager11::StateManager11(Renderer11 *renderer)
: mRenderer(renderer),
mInternalDirtyBits(),
mCurBlendColor(0, 0, 0, 0),
mCurSampleMask(0),
mCurStencilRef(0),
mCurStencilBackRef(0),
mCurStencilSize(0),
mCurScissorEnabled(false),
mCurScissorRect(),
mCurViewport(),
mCurNear(0.0f),
mCurFar(0.0f),
mViewportBounds(),
mRenderTargetIsDirty(true),
mCurPresentPathFastEnabled(false),
mCurPresentPathFastColorBufferHeight(0),
mDirtyCurrentValueAttribs(),
mCurrentValueAttribs(),
mCurrentInputLayout(),
mInputLayoutIsDirty(false),
mVertexAttribsNeedTranslation(false),
mDirtyVertexBufferRange(gl::MAX_VERTEX_ATTRIBS, 0),
mCurrentPrimitiveTopology(D3D_PRIMITIVE_TOPOLOGY_UNDEFINED),
mDirtySwizzles(false),
mAppliedIB(nullptr),
mAppliedIBFormat(DXGI_FORMAT_UNKNOWN),
mAppliedIBOffset(0),
mAppliedIBChanged(false),
mVertexDataManager(renderer),
mIndexDataManager(renderer, RENDERER_D3D11),
mIsMultiviewEnabled(false),
mEmptySerial(mRenderer->generateSerial()),
mIsTransformFeedbackCurrentlyActiveUnpaused(false)
{
mCurBlendState.blend = false;
mCurBlendState.sourceBlendRGB = GL_ONE;
mCurBlendState.destBlendRGB = GL_ZERO;
mCurBlendState.sourceBlendAlpha = GL_ONE;
mCurBlendState.destBlendAlpha = GL_ZERO;
mCurBlendState.blendEquationRGB = GL_FUNC_ADD;
mCurBlendState.blendEquationAlpha = GL_FUNC_ADD;
mCurBlendState.colorMaskRed = true;
mCurBlendState.colorMaskBlue = true;
mCurBlendState.colorMaskGreen = true;
mCurBlendState.colorMaskAlpha = true;
mCurBlendState.sampleAlphaToCoverage = false;
mCurBlendState.dither = false;
mCurDepthStencilState.depthTest = false;
mCurDepthStencilState.depthFunc = GL_LESS;
mCurDepthStencilState.depthMask = true;
mCurDepthStencilState.stencilTest = false;
mCurDepthStencilState.stencilMask = true;
mCurDepthStencilState.stencilFail = GL_KEEP;
mCurDepthStencilState.stencilPassDepthFail = GL_KEEP;
mCurDepthStencilState.stencilPassDepthPass = GL_KEEP;
mCurDepthStencilState.stencilWritemask = static_cast<GLuint>(-1);
mCurDepthStencilState.stencilBackFunc = GL_ALWAYS;
mCurDepthStencilState.stencilBackMask = static_cast<GLuint>(-1);
mCurDepthStencilState.stencilBackFail = GL_KEEP;
mCurDepthStencilState.stencilBackPassDepthFail = GL_KEEP;
mCurDepthStencilState.stencilBackPassDepthPass = GL_KEEP;
mCurDepthStencilState.stencilBackWritemask = static_cast<GLuint>(-1);
mCurRasterState.rasterizerDiscard = false;
mCurRasterState.cullFace = false;
mCurRasterState.cullMode = GL_BACK;
mCurRasterState.frontFace = GL_CCW;
mCurRasterState.polygonOffsetFill = false;
mCurRasterState.polygonOffsetFactor = 0.0f;
mCurRasterState.polygonOffsetUnits = 0.0f;
mCurRasterState.pointDrawMode = false;
mCurRasterState.multiSample = false;
// Start with all internal dirty bits set.
mInternalDirtyBits.set();
// Initially all current value attributes must be updated on first use.
mDirtyCurrentValueAttribs.set();
mCurrentVertexBuffers.fill(nullptr);
mCurrentVertexStrides.fill(std::numeric_limits<UINT>::max());
mCurrentVertexOffsets.fill(std::numeric_limits<UINT>::max());
}
StateManager11::~StateManager11()
{
}
template <typename SRVType>
void StateManager11::setShaderResourceInternal(gl::SamplerType shaderType,
UINT resourceSlot,
const SRVType *srv)
{
auto &currentSRVs = (shaderType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
ASSERT(static_cast<size_t>(resourceSlot) < currentSRVs.size());
const SRVRecord &record = currentSRVs[resourceSlot];
if (record.srv != reinterpret_cast<uintptr_t>(srv))
{
auto deviceContext = mRenderer->getDeviceContext();
ID3D11ShaderResourceView *srvPtr = srv ? srv->get() : nullptr;
if (shaderType == gl::SAMPLER_VERTEX)
{
deviceContext->VSSetShaderResources(resourceSlot, 1, &srvPtr);
}
else
{
deviceContext->PSSetShaderResources(resourceSlot, 1, &srvPtr);
}
currentSRVs.update(resourceSlot, srvPtr);
}
}
void StateManager11::updateStencilSizeIfChanged(bool depthStencilInitialized,
unsigned int stencilSize)
{
if (!depthStencilInitialized || stencilSize != mCurStencilSize)
{
mCurStencilSize = stencilSize;
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
}
void StateManager11::checkPresentPath(const gl::Context *context)
{
if (!mRenderer->presentPathFastEnabled())
return;
const auto *framebuffer = context->getGLState().getDrawFramebuffer();
const auto *firstColorAttachment = framebuffer->getFirstColorbuffer();
const bool presentPathFastActive = UsePresentPathFast(mRenderer, firstColorAttachment);
const int colorBufferHeight = firstColorAttachment ? firstColorAttachment->getSize().height : 0;
if ((mCurPresentPathFastEnabled != presentPathFastActive) ||
(presentPathFastActive && (colorBufferHeight != mCurPresentPathFastColorBufferHeight)))
{
mCurPresentPathFastEnabled = presentPathFastActive;
mCurPresentPathFastColorBufferHeight = colorBufferHeight;
// Scissor rect may need to be vertically inverted
mInternalDirtyBits.set(DIRTY_BIT_SCISSOR_STATE);
// Cull Mode may need to be inverted
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
// Viewport may need to be vertically inverted
invalidateViewport(context);
}
}
gl::Error StateManager11::updateStateForCompute(const gl::Context *context,
GLuint numGroupsX,
GLuint numGroupsY,
GLuint numGroupsZ)
{
mShaderConstants.setComputeWorkGroups(numGroupsX, numGroupsY, numGroupsZ);
// TODO(jmadill): Use dirty bits.
const auto &glState = context->getGLState();
auto *programD3D = GetImplAs<ProgramD3D>(glState.getProgram());
programD3D->updateSamplerMapping();
// TODO(jmadill): Use dirty bits.
ANGLE_TRY(generateSwizzlesForShader(context, gl::SAMPLER_COMPUTE));
// TODO(jmadill): More complete implementation.
ANGLE_TRY(syncTextures(context));
// TODO(Xinghua): applyUniformBuffers for compute shader.
return gl::NoError();
}
void StateManager11::syncState(const gl::Context *context, const gl::State::DirtyBits &dirtyBits)
{
if (!dirtyBits.any())
{
return;
}
const auto &state = context->getGLState();
for (auto dirtyBit : dirtyBits)
{
switch (dirtyBit)
{
case gl::State::DIRTY_BIT_BLEND_EQUATIONS:
{
const gl::BlendState &blendState = state.getBlendState();
if (blendState.blendEquationRGB != mCurBlendState.blendEquationRGB ||
blendState.blendEquationAlpha != mCurBlendState.blendEquationAlpha)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
}
case gl::State::DIRTY_BIT_BLEND_FUNCS:
{
const gl::BlendState &blendState = state.getBlendState();
if (blendState.sourceBlendRGB != mCurBlendState.sourceBlendRGB ||
blendState.destBlendRGB != mCurBlendState.destBlendRGB ||
blendState.sourceBlendAlpha != mCurBlendState.sourceBlendAlpha ||
blendState.destBlendAlpha != mCurBlendState.destBlendAlpha)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
}
case gl::State::DIRTY_BIT_BLEND_ENABLED:
if (state.getBlendState().blend != mCurBlendState.blend)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
case gl::State::DIRTY_BIT_SAMPLE_ALPHA_TO_COVERAGE_ENABLED:
if (state.getBlendState().sampleAlphaToCoverage !=
mCurBlendState.sampleAlphaToCoverage)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
case gl::State::DIRTY_BIT_DITHER_ENABLED:
if (state.getBlendState().dither != mCurBlendState.dither)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
case gl::State::DIRTY_BIT_COLOR_MASK:
{
const gl::BlendState &blendState = state.getBlendState();
if (blendState.colorMaskRed != mCurBlendState.colorMaskRed ||
blendState.colorMaskGreen != mCurBlendState.colorMaskGreen ||
blendState.colorMaskBlue != mCurBlendState.colorMaskBlue ||
blendState.colorMaskAlpha != mCurBlendState.colorMaskAlpha)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
}
case gl::State::DIRTY_BIT_BLEND_COLOR:
if (state.getBlendColor() != mCurBlendColor)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
break;
case gl::State::DIRTY_BIT_DEPTH_MASK:
if (state.getDepthStencilState().depthMask != mCurDepthStencilState.depthMask)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
case gl::State::DIRTY_BIT_DEPTH_TEST_ENABLED:
if (state.getDepthStencilState().depthTest != mCurDepthStencilState.depthTest)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
case gl::State::DIRTY_BIT_DEPTH_FUNC:
if (state.getDepthStencilState().depthFunc != mCurDepthStencilState.depthFunc)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
case gl::State::DIRTY_BIT_STENCIL_TEST_ENABLED:
if (state.getDepthStencilState().stencilTest != mCurDepthStencilState.stencilTest)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
case gl::State::DIRTY_BIT_STENCIL_FUNCS_FRONT:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilFunc != mCurDepthStencilState.stencilFunc ||
depthStencil.stencilMask != mCurDepthStencilState.stencilMask ||
state.getStencilRef() != mCurStencilRef)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
}
case gl::State::DIRTY_BIT_STENCIL_FUNCS_BACK:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilBackFunc != mCurDepthStencilState.stencilBackFunc ||
depthStencil.stencilBackMask != mCurDepthStencilState.stencilBackMask ||
state.getStencilBackRef() != mCurStencilBackRef)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
}
case gl::State::DIRTY_BIT_STENCIL_WRITEMASK_FRONT:
if (state.getDepthStencilState().stencilWritemask !=
mCurDepthStencilState.stencilWritemask)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
case gl::State::DIRTY_BIT_STENCIL_WRITEMASK_BACK:
if (state.getDepthStencilState().stencilBackWritemask !=
mCurDepthStencilState.stencilBackWritemask)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
case gl::State::DIRTY_BIT_STENCIL_OPS_FRONT:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilFail != mCurDepthStencilState.stencilFail ||
depthStencil.stencilPassDepthFail !=
mCurDepthStencilState.stencilPassDepthFail ||
depthStencil.stencilPassDepthPass != mCurDepthStencilState.stencilPassDepthPass)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
}
case gl::State::DIRTY_BIT_STENCIL_OPS_BACK:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilBackFail != mCurDepthStencilState.stencilBackFail ||
depthStencil.stencilBackPassDepthFail !=
mCurDepthStencilState.stencilBackPassDepthFail ||
depthStencil.stencilBackPassDepthPass !=
mCurDepthStencilState.stencilBackPassDepthPass)
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
break;
}
case gl::State::DIRTY_BIT_CULL_FACE_ENABLED:
if (state.getRasterizerState().cullFace != mCurRasterState.cullFace)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
break;
case gl::State::DIRTY_BIT_CULL_FACE:
if (state.getRasterizerState().cullMode != mCurRasterState.cullMode)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
break;
case gl::State::DIRTY_BIT_FRONT_FACE:
if (state.getRasterizerState().frontFace != mCurRasterState.frontFace)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
break;
case gl::State::DIRTY_BIT_POLYGON_OFFSET_FILL_ENABLED:
if (state.getRasterizerState().polygonOffsetFill !=
mCurRasterState.polygonOffsetFill)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
break;
case gl::State::DIRTY_BIT_POLYGON_OFFSET:
{
const gl::RasterizerState &rasterState = state.getRasterizerState();
if (rasterState.polygonOffsetFactor != mCurRasterState.polygonOffsetFactor ||
rasterState.polygonOffsetUnits != mCurRasterState.polygonOffsetUnits)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
break;
}
case gl::State::DIRTY_BIT_RASTERIZER_DISCARD_ENABLED:
if (state.getRasterizerState().rasterizerDiscard !=
mCurRasterState.rasterizerDiscard)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
// Enabling/disabling rasterizer discard affects the pixel shader.
