blob: 42e29c8cbf68483600a52223f8262d01a275cfba [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/Intermediate.h"
#include "compiler/translator/SymbolTable.h"
namespace
{
void OutputFunction(TInfoSinkBase &out, const char *str, TFunctionSymbolInfo *info)
{
const char *internal = info->getNameObj().isInternal() ? " (internal function)" : "";
out << str << internal << ": " << info->getNameObj().getString() << " (symbol id "
<< info->getId() << ")";
}
//
// Two purposes:
// 1. Show an example of how to iterate tree. Functions can
// also directly call Traverse() on children themselves to
// have finer grained control over the process than shown here.
// See the last function for how to get started.
// 2. Print out a text based description of the tree.
//
//
// Use this class to carry along data from node to node in
// the traversal
//
class TOutputTraverser : public TIntermTraverser
{
public:
TOutputTraverser(TInfoSinkBase &i)
: TIntermTraverser(true, false, false),
sink(i)
{
}
TInfoSinkBase& sink;
protected:
void visitSymbol(TIntermSymbol *) override;
void visitConstantUnion(TIntermConstantUnion *) override;
bool visitSwizzle(Visit visit, TIntermSwizzle *node) override;
bool visitBinary(Visit visit, TIntermBinary *) override;
bool visitUnary(Visit visit, TIntermUnary *) override;
bool visitTernary(Visit visit, TIntermTernary *node) override;
bool visitIfElse(Visit visit, TIntermIfElse *node) override;
bool visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node) override;
bool visitAggregate(Visit visit, TIntermAggregate *) override;
bool visitBlock(Visit visit, TIntermBlock *) override;
bool visitLoop(Visit visit, TIntermLoop *) override;
bool visitBranch(Visit visit, TIntermBranch *) override;
// TODO: Add missing visit functions
};
//
// Helper functions for printing, not part of traversing.
//
void OutputTreeText(TInfoSinkBase &sink, TIntermNode *node, const int depth)
{
int i;
sink.location(node->getLine());
for (i = 0; i < depth; ++i)
sink << " ";
}
} // namespace anonymous
//
// The rest of the file are the traversal functions. The last one
// is the one that starts the traversal.
//
// Return true from interior nodes to have the external traversal
// continue on to children. If you process children yourself,
// return false.
//
void TOutputTraverser::visitSymbol(TIntermSymbol *node)
{
OutputTreeText(sink, node, mDepth);
sink << "'" << node->getSymbol() << "' ";
sink << "(" << node->getCompleteString() << ")\n";
}
bool TOutputTraverser::visitSwizzle(Visit visit, TIntermSwizzle *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "vector swizzle";
return true;
}
bool TOutputTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getOp())
{
case EOpAssign:
out << "move second child to first child";
break;
case EOpInitialize:
out << "initialize first child with second child";
break;
case EOpAddAssign:
out << "add second child into first child";
break;
case EOpSubAssign:
out << "subtract second child into first child";
break;
case EOpMulAssign:
out << "multiply second child into first child";
break;
case EOpVectorTimesMatrixAssign:
out << "matrix mult second child into first child";
break;
case EOpVectorTimesScalarAssign:
out << "vector scale second child into first child";
break;
case EOpMatrixTimesScalarAssign:
out << "matrix scale second child into first child";
break;
case EOpMatrixTimesMatrixAssign:
out << "matrix mult second child into first child";
break;
case EOpDivAssign:
out << "divide second child into first child";
break;
case EOpIModAssign:
out << "modulo second child into first child";
break;
case EOpBitShiftLeftAssign:
out << "bit-wise shift first child left by second child";
break;
case EOpBitShiftRightAssign:
out << "bit-wise shift first child right by second child";
break;
case EOpBitwiseAndAssign:
out << "bit-wise and second child into first child";
break;
case EOpBitwiseXorAssign:
out << "bit-wise xor second child into first child";
break;
case EOpBitwiseOrAssign:
out << "bit-wise or second child into first child";
break;
case EOpIndexDirect:
out << "direct index";
break;
case EOpIndexIndirect:
out << "indirect index";
break;
case EOpIndexDirectStruct:
out << "direct index for structure";
break;
case EOpIndexDirectInterfaceBlock:
out << "direct index for interface block";
break;
case EOpAdd:
out << "add";
break;
case EOpSub:
out << "subtract";
break;
case EOpMul:
out << "component-wise multiply";
break;
case EOpDiv:
out << "divide";
break;
case EOpIMod:
out << "modulo";
break;
case EOpBitShiftLeft:
out << "bit-wise shift left";
break;
case EOpBitShiftRight:
out << "bit-wise shift right";
break;
case EOpBitwiseAnd:
out << "bit-wise and";
break;
case EOpBitwiseXor:
out << "bit-wise xor";
break;
case EOpBitwiseOr:
out << "bit-wise or";
break;
case EOpEqual:
out << "Compare Equal";
break;
case EOpNotEqual:
out << "Compare Not Equal";
break;
case EOpLessThan:
out << "Compare Less Than";
break;
case EOpGreaterThan:
out << "Compare Greater Than";
break;
case EOpLessThanEqual:
out << "Compare Less Than or Equal";
break;
case EOpGreaterThanEqual:
out << "Compare Greater Than or Equal";
break;
case EOpVectorTimesScalar:
out << "vector-scale";
break;
case EOpVectorTimesMatrix:
out << "vector-times-matrix";
break;
case EOpMatrixTimesVector:
out << "matrix-times-vector";
break;
case EOpMatrixTimesScalar:
out << "matrix-scale";
break;
case EOpMatrixTimesMatrix:
out << "matrix-multiply";
break;
case EOpLogicalOr:
out << "logical-or";
break;
case EOpLogicalXor:
out << "logical-xor";
break;
case EOpLogicalAnd:
out << "logical-and";
break;
default:
out << "<unknown op>";
}
out << " (" << node->getCompleteString() << ")";
out << "\n";
// Special handling for direct indexes. Because constant
// unions are not aware they are struct indexes, treat them
// here where we have that contextual knowledge.
if (node->getOp() == EOpIndexDirectStruct ||
node->getOp() == EOpIndexDirectInterfaceBlock)
{
mDepth++;
node->getLeft()->traverse(this);
mDepth--;
TIntermConstantUnion *intermConstantUnion = node->getRight()->getAsConstantUnion();
ASSERT(intermConstantUnion);
OutputTreeText(out, intermConstantUnion, mDepth + 1);
// The following code finds the field name from the constant union
const TConstantUnion *constantUnion = intermConstantUnion->getUnionArrayPointer();
const TStructure *structure = node->getLeft()->getType().getStruct();
const TInterfaceBlock *interfaceBlock = node->getLeft()->getType().getInterfaceBlock();
ASSERT(structure || interfaceBlock);
const TFieldList &fields = structure ? structure->fields() : interfaceBlock->fields();
const TField *field = fields[constantUnion->getIConst()];
out << constantUnion->getIConst() << " (field '" << field->name() << "')";
return false;
}
return true;
}
bool TOutputTraverser::visitUnary(Visit visit, TIntermUnary *node)
{
TInfoSinkBase& out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getOp())
{
case EOpNegative: out << "Negate value"; break;
case EOpPositive: out << "Positive sign"; break;
case EOpVectorLogicalNot:
case EOpLogicalNot: out << "Negate conditional"; break;
case EOpBitwiseNot: out << "bit-wise not"; break;
case EOpPostIncrement: out << "Post-Increment"; break;
case EOpPostDecrement: out << "Post-Decrement"; break;
case EOpPreIncrement: out << "Pre-Increment"; break;
case EOpPreDecrement: out << "Pre-Decrement"; break;
case EOpRadians: out << "radians"; break;
case EOpDegrees: out << "degrees"; break;
case EOpSin: out << "sine"; break;
case EOpCos: out << "cosine"; break;
case EOpTan: out << "tangent"; break;
case EOpAsin: out << "arc sine"; break;
case EOpAcos: out << "arc cosine"; break;
case EOpAtan: out << "arc tangent"; break;
case EOpSinh: out << "hyperbolic sine"; break;
case EOpCosh: out << "hyperbolic cosine"; break;
case EOpTanh: out << "hyperbolic tangent"; break;
case EOpAsinh: out << "arc hyperbolic sine"; break;
case EOpAcosh: out << "arc hyperbolic cosine"; break;
case EOpAtanh: out << "arc hyperbolic tangent"; break;
case EOpExp: out << "exp"; break;
case EOpLog: out << "log"; break;
case EOpExp2: out << "exp2"; break;
case EOpLog2: out << "log2"; break;
case EOpSqrt: out << "sqrt"; break;
case EOpInverseSqrt: out << "inverse sqrt"; break;
case EOpAbs: out << "Absolute value"; break;
case EOpSign: out << "Sign"; break;
case EOpFloor: out << "Floor"; break;
case EOpTrunc: out << "Truncate"; break;
case EOpRound: out << "Round"; break;
case EOpRoundEven: out << "Round half even"; break;
case EOpCeil: out << "Ceiling"; break;
case EOpFract: out << "Fraction"; break;
case EOpIsNan: out << "Is not a number"; break;