invalidateShaders();
}
break;
case gl::State::DIRTY_BIT_SCISSOR:
if (state.getScissor() != mCurScissorRect)
{
mInternalDirtyBits.set(DIRTY_BIT_SCISSOR_STATE);
}
break;
case gl::State::DIRTY_BIT_SCISSOR_TEST_ENABLED:
if (state.isScissorTestEnabled() != mCurScissorEnabled)
{
mInternalDirtyBits.set(DIRTY_BIT_SCISSOR_STATE);
// Rasterizer state update needs mCurScissorsEnabled and updates when it changes
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
break;
case gl::State::DIRTY_BIT_DEPTH_RANGE:
if (state.getNearPlane() != mCurNear || state.getFarPlane() != mCurFar)
{
invalidateViewport(context);
}
break;
case gl::State::DIRTY_BIT_VIEWPORT:
if (state.getViewport() != mCurViewport)
{
invalidateViewport(context);
}
break;
case gl::State::DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING:
invalidateRenderTarget();
if (mIsMultiviewEnabled)
{
handleMultiviewDrawFramebufferChange(context);
}
break;
case gl::State::DIRTY_BIT_VERTEX_ARRAY_BINDING:
invalidateVertexBuffer();
// Force invalidate the current value attributes, since the VertexArray11 keeps an
// internal cache of TranslatedAttributes, and they CurrentValue attributes are
// owned by the StateManager11/Context.
mDirtyCurrentValueAttribs.set();
break;
case gl::State::DIRTY_BIT_TEXTURE_BINDINGS:
invalidateTexturesAndSamplers();
break;
case gl::State::DIRTY_BIT_SAMPLER_BINDINGS:
invalidateTexturesAndSamplers();
break;
case gl::State::DIRTY_BIT_PROGRAM_EXECUTABLE:
{
mInternalDirtyBits.set(DIRTY_BIT_SHADERS);
invalidateVertexBuffer();
invalidateRenderTarget();
invalidateTexturesAndSamplers();
invalidateProgramUniforms();
invalidateProgramUniformBuffers();
gl::VertexArray *vao = state.getVertexArray();
if (mIsMultiviewEnabled && vao != nullptr)
{
// If ANGLE_multiview is enabled, the attribute divisor has to be updated for
// each binding.
VertexArray11 *vao11 = GetImplAs<VertexArray11>(vao);
const gl::Program *program = state.getProgram();
int numViews = 1;
if (program != nullptr && program->usesMultiview())
{
numViews = program->getNumViews();
}
vao11->markAllAttributeDivisorsForAdjustment(numViews);
}
}
break;
default:
if (dirtyBit >= gl::State::DIRTY_BIT_CURRENT_VALUE_0 &&
dirtyBit < gl::State::DIRTY_BIT_CURRENT_VALUE_MAX)
{
size_t attribIndex =
static_cast<size_t>(dirtyBit - gl::State::DIRTY_BIT_CURRENT_VALUE_0);
invalidateCurrentValueAttrib(attribIndex);
}
break;
}
}
// TODO(jmadill): Input layout and vertex buffer state.
}
void StateManager11::handleMultiviewDrawFramebufferChange(const gl::Context *context)
{
const auto &glState = context->getGLState();
const gl::Framebuffer *drawFramebuffer = glState.getDrawFramebuffer();
ASSERT(drawFramebuffer != nullptr);
// Update viewport offsets.
const std::vector<gl::Offset> *attachmentViewportOffsets =
drawFramebuffer->getViewportOffsets();
const std::vector<gl::Offset> &viewportOffsets =
attachmentViewportOffsets != nullptr
? *attachmentViewportOffsets
: gl::FramebufferAttachment::GetDefaultViewportOffsetVector();
if (mViewportOffsets != viewportOffsets)
{
mViewportOffsets = viewportOffsets;
// Because new viewport offsets are to be applied, we have to mark the internal viewport and
// scissor state as dirty.
invalidateViewport(context);
mInternalDirtyBits.set(DIRTY_BIT_SCISSOR_STATE);
}
switch (drawFramebuffer->getMultiviewLayout())
{
case GL_FRAMEBUFFER_MULTIVIEW_SIDE_BY_SIDE_ANGLE:
mShaderConstants.setMultiviewWriteToViewportIndex(1.0f);
break;
case GL_FRAMEBUFFER_MULTIVIEW_LAYERED_ANGLE:
// Because the base view index is applied as an offset to the 2D texture array when the
// RTV is created, we just have to pass a boolean to select which code path is to be
// used.
mShaderConstants.setMultiviewWriteToViewportIndex(0.0f);
break;
default:
// There is no need to update the value in the constant buffer if the active framebuffer
// object does not have a multiview layout.
break;
}
}
gl::Error StateManager11::syncBlendState(const gl::Context *context,
const gl::Framebuffer *framebuffer,
const gl::BlendState &blendState,
const gl::ColorF &blendColor,
unsigned int sampleMask)
{
const d3d11::BlendState *dxBlendState = nullptr;
const d3d11::BlendStateKey &key =
RenderStateCache::GetBlendStateKey(context, framebuffer, blendState);
ANGLE_TRY(mRenderer->getBlendState(key, &dxBlendState));
ASSERT(dxBlendState != nullptr);
float blendColors[4] = {0.0f};
if (blendState.sourceBlendRGB != GL_CONSTANT_ALPHA &&
blendState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
blendColors[0] = blendColor.red;
blendColors[1] = blendColor.green;
blendColors[2] = blendColor.blue;
blendColors[3] = blendColor.alpha;
}
else
{
blendColors[0] = blendColor.alpha;
blendColors[1] = blendColor.alpha;
blendColors[2] = blendColor.alpha;
blendColors[3] = blendColor.alpha;
}
mRenderer->getDeviceContext()->OMSetBlendState(dxBlendState->get(), blendColors, sampleMask);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
mCurSampleMask = sampleMask;
return gl::NoError();
}
gl::Error StateManager11::syncDepthStencilState(const gl::State &glState)
{
mCurDepthStencilState = glState.getDepthStencilState();
mCurStencilRef = glState.getStencilRef();
mCurStencilBackRef = glState.getStencilBackRef();
// get the maximum size of the stencil ref
unsigned int maxStencil = 0;
if (mCurDepthStencilState.stencilTest && mCurStencilSize > 0)
{
maxStencil = (1 << mCurStencilSize) - 1;
}
ASSERT((mCurDepthStencilState.stencilWritemask & maxStencil) ==
(mCurDepthStencilState.stencilBackWritemask & maxStencil));
ASSERT(mCurStencilRef == mCurStencilBackRef);
ASSERT((mCurDepthStencilState.stencilMask & maxStencil) ==
(mCurDepthStencilState.stencilBackMask & maxStencil));
gl::DepthStencilState modifiedGLState = glState.getDepthStencilState();
ASSERT(mCurDisableDepth.valid() && mCurDisableStencil.valid());
if (mCurDisableDepth.value())
{
modifiedGLState.depthTest = false;
modifiedGLState.depthMask = false;
}
if (mCurDisableStencil.value())
{
modifiedGLState.stencilWritemask = 0;
modifiedGLState.stencilBackWritemask = 0;
modifiedGLState.stencilTest = false;
}
const d3d11::DepthStencilState *d3dState = nullptr;
ANGLE_TRY(mRenderer->getDepthStencilState(modifiedGLState, &d3dState));
ASSERT(d3dState);
// Max D3D11 stencil reference value is 0xFF,
// corresponding to the max 8 bits in a stencil buffer
// GL specifies we should clamp the ref value to the
// nearest bit depth when doing stencil ops
static_assert(D3D11_DEFAULT_STENCIL_READ_MASK == 0xFF,
"Unexpected value of D3D11_DEFAULT_STENCIL_READ_MASK");
static_assert(D3D11_DEFAULT_STENCIL_WRITE_MASK == 0xFF,
"Unexpected value of D3D11_DEFAULT_STENCIL_WRITE_MASK");
UINT dxStencilRef = std::min<UINT>(mCurStencilRef, 0xFFu);
mRenderer->getDeviceContext()->OMSetDepthStencilState(d3dState->get(), dxStencilRef);
return gl::NoError();
}
gl::Error StateManager11::syncRasterizerState(const gl::Context *context, bool pointDrawMode)
{
// TODO: Remove pointDrawMode and multiSample from gl::RasterizerState.
gl::RasterizerState rasterState = context->getGLState().getRasterizerState();
rasterState.pointDrawMode = pointDrawMode;
rasterState.multiSample = mCurRasterState.multiSample;
ID3D11RasterizerState *dxRasterState = nullptr;
if (mCurPresentPathFastEnabled)
{
gl::RasterizerState modifiedRasterState = rasterState;
// If prseent path fast is active then we need invert the front face state.
// This ensures that both gl_FrontFacing is correct, and front/back culling
// is performed correctly.
if (modifiedRasterState.frontFace == GL_CCW)
{
modifiedRasterState.frontFace = GL_CW;
}
else
{
ASSERT(modifiedRasterState.frontFace == GL_CW);
modifiedRasterState.frontFace = GL_CCW;
}
ANGLE_TRY(
mRenderer->getRasterizerState(modifiedRasterState, mCurScissorEnabled, &dxRasterState));
}
else
{
ANGLE_TRY(mRenderer->getRasterizerState(rasterState, mCurScissorEnabled, &dxRasterState));
}
mRenderer->getDeviceContext()->RSSetState(dxRasterState);
mCurRasterState = rasterState;
return gl::NoError();
}
void StateManager11::syncScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
int modifiedScissorY = scissor.y;
if (mCurPresentPathFastEnabled)
{
modifiedScissorY = mCurPresentPathFastColorBufferHeight - scissor.height - scissor.y;
}
if (enabled)
{
std::array<D3D11_RECT, gl::IMPLEMENTATION_ANGLE_MULTIVIEW_MAX_VIEWS> rectangles;
const UINT numRectangles = static_cast<UINT>(mViewportOffsets.size());
for (UINT i = 0u; i < numRectangles; ++i)
{
D3D11_RECT &rect = rectangles[i];
int x = scissor.x + mViewportOffsets[i].x;
int y = modifiedScissorY + mViewportOffsets[i].y;
rect.left = std::max(0, x);
rect.top = std::max(0, y);
rect.right = x + std::max(0, scissor.width);
rect.bottom = y + std::max(0, scissor.height);
}
mRenderer->getDeviceContext()->RSSetScissorRects(numRectangles, rectangles.data());
}
mCurScissorRect = scissor;
mCurScissorEnabled = enabled;
}
void StateManager11::syncViewport(const gl::Context *context)
{
const auto &glState = context->getGLState();
gl::Framebuffer *framebuffer = glState.getDrawFramebuffer();
float actualZNear = gl::clamp01(glState.getNearPlane());
float actualZFar = gl::clamp01(glState.getFarPlane());
const auto &caps = context->getCaps();
int dxMaxViewportBoundsX = static_cast<int>(caps.maxViewportWidth);
int dxMaxViewportBoundsY = static_cast<int>(caps.maxViewportHeight);
int dxMinViewportBoundsX = -dxMaxViewportBoundsX;
int dxMinViewportBoundsY = -dxMaxViewportBoundsY;
bool is9_3 = mRenderer->getRenderer11DeviceCaps().featureLevel <= D3D_FEATURE_LEVEL_9_3;
if (is9_3)
{
// Feature Level 9 viewports shouldn't exceed the dimensions of the rendertarget.
dxMaxViewportBoundsX = static_cast<int>(mViewportBounds.width);
dxMaxViewportBoundsY = static_cast<int>(mViewportBounds.height);
dxMinViewportBoundsX = 0;
dxMinViewportBoundsY = 0;
}
const auto &viewport = glState.getViewport();
std::array<D3D11_VIEWPORT, gl::IMPLEMENTATION_ANGLE_MULTIVIEW_MAX_VIEWS> dxViewports;
const UINT numRectangles = static_cast<UINT>(mViewportOffsets.size());
int dxViewportTopLeftX = 0;
int dxViewportTopLeftY = 0;
int dxViewportWidth = 0;
int dxViewportHeight = 0;
for (UINT i = 0u; i < numRectangles; ++i)
{
dxViewportTopLeftX = gl::clamp(viewport.x + mViewportOffsets[i].x, dxMinViewportBoundsX,
dxMaxViewportBoundsX);
dxViewportTopLeftY = gl::clamp(viewport.y + mViewportOffsets[i].y, dxMinViewportBoundsY,
dxMaxViewportBoundsY);
dxViewportWidth = gl::clamp(viewport.width, 0, dxMaxViewportBoundsX - dxViewportTopLeftX);
dxViewportHeight = gl::clamp(viewport.height, 0, dxMaxViewportBoundsY - dxViewportTopLeftY);
D3D11_VIEWPORT &dxViewport = dxViewports[i];
dxViewport.TopLeftX = static_cast<float>(dxViewportTopLeftX);
if (mCurPresentPathFastEnabled)
{
// When present path fast is active and we're rendering to framebuffer 0, we must invert
// the viewport in Y-axis.
// NOTE: We delay the inversion until right before the call to RSSetViewports, and leave
// dxViewportTopLeftY unchanged. This allows us to calculate viewAdjust below using the
// unaltered dxViewportTopLeftY value.
dxViewport.TopLeftY = static_cast<float>(mCurPresentPathFastColorBufferHeight -
dxViewportTopLeftY - dxViewportHeight);
}
else
{
dxViewport.TopLeftY = static_cast<float>(dxViewportTopLeftY);
}
// The es 3.1 spec section 9.2 states that, "If there are no attachments, rendering
// will be limited to a rectangle having a lower left of (0, 0) and an upper right of
// (width, height), where width and height are the framebuffer object's default width
// and height." See http://anglebug.com/1594
// If the Framebuffer has no color attachment and the default width or height is smaller
// than the current viewport, use the smaller of the two sizes.
// If framebuffer default width or height is 0, the params should not set.
if (!framebuffer->getFirstNonNullAttachment() &&
(framebuffer->getDefaultWidth() || framebuffer->getDefaultHeight()))
{
dxViewport.Width =
static_cast<GLfloat>(std::min(viewport.width, framebuffer->getDefaultWidth()));
dxViewport.Height =
static_cast<GLfloat>(std::min(viewport.height, framebuffer->getDefaultHeight()));
}
else
{
dxViewport.Width = static_cast<float>(dxViewportWidth);
dxViewport.Height = static_cast<float>(dxViewportHeight);
}
dxViewport.MinDepth = actualZNear;
dxViewport.MaxDepth = actualZFar;
}
mRenderer->getDeviceContext()->RSSetViewports(numRectangles, dxViewports.data());
mCurViewport = viewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
const D3D11_VIEWPORT adjustViewport = {static_cast<FLOAT>(dxViewportTopLeftX),
static_cast<FLOAT>(dxViewportTopLeftY),
static_cast<FLOAT>(dxViewportWidth),
static_cast<FLOAT>(dxViewportHeight),
actualZNear,
actualZFar};
mShaderConstants.onViewportChange(viewport, adjustViewport, is9_3, mCurPresentPathFastEnabled);
}
void StateManager11::invalidateRenderTarget()
{
mRenderTargetIsDirty = true;
}
void StateManager11::processFramebufferInvalidation(const gl::Context *context)
{
if (!mRenderTargetIsDirty)
{
return;
}
ASSERT(context);
mRenderTargetIsDirty = false;
mInternalDirtyBits.set(DIRTY_BIT_RENDER_TARGET);
// The pixel shader is dependent on the output layout.
invalidateShaders();
// The D3D11 blend state is heavily dependent on the current render target.
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
gl::Framebuffer *fbo = context->getGLState().getDrawFramebuffer();
ASSERT(fbo);
// Disable the depth test/depth write if we are using a stencil-only attachment.
// This is because ANGLE emulates stencil-only with D24S8 on D3D11 - we should neither read
// nor write to the unused depth part of this emulated texture.
bool disableDepth = (!fbo->hasDepth() && fbo->hasStencil());
// Similarly we disable the stencil portion of the DS attachment if the app only binds depth.
bool disableStencil = (fbo->hasDepth() && !fbo->hasStencil());
if (!mCurDisableDepth.valid() || disableDepth != mCurDisableDepth.value() ||
!mCurDisableStencil.valid() || disableStencil != mCurDisableStencil.value())
{
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
mCurDisableDepth = disableDepth;
mCurDisableStencil = disableStencil;
}
bool multiSample = (fbo->getCachedSamples(context) != 0);
if (multiSample != mCurRasterState.multiSample)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
mCurRasterState.multiSample = multiSample;
}
checkPresentPath(context);
if (mRenderer->getRenderer11DeviceCaps().featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
const auto *firstAttachment = fbo->getFirstNonNullAttachment();
if (firstAttachment)
{
const auto &size = firstAttachment->getSize();
if (mViewportBounds.width != size.width || mViewportBounds.height != size.height)
{
mViewportBounds = gl::Extents(size.width, size.height, 1);
invalidateViewport(context);
}
}
}
}
void StateManager11::invalidateBoundViews()
{
mCurVertexSRVs.clear();
mCurPixelSRVs.clear();
invalidateRenderTarget();
}
void StateManager11::invalidateVertexBuffer()
{
unsigned int limit = std::min<unsigned int>(mRenderer->getNativeCaps().maxVertexAttributes,
gl::MAX_VERTEX_ATTRIBS);
mDirtyVertexBufferRange = gl::RangeUI(0, limit);
mInputLayoutIsDirty = true;
mInternalDirtyBits.set(DIRTY_BIT_CURRENT_VALUE_ATTRIBS);
invalidateVertexAttributeTranslation();
}
void StateManager11::invalidateViewport(const gl::Context *context)
{
mInternalDirtyBits.set(DIRTY_BIT_VIEWPORT_STATE);
// Viewport affects the driver constants.
invalidateDriverUniforms();
}
void StateManager11::invalidateTexturesAndSamplers()
{
mInternalDirtyBits.set(DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE);
invalidateSwizzles();
// Texture state affects the driver uniforms (base level, etc).