case EOpIsInf: out << "Is infinity"; break;
case EOpFloatBitsToInt: out << "float bits to int"; break;
case EOpFloatBitsToUint: out << "float bits to uint"; break;
case EOpIntBitsToFloat: out << "int bits to float"; break;
case EOpUintBitsToFloat: out << "uint bits to float"; break;
case EOpPackSnorm2x16: out << "pack Snorm 2x16"; break;
case EOpPackUnorm2x16: out << "pack Unorm 2x16"; break;
case EOpPackHalf2x16: out << "pack half 2x16"; break;
case EOpUnpackSnorm2x16: out << "unpack Snorm 2x16"; break;
case EOpUnpackUnorm2x16: out << "unpack Unorm 2x16"; break;
case EOpUnpackHalf2x16: out << "unpack half 2x16"; break;
case EOpLength: out << "length"; break;
case EOpNormalize: out << "normalize"; break;
// case EOpDPdx: out << "dPdx"; break;
// case EOpDPdy: out << "dPdy"; break;
// case EOpFwidth: out << "fwidth"; break;
case EOpDeterminant: out << "determinant"; break;
case EOpTranspose: out << "transpose"; break;
case EOpInverse: out << "inverse"; break;
case EOpAny: out << "any"; break;
case EOpAll: out << "all"; break;
default:
out.prefix(EPrefixError);
out << "Bad unary op";
}
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitFunctionDefinition(Visit visit, TIntermFunctionDefinition *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
OutputFunction(out, "Function Definition", node->getFunctionSymbolInfo());
out << "\n";
return true;
}
bool TOutputTraverser::visitAggregate(Visit visit, TIntermAggregate *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
if (node->getOp() == EOpNull)
{
out.prefix(EPrefixError);
out << "node is still EOpNull!\n";
return true;
}
switch (node->getOp())
{
case EOpComma: out << "Comma\n"; return true;
case EOpFunctionCall:
OutputFunction(out, "Function Call", node->getFunctionSymbolInfo());
break;
case EOpParameters: out << "Function Parameters: "; break;
case EOpPrototype:
OutputFunction(out, "Function Prototype", node->getFunctionSymbolInfo());
break;
case EOpConstructFloat: out << "Construct float"; break;
case EOpConstructVec2: out << "Construct vec2"; break;
case EOpConstructVec3: out << "Construct vec3"; break;
case EOpConstructVec4: out << "Construct vec4"; break;
case EOpConstructBool: out << "Construct bool"; break;
case EOpConstructBVec2: out << "Construct bvec2"; break;
case EOpConstructBVec3: out << "Construct bvec3"; break;
case EOpConstructBVec4: out << "Construct bvec4"; break;
case EOpConstructInt: out << "Construct int"; break;
case EOpConstructIVec2: out << "Construct ivec2"; break;
case EOpConstructIVec3: out << "Construct ivec3"; break;
case EOpConstructIVec4: out << "Construct ivec4"; break;
case EOpConstructUInt: out << "Construct uint"; break;
case EOpConstructUVec2: out << "Construct uvec2"; break;
case EOpConstructUVec3: out << "Construct uvec3"; break;
case EOpConstructUVec4: out << "Construct uvec4"; break;
case EOpConstructMat2: out << "Construct mat2"; break;
case EOpConstructMat2x3: out << "Construct mat2x3"; break;
case EOpConstructMat2x4: out << "Construct mat2x4"; break;
case EOpConstructMat3x2: out << "Construct mat3x2"; break;
case EOpConstructMat3: out << "Construct mat3"; break;
case EOpConstructMat3x4: out << "Construct mat3x4"; break;
case EOpConstructMat4x2: out << "Construct mat4x2"; break;
case EOpConstructMat4x3: out << "Construct mat4x3"; break;
case EOpConstructMat4: out << "Construct mat4"; break;
case EOpConstructStruct: out << "Construct structure"; break;
case EOpLessThan: out << "Compare Less Than"; break;
case EOpGreaterThan: out << "Compare Greater Than"; break;
case EOpLessThanEqual: out << "Compare Less Than or Equal"; break;
case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break;
case EOpVectorEqual: out << "Equal"; break;
case EOpVectorNotEqual: out << "NotEqual"; break;
case EOpMod: out << "mod"; break;
case EOpModf: out << "modf"; break;
case EOpPow: out << "pow"; break;
case EOpAtan: out << "arc tangent"; break;
case EOpMin: out << "min"; break;
case EOpMax: out << "max"; break;
case EOpClamp: out << "clamp"; break;
case EOpMix: out << "mix"; break;
case EOpStep: out << "step"; break;
case EOpSmoothStep: out << "smoothstep"; break;
case EOpDistance: out << "distance"; break;
case EOpDot: out << "dot-product"; break;
case EOpCross: out << "cross-product"; break;