invalidateDriverUniforms();
}
void StateManager11::invalidateSwizzles()
{
mDirtySwizzles = true;
}
void StateManager11::invalidateProgramUniforms()
{
mInternalDirtyBits.set(DIRTY_BIT_PROGRAM_UNIFORMS);
}
void StateManager11::invalidateDriverUniforms()
{
mInternalDirtyBits.set(DIRTY_BIT_DRIVER_UNIFORMS);
}
void StateManager11::invalidateProgramUniformBuffers()
{
mInternalDirtyBits.set(DIRTY_BIT_PROGRAM_UNIFORM_BUFFERS);
}
void StateManager11::invalidateConstantBuffer(unsigned int slot)
{
if (slot == d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DRIVER)
{
invalidateDriverUniforms();
}
else if (slot == d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DEFAULT_UNIFORM_BLOCK)
{
invalidateProgramUniforms();
}
else
{
invalidateProgramUniformBuffers();
}
}
void StateManager11::invalidateShaders()
{
mInternalDirtyBits.set(DIRTY_BIT_SHADERS);
}
void StateManager11::setRenderTarget(ID3D11RenderTargetView *rtv, ID3D11DepthStencilView *dsv)
{
if ((rtv && unsetConflictingView(rtv)) || (dsv && unsetConflictingView(dsv)))
{
mInternalDirtyBits.set(DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE);
}
mRenderer->getDeviceContext()->OMSetRenderTargets(1, &rtv, dsv);
mInternalDirtyBits.set(DIRTY_BIT_RENDER_TARGET);
}
void StateManager11::setRenderTargets(ID3D11RenderTargetView **rtvs,
UINT numRTVs,
ID3D11DepthStencilView *dsv)
{
bool anyDirty = false;
for (UINT rtvIndex = 0; rtvIndex < numRTVs; ++rtvIndex)
{
anyDirty = anyDirty || unsetConflictingView(rtvs[rtvIndex]);
}
if (anyDirty)
{
mInternalDirtyBits.set(DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE);
}
mRenderer->getDeviceContext()->OMSetRenderTargets(numRTVs, (numRTVs > 0) ? rtvs : nullptr, dsv);
mInternalDirtyBits.set(DIRTY_BIT_RENDER_TARGET);
}
void StateManager11::invalidateVertexAttributeTranslation()
{
mVertexAttribsNeedTranslation = true;
}
void StateManager11::onBeginQuery(Query11 *query)
{
mCurrentQueries.insert(query);
}
void StateManager11::onDeleteQueryObject(Query11 *query)
{
mCurrentQueries.erase(query);
}
gl::Error StateManager11::onMakeCurrent(const gl::Context *context)
{
const gl::State &state = context->getGLState();
for (Query11 *query : mCurrentQueries)
{
ANGLE_TRY(query->pause());
}
mCurrentQueries.clear();
for (GLenum queryType : QueryTypes)
{
gl::Query *query = state.getActiveQuery(queryType);
if (query != nullptr)
{
Query11 *query11 = GetImplAs<Query11>(query);
ANGLE_TRY(query11->resume());
mCurrentQueries.insert(query11);
}
}
return gl::NoError();
}
gl::Error StateManager11::clearTextures(gl::SamplerType samplerType,
size_t rangeStart,
size_t rangeEnd)
{
if (rangeStart == rangeEnd)
{
return gl::NoError();
}
auto &currentSRVs = (samplerType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
gl::Range<size_t> clearRange(rangeStart, std::min(rangeEnd, currentSRVs.highestUsed()));
if (clearRange.empty())
{
return gl::NoError();
}
auto deviceContext = mRenderer->getDeviceContext();
if (samplerType == gl::SAMPLER_VERTEX)
{
deviceContext->VSSetShaderResources(static_cast<unsigned int>(clearRange.low()),
static_cast<unsigned int>(clearRange.length()),
&mNullSRVs[0]);
}
else
{
deviceContext->PSSetShaderResources(static_cast<unsigned int>(clearRange.low()),
static_cast<unsigned int>(clearRange.length()),
&mNullSRVs[0]);
}
for (size_t samplerIndex : clearRange)
{
currentSRVs.update(samplerIndex, nullptr);
}
return gl::NoError();
}
bool StateManager11::unsetConflictingView(ID3D11View *view)
{
uintptr_t resource = reinterpret_cast<uintptr_t>(GetViewResource(view));
return unsetConflictingSRVs(gl::SAMPLER_VERTEX, resource, nullptr) ||
unsetConflictingSRVs(gl::SAMPLER_PIXEL, resource, nullptr);
}
bool StateManager11::unsetConflictingSRVs(gl::SamplerType samplerType,
uintptr_t resource,
const gl::ImageIndex *index)
{
auto &currentSRVs = (samplerType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
bool foundOne = false;
for (size_t resourceIndex = 0; resourceIndex < currentSRVs.size(); ++resourceIndex)
{
auto &record = currentSRVs[resourceIndex];
if (record.srv && record.resource == resource &&
(!index || ImageIndexConflictsWithSRV(*index, record.desc)))
{
setShaderResourceInternal<d3d11::ShaderResourceView>(
samplerType, static_cast<UINT>(resourceIndex), nullptr);
foundOne = true;
}
}
return foundOne;
}
void StateManager11::unsetConflictingAttachmentResources(
const gl::FramebufferAttachment *attachment,
ID3D11Resource *resource)
{
// Unbind render target SRVs from the shader here to prevent D3D11 warnings.
if (attachment->type() == GL_TEXTURE)
{
uintptr_t resourcePtr = reinterpret_cast<uintptr_t>(resource);
const gl::ImageIndex &index = attachment->getTextureImageIndex();
// The index doesn't need to be corrected for the small compressed texture workaround
// because a rendertarget is never compressed.
unsetConflictingSRVs(gl::SAMPLER_VERTEX, resourcePtr, &index);
unsetConflictingSRVs(gl::SAMPLER_PIXEL, resourcePtr, &index);
}
else if (attachment->type() == GL_FRAMEBUFFER_DEFAULT)
{
uintptr_t resourcePtr = reinterpret_cast<uintptr_t>(resource);
unsetConflictingSRVs(gl::SAMPLER_VERTEX, resourcePtr, nullptr);
unsetConflictingSRVs(gl::SAMPLER_PIXEL, resourcePtr, nullptr);
}
}
gl::Error StateManager11::initialize(const gl::Caps &caps, const gl::Extensions &extensions)
{
mCurVertexSRVs.initialize(caps.maxVertexTextureImageUnits);
mCurPixelSRVs.initialize(caps.maxTextureImageUnits);
// Initialize cached NULL SRV block
mNullSRVs.resize(caps.maxTextureImageUnits, nullptr);
mCurrentValueAttribs.resize(caps.maxVertexAttributes);
mForceSetVertexSamplerStates.resize(caps.maxVertexTextureImageUnits, true);
mForceSetPixelSamplerStates.resize(caps.maxTextureImageUnits, true);
mForceSetComputeSamplerStates.resize(caps.maxComputeTextureImageUnits, true);
mCurVertexSamplerStates.resize(caps.maxVertexTextureImageUnits);
mCurPixelSamplerStates.resize(caps.maxTextureImageUnits);
mCurComputeSamplerStates.resize(caps.maxComputeTextureImageUnits);
mShaderConstants.init(caps);
mIsMultiviewEnabled = extensions.multiview;
mViewportOffsets.resize(1u);
ANGLE_TRY(mVertexDataManager.initialize());
mCurrentAttributes.reserve(gl::MAX_VERTEX_ATTRIBS);
return gl::NoError();
}
void StateManager11::deinitialize()
{
mCurrentValueAttribs.clear();
mInputLayoutCache.clear();
mVertexDataManager.deinitialize();
mIndexDataManager.deinitialize();
mDriverConstantBufferVS.reset();
mDriverConstantBufferPS.reset();
mDriverConstantBufferCS.reset();
}
gl::Error StateManager11::syncFramebuffer(const gl::Context *context, gl::Framebuffer *framebuffer)
{
Framebuffer11 *framebuffer11 = GetImplAs<Framebuffer11>(framebuffer);
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the renderer
ASSERT(framebuffer && !framebuffer->hasAnyDirtyBit() && framebuffer->cachedComplete());
// Check for zero-sized default framebuffer, which is a special case.
// in this case we do not wish to modify any state and just silently return false.
// this will not report any gl error but will cause the calling method to return.
if (framebuffer->id() == 0)
{
ASSERT(!framebuffer11->hasAnyInternalDirtyBit());
const gl::Extents &size = framebuffer->getFirstColorbuffer()->getSize();
if (size.width == 0 || size.height == 0)
{
return gl::NoError();
}
}
RTVArray framebufferRTVs = {{}};
const auto &colorRTs = framebuffer11->getCachedColorRenderTargets();
size_t appliedRTIndex = 0;
bool skipInactiveRTs = mRenderer->getWorkarounds().mrtPerfWorkaround;
const auto &drawStates = framebuffer->getDrawBufferStates();
gl::DrawBufferMask activeProgramOutputs =
context->getContextState().getState().getProgram()->getActiveOutputVariables();
UINT maxExistingRT = 0;
for (size_t rtIndex = 0; rtIndex < colorRTs.size(); ++rtIndex)
{
const RenderTarget11 *renderTarget = colorRTs[rtIndex];
// Skip inactive rendertargets if the workaround is enabled.
if (skipInactiveRTs &&
(!renderTarget || drawStates[rtIndex] == GL_NONE || !activeProgramOutputs[rtIndex]))
{
continue;
}
if (renderTarget)
{
framebufferRTVs[appliedRTIndex] = renderTarget->getRenderTargetView().get();
ASSERT(framebufferRTVs[appliedRTIndex]);
maxExistingRT = static_cast<UINT>(appliedRTIndex) + 1;
// Unset conflicting texture SRVs
const auto *attachment = framebuffer->getColorbuffer(rtIndex);
ASSERT(attachment);
unsetConflictingAttachmentResources(attachment, renderTarget->getTexture().get());
}
appliedRTIndex++;
}
// Get the depth stencil buffers
ID3D11DepthStencilView *framebufferDSV = nullptr;
const auto *depthStencilRenderTarget = framebuffer11->getCachedDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
framebufferDSV = depthStencilRenderTarget->getDepthStencilView().get();
ASSERT(framebufferDSV);
// Unset conflicting texture SRVs
const auto *attachment = framebuffer->getDepthOrStencilbuffer();
ASSERT(attachment);
unsetConflictingAttachmentResources(attachment,
depthStencilRenderTarget->getTexture().get());
}
// TODO(jmadill): Use context caps?
ASSERT(maxExistingRT <= static_cast<UINT>(mRenderer->getNativeCaps().maxDrawBuffers));
// Apply the render target and depth stencil
mRenderer->getDeviceContext()->OMSetRenderTargets(maxExistingRT, framebufferRTVs.data(),
framebufferDSV);
return gl::NoError();
}
void StateManager11::invalidateCurrentValueAttrib(size_t attribIndex)
{
mDirtyCurrentValueAttribs.set(attribIndex);
mInternalDirtyBits.set(DIRTY_BIT_CURRENT_VALUE_ATTRIBS);
}
gl::Error StateManager11::syncCurrentValueAttribs(const gl::State &glState)
{
const auto &activeAttribsMask = glState.getProgram()->getActiveAttribLocationsMask();
const auto &dirtyActiveAttribs = (activeAttribsMask & mDirtyCurrentValueAttribs);
if (!dirtyActiveAttribs.any())
{
return gl::NoError();
}
const auto &vertexAttributes = glState.getVertexArray()->getVertexAttributes();
const auto &vertexBindings = glState.getVertexArray()->getVertexBindings();
mDirtyCurrentValueAttribs = (mDirtyCurrentValueAttribs & ~dirtyActiveAttribs);
for (auto attribIndex : dirtyActiveAttribs)
{
if (vertexAttributes[attribIndex].enabled)
continue;
const auto *attrib = &vertexAttributes[attribIndex];
const auto &currentValue = glState.getVertexAttribCurrentValue(attribIndex);
auto currentValueAttrib = &mCurrentValueAttribs[attribIndex];
currentValueAttrib->currentValueType = currentValue.Type;
currentValueAttrib->attribute = attrib;
currentValueAttrib->binding = &vertexBindings[attrib->bindingIndex];
ANGLE_TRY(mVertexDataManager.storeCurrentValue(currentValue, currentValueAttrib,
static_cast<size_t>(attribIndex)));
}
return gl::NoError();
}
void StateManager11::setInputLayout(const d3d11::InputLayout *inputLayout)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (inputLayout == nullptr)
{
if (!mCurrentInputLayout.empty())
{
deviceContext->IASetInputLayout(nullptr);
mCurrentInputLayout.clear();
mInputLayoutIsDirty = true;
}
}
else if (inputLayout->getSerial() != mCurrentInputLayout)
{
deviceContext->IASetInputLayout(inputLayout->get());
mCurrentInputLayout = inputLayout->getSerial();
mInputLayoutIsDirty = true;
}
}
bool StateManager11::queueVertexBufferChange(size_t bufferIndex,
ID3D11Buffer *buffer,
UINT stride,
UINT offset)
{
if (buffer != mCurrentVertexBuffers[bufferIndex] ||
stride != mCurrentVertexStrides[bufferIndex] ||
offset != mCurrentVertexOffsets[bufferIndex])
{
mInputLayoutIsDirty = true;
mDirtyVertexBufferRange.extend(static_cast<unsigned int>(bufferIndex));
mCurrentVertexBuffers[bufferIndex] = buffer;
mCurrentVertexStrides[bufferIndex] = stride;
mCurrentVertexOffsets[bufferIndex] = offset;
return true;
}
return false;
}
bool StateManager11::queueVertexOffsetChange(size_t bufferIndex, UINT offsetOnly)
{
if (offsetOnly != mCurrentVertexOffsets[bufferIndex])
{
mInputLayoutIsDirty = true;
mDirtyVertexBufferRange.extend(static_cast<unsigned int>(bufferIndex));
mCurrentVertexOffsets[bufferIndex] = offsetOnly;
return true;
}
return false;
}
void StateManager11::applyVertexBufferChanges()
{
if (mDirtyVertexBufferRange.empty())
{
return;
}
ASSERT(mDirtyVertexBufferRange.high() <= gl::MAX_VERTEX_ATTRIBS);
UINT start = static_cast<UINT>(mDirtyVertexBufferRange.low());
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
deviceContext->IASetVertexBuffers(start, static_cast<UINT>(mDirtyVertexBufferRange.length()),
&mCurrentVertexBuffers[start], &mCurrentVertexStrides[start],
&mCurrentVertexOffsets[start]);
mDirtyVertexBufferRange = gl::RangeUI(gl::MAX_VERTEX_ATTRIBS, 0);
}
void StateManager11::setSingleVertexBuffer(const d3d11::Buffer *buffer, UINT stride, UINT offset)
{
ID3D11Buffer *native = buffer ? buffer->get() : nullptr;
if (queueVertexBufferChange(0, native, stride, offset))
{
applyVertexBufferChanges();
}
}
gl::Error StateManager11::updateState(const gl::Context *context, GLenum drawMode)
{
const auto &glState = context->getGLState();
auto *programD3D = GetImplAs<ProgramD3D>(glState.getProgram());
// TODO(jmadill): Use dirty bits.