case EOpFaceForward: out << "face-forward"; break;
case EOpReflect: out << "reflect"; break;
case EOpRefract: out << "refract"; break;
case EOpMul: out << "component-wise multiply"; break;
case EOpOuterProduct: out << "outer product"; break;
case EOpDeclaration: out << "Declaration: "; break;
case EOpInvariantDeclaration: out << "Invariant Declaration: "; break;
default:
out.prefix(EPrefixError);
out << "Bad aggregation op";
}
if (node->getOp() != EOpParameters)
out << " (" << node->getCompleteString() << ")";
out << "\n";
return true;
}
bool TOutputTraverser::visitBlock(Visit visit, TIntermBlock *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "Code block\n";
return true;
}
bool TOutputTraverser::visitTernary(Visit visit, TIntermTernary *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "Ternary selection";
out << " (" << node->getCompleteString() << ")\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
out << "Condition\n";
node->getCondition()->traverse(this);
OutputTreeText(sink, node, mDepth);
if (node->getTrueExpression())
{
out << "true case\n";
node->getTrueExpression()->traverse(this);
}
if (node->getFalseExpression())
{
OutputTreeText(sink, node, mDepth);
out << "false case\n";
node->getFalseExpression()->traverse(this);
}
--mDepth;
return false;
}
bool TOutputTraverser::visitIfElse(Visit visit, TIntermIfElse *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "If test\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
out << "Condition\n";
node->getCondition()->traverse(this);
OutputTreeText(sink, node, mDepth);
if (node->getTrueBlock())
{
out << "true case\n";
node->getTrueBlock()->traverse(this);
}
else
{
out << "true case is null\n";
}
if (node->getFalseBlock())
{
OutputTreeText(sink, node, mDepth);
out << "false case\n";
node->getFalseBlock()->traverse(this);
}
--mDepth;
return false;
}
void TOutputTraverser::visitConstantUnion(TIntermConstantUnion *node)
{
TInfoSinkBase &out = sink;
size_t size = node->getType().getObjectSize();
for (size_t i = 0; i < size; i++)
{
OutputTreeText(out, node, mDepth);
switch (node->getUnionArrayPointer()[i].getType())
{
case EbtBool:
if (node->getUnionArrayPointer()[i].getBConst())
out << "true";
else
out << "false";
out << " (" << "const bool" << ")";
out << "\n";
break;
case EbtFloat:
out << node->getUnionArrayPointer()[i].getFConst();
out << " (const float)\n";
break;
case EbtInt:
out << node->getUnionArrayPointer()[i].getIConst();
out << " (const int)\n";
break;
case EbtUInt:
out << node->getUnionArrayPointer()[i].getUConst();
out << " (const uint)\n";
break;
default:
out.message(EPrefixInternalError, node->getLine(), "Unknown constant");
break;
}
}
}
bool TOutputTraverser::visitLoop(Visit visit, TIntermLoop *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
out << "Loop with condition ";
if (node->getType() == ELoopDoWhile)
out << "not ";
out << "tested first\n";
++mDepth;
OutputTreeText(sink, node, mDepth);
if (node->getCondition())
{
out << "Loop Condition\n";
node->getCondition()->traverse(this);
}
else
{
out << "No loop condition\n";
}
OutputTreeText(sink, node, mDepth);
if (node->getBody())
{
out << "Loop Body\n";
node->getBody()->traverse(this);
}
else
{
out << "No loop body\n";
}
if (node->getExpression())
{
OutputTreeText(sink, node, mDepth);
out << "Loop Terminal Expression\n";
node->getExpression()->traverse(this);
}
--mDepth;
return false;
}
bool TOutputTraverser::visitBranch(Visit visit, TIntermBranch *node)
{
TInfoSinkBase &out = sink;
OutputTreeText(out, node, mDepth);
switch (node->getFlowOp())
{
case EOpKill: out << "Branch: Kill"; break;
case EOpBreak: out << "Branch: Break"; break;
case EOpContinue: out << "Branch: Continue"; break;
case EOpReturn: out << "Branch: Return"; break;
default: out << "Branch: Unknown Branch"; break;
}
if (node->getExpression())
{
out << " with expression\n";
++mDepth;
node->getExpression()->traverse(this);
--mDepth;
}
else
{
out << "\n";
}
return false;
}
//
// This function is the one to call externally to start the traversal.
// Individual functions can be initialized to 0 to skip processing of that
// type of node. Its children will still be processed.
//
void TIntermediate::outputTree(TIntermNode *root, TInfoSinkBase &infoSink)
{
TOutputTraverser it(infoSink);
ASSERT(root);
root->traverse(&it);
}