processFramebufferInvalidation(context);
// TODO(jmadill): Use dirty bits.
if (programD3D->updateSamplerMapping() == ProgramD3D::SamplerMapping::WasDirty)
{
invalidateTexturesAndSamplers();
}
// TODO(jmadill): Use dirty bits.
if (programD3D->areVertexUniformsDirty() || programD3D->areFragmentUniformsDirty())
{
mInternalDirtyBits.set(DIRTY_BIT_PROGRAM_UNIFORMS);
}
// Transform feedback affects the stream-out geometry shader.
// TODO(jmadill): Use dirty bits.
if (glState.isTransformFeedbackActiveUnpaused() != mIsTransformFeedbackCurrentlyActiveUnpaused)
{
mIsTransformFeedbackCurrentlyActiveUnpaused = glState.isTransformFeedbackActiveUnpaused();
invalidateShaders();
}
// Swizzling can cause internal state changes with blit shaders.
if (mDirtySwizzles)
{
ANGLE_TRY(generateSwizzles(context));
mDirtySwizzles = false;
}
gl::Framebuffer *framebuffer = glState.getDrawFramebuffer();
Framebuffer11 *framebuffer11 = GetImplAs<Framebuffer11>(framebuffer);
ANGLE_TRY(framebuffer11->markAttachmentsDirty(context));
if (framebuffer11->hasAnyInternalDirtyBit())
{
ASSERT(framebuffer->id() != 0);
framebuffer11->syncInternalState(context);
}
bool pointDrawMode = (drawMode == GL_POINTS);
if (pointDrawMode != mCurRasterState.pointDrawMode)
{
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
// Changing from points to not points (or vice-versa) affects the geometry shader.
invalidateShaders();
}
// TODO(jmadill): This can be recomputed only on framebuffer changes.
RenderTarget11 *firstRT = framebuffer11->getFirstRenderTarget();
int samples = (firstRT ? firstRT->getSamples() : 0);
unsigned int sampleMask = GetBlendSampleMask(glState, samples);
if (sampleMask != mCurSampleMask)
{
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
// Changing the vertex attribute state can affect the vertex shader.
gl::VertexArray *vao = glState.getVertexArray();
VertexArray11 *vao11 = GetImplAs<VertexArray11>(vao);
if (vao11->flushAttribUpdates(context))
{
mInternalDirtyBits.set(DIRTY_BIT_SHADERS);
}
auto dirtyBitsCopy = mInternalDirtyBits;
mInternalDirtyBits.reset();
for (auto dirtyBit : dirtyBitsCopy)
{
switch (dirtyBit)
{
case DIRTY_BIT_RENDER_TARGET:
ANGLE_TRY(syncFramebuffer(context, framebuffer));
break;
case DIRTY_BIT_VIEWPORT_STATE:
syncViewport(context);
break;
case DIRTY_BIT_SCISSOR_STATE:
syncScissorRectangle(glState.getScissor(), glState.isScissorTestEnabled());
break;
case DIRTY_BIT_RASTERIZER_STATE:
ANGLE_TRY(syncRasterizerState(context, pointDrawMode));
break;
case DIRTY_BIT_BLEND_STATE:
ANGLE_TRY(syncBlendState(context, framebuffer, glState.getBlendState(),
glState.getBlendColor(), sampleMask));
break;
case DIRTY_BIT_DEPTH_STENCIL_STATE:
ANGLE_TRY(syncDepthStencilState(glState));
break;
case DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE:
// TODO(jmadill): More fine-grained update.
ANGLE_TRY(syncTextures(context));
break;
case DIRTY_BIT_PROGRAM_UNIFORMS:
ANGLE_TRY(applyUniforms(programD3D));
break;
case DIRTY_BIT_DRIVER_UNIFORMS:
// This must happen after viewport sync; the viewport affects builtin uniforms.
ANGLE_TRY(applyDriverUniforms(*programD3D));
break;
case DIRTY_BIT_PROGRAM_UNIFORM_BUFFERS:
ANGLE_TRY(syncUniformBuffers(context, programD3D));
break;
case DIRTY_BIT_SHADERS:
ANGLE_TRY(syncProgram(context, drawMode));
break;
case DIRTY_BIT_CURRENT_VALUE_ATTRIBS:
ANGLE_TRY(syncCurrentValueAttribs(glState));
break;
default:
UNREACHABLE();
break;
}
}
ANGLE_TRY(syncTransformFeedbackBuffers(context));
// Check that we haven't set any dirty bits in the flushing of the dirty bits loop.
ASSERT(mInternalDirtyBits.none());
return gl::NoError();
}
void StateManager11::setShaderResourceShared(gl::SamplerType shaderType,
UINT resourceSlot,
const d3d11::SharedSRV *srv)
{
setShaderResourceInternal(shaderType, resourceSlot, srv);
// TODO(jmadill): Narrower dirty region.
mInternalDirtyBits.set(DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE);
}
void StateManager11::setShaderResource(gl::SamplerType shaderType,
UINT resourceSlot,
const d3d11::ShaderResourceView *srv)
{
setShaderResourceInternal(shaderType, resourceSlot, srv);
// TODO(jmadill): Narrower dirty region.
mInternalDirtyBits.set(DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE);
}
void StateManager11::setPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY primitiveTopology)
{
if (primitiveTopology != mCurrentPrimitiveTopology)
{
mRenderer->getDeviceContext()->IASetPrimitiveTopology(primitiveTopology);
mCurrentPrimitiveTopology = primitiveTopology;
}
}
void StateManager11::setDrawShaders(const d3d11::VertexShader *vertexShader,
const d3d11::GeometryShader *geometryShader,
const d3d11::PixelShader *pixelShader)
{
setVertexShader(vertexShader);
setGeometryShader(geometryShader);
setPixelShader(pixelShader);
}
void StateManager11::setVertexShader(const d3d11::VertexShader *shader)
{
ResourceSerial serial = shader ? shader->getSerial() : ResourceSerial(0);
if (serial != mAppliedVertexShader)
{
ID3D11VertexShader *appliedShader = shader ? shader->get() : nullptr;
mRenderer->getDeviceContext()->VSSetShader(appliedShader, nullptr, 0);
mAppliedVertexShader = serial;
invalidateShaders();
}
}
void StateManager11::setGeometryShader(const d3d11::GeometryShader *shader)
{
ResourceSerial serial = shader ? shader->getSerial() : ResourceSerial(0);
if (serial != mAppliedGeometryShader)
{
ID3D11GeometryShader *appliedShader = shader ? shader->get() : nullptr;
mRenderer->getDeviceContext()->GSSetShader(appliedShader, nullptr, 0);
mAppliedGeometryShader = serial;
invalidateShaders();
}
}
void StateManager11::setPixelShader(const d3d11::PixelShader *shader)
{
ResourceSerial serial = shader ? shader->getSerial() : ResourceSerial(0);
if (serial != mAppliedPixelShader)
{
ID3D11PixelShader *appliedShader = shader ? shader->get() : nullptr;
mRenderer->getDeviceContext()->PSSetShader(appliedShader, nullptr, 0);
mAppliedPixelShader = serial;
invalidateShaders();
}
}
void StateManager11::setComputeShader(const d3d11::ComputeShader *shader)
{
ResourceSerial serial = shader ? shader->getSerial() : ResourceSerial(0);
if (serial != mAppliedComputeShader)
{
ID3D11ComputeShader *appliedShader = shader ? shader->get() : nullptr;
mRenderer->getDeviceContext()->CSSetShader(appliedShader, nullptr, 0);
mAppliedComputeShader = serial;
// TODO(jmadill): Dirty bits for compute.
}
}
void StateManager11::setVertexConstantBuffer(unsigned int slot, const d3d11::Buffer *buffer)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
auto &currentSerial = mCurrentConstantBufferVS[slot];
mCurrentConstantBufferVSOffset[slot] = 0;
mCurrentConstantBufferVSSize[slot] = 0;
if (buffer)
{
if (currentSerial != buffer->getSerial())
{
deviceContext->VSSetConstantBuffers(slot, 1, buffer->getPointer());
currentSerial = buffer->getSerial();
invalidateConstantBuffer(slot);
}
}
else
{
if (!currentSerial.empty())
{
ID3D11Buffer *nullBuffer = nullptr;
deviceContext->VSSetConstantBuffers(slot, 1, &nullBuffer);
currentSerial.clear();
invalidateConstantBuffer(slot);
}
}
}
void StateManager11::setPixelConstantBuffer(unsigned int slot, const d3d11::Buffer *buffer)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
auto &currentSerial = mCurrentConstantBufferPS[slot];
mCurrentConstantBufferPSOffset[slot] = 0;
mCurrentConstantBufferPSSize[slot] = 0;
if (buffer)
{
if (currentSerial != buffer->getSerial())
{
deviceContext->PSSetConstantBuffers(slot, 1, buffer->getPointer());
currentSerial = buffer->getSerial();
invalidateConstantBuffer(slot);
}
}
else
{
if (!currentSerial.empty())
{
ID3D11Buffer *nullBuffer = nullptr;
deviceContext->PSSetConstantBuffers(slot, 1, &nullBuffer);
currentSerial.clear();
invalidateConstantBuffer(slot);
}
}
}
void StateManager11::setDepthStencilState(const d3d11::DepthStencilState *depthStencilState,
UINT stencilRef)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (depthStencilState)
{
deviceContext->OMSetDepthStencilState(depthStencilState->get(), stencilRef);
}
else
{
deviceContext->OMSetDepthStencilState(nullptr, stencilRef);
}
mInternalDirtyBits.set(DIRTY_BIT_DEPTH_STENCIL_STATE);
}
void StateManager11::setSimpleBlendState(const d3d11::BlendState *blendState)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (blendState)
{
deviceContext->OMSetBlendState(blendState->get(), nullptr, 0xFFFFFFFF);
}
else
{
deviceContext->OMSetBlendState(nullptr, nullptr, 0xFFFFFFFF);
}
mInternalDirtyBits.set(DIRTY_BIT_BLEND_STATE);
}
void StateManager11::setRasterizerState(const d3d11::RasterizerState *rasterizerState)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (rasterizerState)
{
deviceContext->RSSetState(rasterizerState->get());
}
else
{
deviceContext->RSSetState(nullptr);
}
mInternalDirtyBits.set(DIRTY_BIT_RASTERIZER_STATE);
}
void StateManager11::setSimpleViewport(const gl::Extents &extents)
{
setSimpleViewport(extents.width, extents.height);
}
void StateManager11::setSimpleViewport(int width, int height)
{
D3D11_VIEWPORT viewport;
viewport.TopLeftX = 0;
viewport.TopLeftY = 0;
viewport.Width = static_cast<FLOAT>(width);
viewport.Height = static_cast<FLOAT>(height);
viewport.MinDepth = 0.0f;
viewport.MaxDepth = 1.0f;
mRenderer->getDeviceContext()->RSSetViewports(1, &viewport);
mInternalDirtyBits.set(DIRTY_BIT_VIEWPORT_STATE);
}
void StateManager11::setSimplePixelTextureAndSampler(const d3d11::SharedSRV &srv,
const d3d11::SamplerState &samplerState)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
setShaderResourceInternal(gl::SAMPLER_PIXEL, 0, &srv);
deviceContext->PSSetSamplers(0, 1, samplerState.getPointer());
mInternalDirtyBits.set(DIRTY_BIT_TEXTURE_AND_SAMPLER_STATE);
mForceSetPixelSamplerStates[0] = true;
}
void StateManager11::setSimpleScissorRect(const gl::Rectangle &glRect)
{
D3D11_RECT scissorRect;
scissorRect.left = glRect.x;
scissorRect.right = glRect.x + glRect.width;
scissorRect.top = glRect.y;
scissorRect.bottom = glRect.y + glRect.height;
setScissorRectD3D(scissorRect);
}
void StateManager11::setScissorRectD3D(const D3D11_RECT &d3dRect)
{
mRenderer->getDeviceContext()->RSSetScissorRects(1, &d3dRect);
mInternalDirtyBits.set(DIRTY_BIT_SCISSOR_STATE);
}
// For each Direct3D sampler of either the pixel or vertex stage,
// looks up the corresponding OpenGL texture image unit and texture type,
// and sets the texture and its addressing/filtering state (or NULL when inactive).
// Sampler mapping needs to be up-to-date on the program object before this is called.
gl::Error StateManager11::applyTextures(const gl::Context *context,
gl::SamplerType shaderType,
const FramebufferTextureArray &framebufferTextures,
size_t framebufferTextureCount)
{
const auto &glState = context->getGLState();
const auto &caps = context->getCaps();
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(glState.getProgram());
ASSERT(!programD3D->isSamplerMappingDirty());
// TODO(jmadill): Use the Program's sampler bindings.
const auto &completeTextures = glState.getCompleteTextureCache();
unsigned int samplerRange = programD3D->getUsedSamplerRange(shaderType);
for (unsigned int samplerIndex = 0; samplerIndex < samplerRange; samplerIndex++)
{
GLenum textureType = programD3D->getSamplerTextureType(shaderType, samplerIndex);
GLint textureUnit = programD3D->getSamplerMapping(shaderType, samplerIndex, caps);
if (textureUnit != -1)
{
gl::Texture *texture = completeTextures[textureUnit];
// A nullptr texture indicates incomplete.
if (texture &&
!std::binary_search(framebufferTextures.begin(),
framebufferTextures.begin() + framebufferTextureCount, texture))
{
gl::Sampler *samplerObject = glState.getSampler(textureUnit);
const gl::SamplerState &samplerState =
samplerObject ? samplerObject->getSamplerState() : texture->getSamplerState();
ANGLE_TRY(
setSamplerState(context, shaderType, samplerIndex, texture, samplerState));
ANGLE_TRY(setTexture(context, shaderType, samplerIndex, texture));
}
else
{
// Texture is not sampler complete or it is in use by the framebuffer. Bind the
// incomplete texture.
gl::Texture *incompleteTexture = nullptr;
ANGLE_TRY(
mRenderer->getIncompleteTexture(context, textureType, &incompleteTexture));
ANGLE_TRY(setSamplerState(context, shaderType, samplerIndex, incompleteTexture,
incompleteTexture->getSamplerState()));
ANGLE_TRY(setTexture(context, shaderType, samplerIndex, incompleteTexture));
}
}
else
{
// No texture bound to this slot even though it is used by the shader, bind a NULL
// texture
ANGLE_TRY(setTexture(context, shaderType, samplerIndex, nullptr));
}
}
// Set all the remaining textures to NULL
size_t samplerCount = (shaderType == gl::SAMPLER_PIXEL) ? caps.maxTextureImageUnits
: caps.maxVertexTextureImageUnits;
ANGLE_TRY(clearTextures(shaderType, samplerRange, samplerCount));
return gl::NoError();
}
gl::Error StateManager11::syncTextures(const gl::Context *context)
{
FramebufferTextureArray framebufferTextures;
size_t framebufferSerialCount =
mRenderer->getBoundFramebufferTextures(context->getContextState(), &framebufferTextures);
ANGLE_TRY(
applyTextures(context, gl::SAMPLER_VERTEX, framebufferTextures, framebufferSerialCount));
ANGLE_TRY(
applyTextures(context, gl::SAMPLER_PIXEL, framebufferTextures, framebufferSerialCount));
return gl::NoError();
}
gl::Error StateManager11::setSamplerState(const gl::Context *context,
gl::SamplerType type,
int index,
gl::Texture *texture,
const gl::SamplerState &samplerState)
{
#if !defined(NDEBUG)
// Storage should exist, texture should be complete. Only verified in Debug.
TextureD3D *textureD3D = GetImplAs<TextureD3D>(texture);
TextureStorage *storage = nullptr;
ANGLE_TRY(textureD3D->getNativeTexture(context, &storage));
ASSERT(storage);
#endif // !defined(NDEBUG)
auto *deviceContext = mRenderer->getDeviceContext();
if (type == gl::SAMPLER_PIXEL)
{
ASSERT(static_cast<unsigned int>(index) < mRenderer->getNativeCaps().maxTextureImageUnits);
if (mForceSetPixelSamplerStates[index] ||
memcmp(&samplerState, &mCurPixelSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = nullptr;
ANGLE_TRY(mRenderer->getSamplerState(samplerState, &dxSamplerState));
ASSERT(dxSamplerState != nullptr);
deviceContext->PSSetSamplers(index, 1, &dxSamplerState);
mCurPixelSamplerStates[index] = samplerState;
}
mForceSetPixelSamplerStates[index] = false;
}
else if (type == gl::SAMPLER_VERTEX)
{
ASSERT(static_cast<unsigned int>(index) <
mRenderer->getNativeCaps().maxVertexTextureImageUnits);
if (mForceSetVertexSamplerStates[index] ||
memcmp(&samplerState, &mCurVertexSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = nullptr;
ANGLE_TRY(mRenderer->getSamplerState(samplerState, &dxSamplerState));
ASSERT(dxSamplerState != nullptr);
deviceContext->VSSetSamplers(index, 1, &dxSamplerState);
mCurVertexSamplerStates[index] = samplerState;
}
mForceSetVertexSamplerStates[index] = false;
}
else if (type == gl::SAMPLER_COMPUTE)
{
ASSERT(static_cast<unsigned int>(index) <
mRenderer->getNativeCaps().maxComputeTextureImageUnits);
if (mForceSetComputeSamplerStates[index] ||
memcmp(&samplerState, &mCurComputeSamplerStates[index], sizeof(gl::SamplerState)) != 0)
{
ID3D11SamplerState *dxSamplerState = nullptr;
ANGLE_TRY(mRenderer->getSamplerState(samplerState, &dxSamplerState));
ASSERT(dxSamplerState != nullptr);
deviceContext->CSSetSamplers(index, 1, &dxSamplerState);
mCurComputeSamplerStates[index] = samplerState;
}
mForceSetComputeSamplerStates[index] = false;
}
else
UNREACHABLE();
// Sampler metadata that's passed to shaders in uniforms is stored separately from rest of the
// sampler state since having it in contiguous memory makes it possible to memcpy to a constant
// buffer, and it doesn't affect the state set by PSSetSamplers/VSSetSamplers.
mShaderConstants.onSamplerChange(type, index, *texture);
return gl::NoError();
}
gl::Error StateManager11::setTexture(const gl::Context *context,
gl::SamplerType type,
int index,
gl::Texture *texture)
{
const d3d11::SharedSRV *textureSRV = nullptr;
if (texture)
{
TextureD3D *textureImpl = GetImplAs<TextureD3D>(texture);
TextureStorage *texStorage = nullptr;
ANGLE_TRY(textureImpl->getNativeTexture(context, &texStorage));
// Texture should be complete and have a storage
ASSERT(texStorage);
TextureStorage11 *storage11 = GetAs<TextureStorage11>(texStorage);
ANGLE_TRY(storage11->getSRV(context, texture->getTextureState(), &textureSRV));
// If we get an invalid SRV here, something went wrong in the texture class and we're
// unexpectedly missing the shader resource view.
ASSERT(textureSRV->valid());
textureImpl->resetDirty();
}
ASSERT(
(type == gl::SAMPLER_PIXEL &&
static_cast<unsigned int>(index) < mRenderer->getNativeCaps().maxTextureImageUnits) ||
(type == gl::SAMPLER_VERTEX &&
static_cast<unsigned int>(index) < mRenderer->getNativeCaps().maxVertexTextureImageUnits));
setShaderResourceInternal(type, index, textureSRV);
return gl::NoError();
}
// Things that affect a program's dirtyness:
// 1. Directly changing the program executable -> triggered in StateManager11::syncState.
// 2. The vertex attribute layout -> triggered in VertexArray11::syncState/signal.
// 3. The fragment shader's rendertargets -> triggered in Framebuffer11::syncState/signal.
// 4. Enabling/disabling rasterizer discard. -> triggered in StateManager11::syncState.
// 5. Enabling/disabling transform feedback. -> checked in StateManager11::updateState.
// 6. An internal shader was used. -> triggered in StateManager11::set*Shader.
// 7. Drawing with/without point sprites. -> checked in StateManager11::updateState.
// TODO(jmadill): Use dirty bits for transform feedback.
gl::Error StateManager11::syncProgram(const gl::Context *context, GLenum drawMode)
{
Context11 *context11 = GetImplAs<Context11>(context);
ANGLE_TRY(context11->triggerDrawCallProgramRecompilation(context, drawMode));
const auto &glState = context->getGLState();
const auto *va11 = GetImplAs<VertexArray11>(glState.getVertexArray());
auto *programD3D = GetImplAs<ProgramD3D>(glState.getProgram());
programD3D->updateCachedInputLayout(va11->getCurrentStateSerial(), glState);
// Binaries must be compiled before the sync.
ASSERT(programD3D->hasVertexExecutableForCachedInputLayout());
ASSERT(programD3D->hasGeometryExecutableForPrimitiveType(drawMode));
ASSERT(programD3D->hasPixelExecutableForCachedOutputLayout());
ShaderExecutableD3D *vertexExe = nullptr;
ANGLE_TRY(programD3D->getVertexExecutableForCachedInputLayout(&vertexExe, nullptr));
ShaderExecutableD3D *pixelExe = nullptr;
ANGLE_TRY(programD3D->getPixelExecutableForCachedOutputLayout(&pixelExe, nullptr));
ShaderExecutableD3D *geometryExe = nullptr;
ANGLE_TRY(programD3D->getGeometryExecutableForPrimitiveType(context, drawMode, &geometryExe,
nullptr));
const d3d11::VertexShader *vertexShader =
(vertexExe ? &GetAs<ShaderExecutable11>(vertexExe)->getVertexShader() : nullptr);
// Skip pixel shader if we're doing rasterizer discard.
const d3d11::PixelShader *pixelShader = nullptr;
if (!glState.getRasterizerState().rasterizerDiscard)
{
pixelShader = (pixelExe ? &GetAs<ShaderExecutable11>(pixelExe)->getPixelShader() : nullptr);
}
const d3d11::GeometryShader *geometryShader = nullptr;
if (glState.isTransformFeedbackActiveUnpaused())
{
geometryShader =
(vertexExe ? &GetAs<ShaderExecutable11>(vertexExe)->getStreamOutShader() : nullptr);
}
else
{
geometryShader =
(geometryExe ? &GetAs<ShaderExecutable11>(geometryExe)->getGeometryShader() : nullptr);
}
setDrawShaders(vertexShader, geometryShader, pixelShader);
// Explicitly clear the shaders dirty bit.
mInternalDirtyBits.reset(DIRTY_BIT_SHADERS);
return gl::NoError();
}
gl::Error StateManager11::applyVertexBuffer(const gl::Context *context,
GLenum mode,
GLint first,
GLsizei count,
GLsizei instances,
TranslatedIndexData *indexInfo)
{
const auto &state = context->getGLState();
const auto &vertexArray = state.getVertexArray();
auto *vertexArray11 = GetImplAs<VertexArray11>(vertexArray);
if (mVertexAttribsNeedTranslation)
{
ANGLE_TRY(vertexArray11->updateDirtyAndDynamicAttribs(context, &mVertexDataManager, first,
count, instances));
mInputLayoutIsDirty = true;
// Determine if we need to update attribs on the next draw.
mVertexAttribsNeedTranslation = (vertexArray11->hasDynamicAttrib(context));
}
if (!mLastFirstVertex.valid() || mLastFirstVertex.value() != first)
{
mLastFirstVertex = first;
mInputLayoutIsDirty = true;
}
if (!mInputLayoutIsDirty)
{
return gl::NoError();
}
GLsizei numIndicesPerInstance = 0;
if (instances > 0)
{
numIndicesPerInstance = count;
}
const auto &vertexArrayAttribs = vertexArray11->getTranslatedAttribs();
gl::Program *program = state.getProgram();
// Sort the attributes according to ensure we re-use similar input layouts.
AttribIndexArray sortedSemanticIndices;
SortAttributesByLayout(program, vertexArrayAttribs, mCurrentValueAttribs,
&sortedSemanticIndices, &mCurrentAttributes);
auto featureLevel = mRenderer->getRenderer11DeviceCaps().featureLevel;
// If we are using FL 9_3, make sure the first attribute is not instanced
if (featureLevel <= D3D_FEATURE_LEVEL_9_3 && !mCurrentAttributes.empty())
{
if (mCurrentAttributes[0]->divisor > 0)
{
Optional<size_t> firstNonInstancedIndex = FindFirstNonInstanced(mCurrentAttributes);
if (firstNonInstancedIndex.valid())
{
size_t index = firstNonInstancedIndex.value();
std::swap(mCurrentAttributes[0], mCurrentAttributes[index]);
std::swap(sortedSemanticIndices[0], sortedSemanticIndices[index]);
}
}
}
// Update the applied input layout by querying the cache.
ANGLE_TRY(mInputLayoutCache.updateInputLayout(mRenderer, state, mCurrentAttributes, mode,
sortedSemanticIndices, numIndicesPerInstance));
// Update the applied vertex buffers.
ANGLE_TRY(
mInputLayoutCache.applyVertexBuffers(context, mCurrentAttributes, mode, first, indexInfo));
// InputLayoutCache::applyVertexBuffers calls through to the Bufer11 to get the native vertex
// buffer (ID3D11Buffer *). Because we allocate these buffers lazily, this will trigger
// allocation. This in turn will signal that the buffer is dirty. Since we just resolved the
// dirty-ness in VertexArray11::updateDirtyAndDynamicAttribs, this can make us do a needless
// update on the second draw call.
// Hence we clear the flags here, after we've applied vertex data, since we know everything
// is clean. This is a bit of a hack.
vertexArray11->clearDirtyAndPromoteDynamicAttribs(context, count);
mInputLayoutIsDirty = false;
return gl::NoError();
}
gl::Error StateManager11::applyIndexBuffer(const gl::Context *context,
const void *indices,
GLsizei count,
GLenum type,
TranslatedIndexData *indexInfo)
{
const auto &glState = context->getGLState();
gl::VertexArray *vao = glState.getVertexArray();
gl::Buffer *elementArrayBuffer = vao->getElementArrayBuffer().get();
ANGLE_TRY(mIndexDataManager.prepareIndexData(context, type, count, elementArrayBuffer, indices,
indexInfo, glState.isPrimitiveRestartEnabled()));
ID3D11Buffer *buffer = nullptr;
DXGI_FORMAT bufferFormat =
(indexInfo->indexType == GL_UNSIGNED_INT) ? DXGI_FORMAT_R32_UINT : DXGI_FORMAT_R16_UINT;
if (indexInfo->storage)
{
Buffer11 *storage = GetAs<Buffer11>(indexInfo->storage);
ANGLE_TRY_RESULT(storage->getBuffer(context, BUFFER_USAGE_INDEX), buffer);
}
else
{
IndexBuffer11 *indexBuffer = GetAs<IndexBuffer11>(indexInfo->indexBuffer);
buffer = indexBuffer->getBuffer().get();
}
// Track dirty indices in the index range cache.
indexInfo->srcIndexData.srcIndicesChanged =
setIndexBuffer(buffer, bufferFormat, indexInfo->startOffset);
return gl::NoError();
}
bool StateManager11::setIndexBuffer(ID3D11Buffer *buffer,
DXGI_FORMAT indexFormat,
unsigned int offset)
{
if (buffer != mAppliedIB || indexFormat != mAppliedIBFormat || offset != mAppliedIBOffset)
{
mRenderer->getDeviceContext()->IASetIndexBuffer(buffer, indexFormat, offset);
mAppliedIB = buffer;
mAppliedIBFormat = indexFormat;
mAppliedIBOffset = offset;
return true;
}
return false;
}
// Vertex buffer is invalidated outside this function.
gl::Error StateManager11::updateVertexOffsetsForPointSpritesEmulation(GLint startVertex,
GLsizei emulatedInstanceId)
{
return mInputLayoutCache.updateVertexOffsetsForPointSpritesEmulation(
mRenderer, mCurrentAttributes, startVertex, emulatedInstanceId);
}
gl::Error StateManager11::generateSwizzle(const gl::Context *context, gl::Texture *texture)
{
if (!texture)
{
return gl::NoError();
}
TextureD3D *textureD3D = GetImplAs<TextureD3D>(texture);
ASSERT(textureD3D);
TextureStorage *texStorage = nullptr;
ANGLE_TRY(textureD3D->getNativeTexture(context, &texStorage));
if (texStorage)
{
TextureStorage11 *storage11 = GetAs<TextureStorage11>(texStorage);
const gl::TextureState &textureState = texture->getTextureState();
ANGLE_TRY(storage11->generateSwizzles(context, textureState.getSwizzleState()));
}
return gl::NoError();
}
gl::Error StateManager11::generateSwizzlesForShader(const gl::Context *context,
gl::SamplerType type)
{
const auto &glState = context->getGLState();
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(glState.getProgram());
unsigned int samplerRange = programD3D->getUsedSamplerRange(type);
for (unsigned int i = 0; i < samplerRange; i++)
{
GLenum textureType = programD3D->getSamplerTextureType(type, i);
GLint textureUnit = programD3D->getSamplerMapping(type, i, context->getCaps());
if (textureUnit != -1)
{
gl::Texture *texture = glState.getSamplerTexture(textureUnit, textureType);
ASSERT(texture);
if (texture->getTextureState().swizzleRequired())
{
ANGLE_TRY(generateSwizzle(context, texture));
}
}
}
return gl::NoError();
}
gl::Error StateManager11::generateSwizzles(const gl::Context *context)
{
ANGLE_TRY(generateSwizzlesForShader(context, gl::SAMPLER_VERTEX));
ANGLE_TRY(generateSwizzlesForShader(context, gl::SAMPLER_PIXEL));
return gl::NoError();
}
gl::Error StateManager11::applyUniforms(ProgramD3D *programD3D)
{
UniformStorage11 *vertexUniformStorage =
GetAs<UniformStorage11>(&programD3D->getVertexUniformStorage());
UniformStorage11 *fragmentUniformStorage =
GetAs<UniformStorage11>(&programD3D->getFragmentUniformStorage());
ASSERT(vertexUniformStorage);
ASSERT(fragmentUniformStorage);
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
const d3d11::Buffer *vertexConstantBuffer = nullptr;
ANGLE_TRY(vertexUniformStorage->getConstantBuffer(mRenderer, &vertexConstantBuffer));
const d3d11::Buffer *pixelConstantBuffer = nullptr;
ANGLE_TRY(fragmentUniformStorage->getConstantBuffer(mRenderer, &pixelConstantBuffer));
if (vertexUniformStorage->size() > 0 && programD3D->areVertexUniformsDirty())
{
UpdateUniformBuffer(deviceContext, vertexUniformStorage, vertexConstantBuffer);
}
if (fragmentUniformStorage->size() > 0 && programD3D->areFragmentUniformsDirty())
{
UpdateUniformBuffer(deviceContext, fragmentUniformStorage, pixelConstantBuffer);
}
unsigned int slot = d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DEFAULT_UNIFORM_BLOCK;
if (mCurrentConstantBufferVS[slot] != vertexConstantBuffer->getSerial())
{
deviceContext->VSSetConstantBuffers(slot, 1, vertexConstantBuffer->getPointer());
mCurrentConstantBufferVS[slot] = vertexConstantBuffer->getSerial();
mCurrentConstantBufferVSOffset[slot] = 0;
mCurrentConstantBufferVSSize[slot] = 0;
}
if (mCurrentConstantBufferPS[slot] != pixelConstantBuffer->getSerial())
{
deviceContext->PSSetConstantBuffers(slot, 1, pixelConstantBuffer->getPointer());
mCurrentConstantBufferPS[slot] = pixelConstantBuffer->getSerial();
mCurrentConstantBufferPSOffset[slot] = 0;
mCurrentConstantBufferPSSize[slot] = 0;
}
programD3D->markUniformsClean();
return gl::NoError();
}
gl::Error StateManager11::applyDriverUniforms(const ProgramD3D &programD3D)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (!mDriverConstantBufferVS.valid())
{
size_t requiredSize = mShaderConstants.getRequiredBufferSize(gl::SAMPLER_VERTEX);
D3D11_BUFFER_DESC constantBufferDescription = {0};
d3d11::InitConstantBufferDesc(&constantBufferDescription, requiredSize);
ANGLE_TRY(mRenderer->allocateResource(constantBufferDescription, &mDriverConstantBufferVS));
ID3D11Buffer *driverVSConstants = mDriverConstantBufferVS.get();
deviceContext->VSSetConstantBuffers(d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DRIVER, 1,
&driverVSConstants);
}
if (!mDriverConstantBufferPS.valid())
{
size_t requiredSize = mShaderConstants.getRequiredBufferSize(gl::SAMPLER_PIXEL);
D3D11_BUFFER_DESC constantBufferDescription = {0};
d3d11::InitConstantBufferDesc(&constantBufferDescription, requiredSize);
ANGLE_TRY(mRenderer->allocateResource(constantBufferDescription, &mDriverConstantBufferPS));
ID3D11Buffer *driverVSConstants = mDriverConstantBufferPS.get();
deviceContext->PSSetConstantBuffers(d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DRIVER, 1,
&driverVSConstants);
}
// Sampler metadata and driver constants need to coexist in the same constant buffer to conserve
// constant buffer slots. We update both in the constant buffer if needed.
ANGLE_TRY(mShaderConstants.updateBuffer(deviceContext, gl::SAMPLER_VERTEX, programD3D,
mDriverConstantBufferVS));
ANGLE_TRY(mShaderConstants.updateBuffer(deviceContext, gl::SAMPLER_PIXEL, programD3D,
mDriverConstantBufferPS));
// needed for the point sprite geometry shader
// GSSetConstantBuffers triggers device removal on 9_3, so we should only call it for ES3.
if (mRenderer->isES3Capable())
{
if (mCurrentGeometryConstantBuffer != mDriverConstantBufferPS.getSerial())
{
ASSERT(mDriverConstantBufferPS.valid());
deviceContext->GSSetConstantBuffers(0, 1, mDriverConstantBufferPS.getPointer());
mCurrentGeometryConstantBuffer = mDriverConstantBufferPS.getSerial();
}
}
return gl::NoError();
}
gl::Error StateManager11::applyComputeUniforms(ProgramD3D *programD3D)
{
UniformStorage11 *computeUniformStorage =
GetAs<UniformStorage11>(&programD3D->getComputeUniformStorage());
ASSERT(computeUniformStorage);
const d3d11::Buffer *constantBuffer = nullptr;
ANGLE_TRY(computeUniformStorage->getConstantBuffer(mRenderer, &constantBuffer));
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (computeUniformStorage->size() > 0 && programD3D->areComputeUniformsDirty())
{
UpdateUniformBuffer(deviceContext, computeUniformStorage, constantBuffer);
programD3D->markUniformsClean();
}
if (mCurrentComputeConstantBuffer != constantBuffer->getSerial())
{
deviceContext->CSSetConstantBuffers(
d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DEFAULT_UNIFORM_BLOCK, 1,
constantBuffer->getPointer());
mCurrentComputeConstantBuffer = constantBuffer->getSerial();
}
if (!mDriverConstantBufferCS.valid())
{
size_t requiredSize = mShaderConstants.getRequiredBufferSize(gl::SAMPLER_COMPUTE);
D3D11_BUFFER_DESC constantBufferDescription = {0};
d3d11::InitConstantBufferDesc(&constantBufferDescription, requiredSize);
ANGLE_TRY(mRenderer->allocateResource(constantBufferDescription, &mDriverConstantBufferCS));
ID3D11Buffer *buffer = mDriverConstantBufferCS.get();
deviceContext->CSSetConstantBuffers(d3d11::RESERVED_CONSTANT_BUFFER_SLOT_DRIVER, 1,
&buffer);
}
ANGLE_TRY(mShaderConstants.updateBuffer(deviceContext, gl::SAMPLER_COMPUTE, *programD3D,
mDriverConstantBufferCS));
return gl::NoError();
}
gl::Error StateManager11::syncUniformBuffers(const gl::Context *context, ProgramD3D *programD3D)
{
unsigned int reservedVertex = mRenderer->getReservedVertexUniformBuffers();
unsigned int reservedFragment = mRenderer->getReservedFragmentUniformBuffers();
programD3D->updateUniformBufferCache(context->getCaps(), reservedVertex, reservedFragment);
const auto &vertexUniformBuffers = programD3D->getVertexUniformBufferCache();
const auto &fragmentUniformBuffers = programD3D->getFragmentUniformBufferCache();
const auto &glState = context->getGLState();
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
ID3D11DeviceContext1 *deviceContext1 = mRenderer->getDeviceContext1IfSupported();
for (size_t bufferIndex = 0; bufferIndex < vertexUniformBuffers.size(); bufferIndex++)
{
GLint binding = vertexUniformBuffers[bufferIndex];
if (binding == -1)
{
continue;
}
const auto &uniformBuffer = glState.getIndexedUniformBuffer(binding);
GLintptr uniformBufferOffset = uniformBuffer.getOffset();
GLsizeiptr uniformBufferSize = uniformBuffer.getSize();
if (uniformBuffer.get() == nullptr)
{
continue;
}
Buffer11 *bufferStorage = GetImplAs<Buffer11>(uniformBuffer.get());
const d3d11::Buffer *constantBuffer = nullptr;
UINT firstConstant = 0;
UINT numConstants = 0;
ANGLE_TRY(bufferStorage->getConstantBufferRange(context, uniformBufferOffset,
uniformBufferSize, &constantBuffer,
&firstConstant, &numConstants));
ASSERT(constantBuffer);
if (mCurrentConstantBufferVS[bufferIndex] == constantBuffer->getSerial() &&
mCurrentConstantBufferVSOffset[bufferIndex] == uniformBufferOffset &&
mCurrentConstantBufferVSSize[bufferIndex] == uniformBufferSize)
{
continue;
}
unsigned int appliedIndex = reservedVertex + static_cast<unsigned int>(bufferIndex);
if (firstConstant != 0 && uniformBufferSize != 0)
{
ASSERT(numConstants != 0);
deviceContext1->VSSetConstantBuffers1(appliedIndex, 1, constantBuffer->getPointer(),
&firstConstant, &numConstants);
}
else
{
deviceContext->VSSetConstantBuffers(appliedIndex, 1, constantBuffer->getPointer());
}
mCurrentConstantBufferVS[appliedIndex] = constantBuffer->getSerial();
mCurrentConstantBufferVSOffset[appliedIndex] = uniformBufferOffset;
mCurrentConstantBufferVSSize[appliedIndex] = uniformBufferSize;
}
for (size_t bufferIndex = 0; bufferIndex < fragmentUniformBuffers.size(); bufferIndex++)
{
GLint binding = fragmentUniformBuffers[bufferIndex];
if (binding == -1)
{
continue;
}
const auto &uniformBuffer = glState.getIndexedUniformBuffer(binding);
GLintptr uniformBufferOffset = uniformBuffer.getOffset();
GLsizeiptr uniformBufferSize = uniformBuffer.getSize();
if (uniformBuffer.get() == nullptr)
{
continue;
}
Buffer11 *bufferStorage = GetImplAs<Buffer11>(uniformBuffer.get());
const d3d11::Buffer *constantBuffer = nullptr;
UINT firstConstant = 0;
UINT numConstants = 0;
ANGLE_TRY(bufferStorage->getConstantBufferRange(context, uniformBufferOffset,
uniformBufferSize, &constantBuffer,
&firstConstant, &numConstants));
ASSERT(constantBuffer);
if (mCurrentConstantBufferPS[bufferIndex] == constantBuffer->getSerial() &&
mCurrentConstantBufferPSOffset[bufferIndex] == uniformBufferOffset &&
mCurrentConstantBufferPSSize[bufferIndex] == uniformBufferSize)
{
continue;
}
unsigned int appliedIndex = reservedFragment + static_cast<unsigned int>(bufferIndex);
if (firstConstant != 0 && uniformBufferSize != 0)
{
deviceContext1->PSSetConstantBuffers1(appliedIndex, 1, constantBuffer->getPointer(),
&firstConstant, &numConstants);
}
else
{
deviceContext->PSSetConstantBuffers(appliedIndex, 1, constantBuffer->getPointer());
}
mCurrentConstantBufferPS[appliedIndex] = constantBuffer->getSerial();
mCurrentConstantBufferPSOffset[appliedIndex] = uniformBufferOffset;
mCurrentConstantBufferPSSize[appliedIndex] = uniformBufferSize;
}
return gl::NoError();
}
gl::Error StateManager11::syncTransformFeedbackBuffers(const gl::Context *context)
{
const auto &glState = context->getGLState();
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
// If transform feedback is not active, unbind all buffers
if (!glState.isTransformFeedbackActiveUnpaused())
{
if (mAppliedTFSerial != mEmptySerial)
{
deviceContext->SOSetTargets(0, nullptr, nullptr);
mAppliedTFSerial = mEmptySerial;
}
return gl::NoError();
}
gl::TransformFeedback *transformFeedback = glState.getCurrentTransformFeedback();
TransformFeedback11 *tf11 = GetImplAs<TransformFeedback11>(transformFeedback);
if (mAppliedTFSerial == tf11->getSerial() && !tf11->isDirty())
{
return gl::NoError();
}
const std::vector<ID3D11Buffer *> *soBuffers = nullptr;
ANGLE_TRY_RESULT(tf11->getSOBuffers(context), soBuffers);
const std::vector<UINT> &soOffsets = tf11->getSOBufferOffsets();
deviceContext->SOSetTargets(tf11->getNumSOBuffers(), soBuffers->data(), soOffsets.data());
mAppliedTFSerial = tf11->getSerial();
tf11->onApply();
return gl::NoError();
}
} // namespace rx