blob: 992454af8dbf2d23fd185f9a53127d2f5d6db1e3 [file] [log] [blame]
//
// Copyright (c) 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// StateManager11.cpp: Defines a class for caching D3D11 state
#include "libANGLE/renderer/d3d/d3d11/StateManager11.h"
#include "common/bitset_utils.h"
#include "common/utilities.h"
#include "libANGLE/Query.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/renderer/d3d/d3d11/Framebuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/Renderer11.h"
#include "libANGLE/renderer/d3d/d3d11/RenderTarget11.h"
namespace rx
{
namespace
{
bool ImageIndexConflictsWithSRV(const gl::ImageIndex &index, D3D11_SHADER_RESOURCE_VIEW_DESC desc)
{
unsigned mipLevel = index.mipIndex;
GLint layerIndex = index.layerIndex;
GLenum type = index.type;
switch (desc.ViewDimension)
{
case D3D11_SRV_DIMENSION_TEXTURE2D:
{
bool allLevels = (desc.Texture2D.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip = desc.Texture2D.MipLevels + desc.Texture2D.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
unsigned mipMin = index.mipIndex;
unsigned mipMax = (layerIndex == -1) ? INT_MAX : layerIndex;
return type == GL_TEXTURE_2D &&
gl::RangeUI(mipMin, mipMax)
.intersects(gl::RangeUI(desc.Texture2D.MostDetailedMip, maxSrvMip));
}
case D3D11_SRV_DIMENSION_TEXTURE2DARRAY:
{
bool allLevels = (desc.Texture2DArray.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip =
desc.Texture2DArray.MipLevels + desc.Texture2DArray.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
unsigned maxSlice = desc.Texture2DArray.FirstArraySlice + desc.Texture2DArray.ArraySize;
// Cube maps can be mapped to Texture2DArray SRVs
return (type == GL_TEXTURE_2D_ARRAY || gl::IsCubeMapTextureTarget(type)) &&
desc.Texture2DArray.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip &&
desc.Texture2DArray.FirstArraySlice <= static_cast<UINT>(layerIndex) &&
static_cast<UINT>(layerIndex) < maxSlice;
}
case D3D11_SRV_DIMENSION_TEXTURECUBE:
{
bool allLevels = (desc.TextureCube.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip = desc.TextureCube.MipLevels + desc.TextureCube.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
return gl::IsCubeMapTextureTarget(type) &&
desc.TextureCube.MostDetailedMip <= mipLevel && mipLevel < maxSrvMip;
}
case D3D11_SRV_DIMENSION_TEXTURE3D:
{
bool allLevels = (desc.Texture3D.MipLevels == std::numeric_limits<UINT>::max());
unsigned int maxSrvMip = desc.Texture3D.MipLevels + desc.Texture3D.MostDetailedMip;
maxSrvMip = allLevels ? INT_MAX : maxSrvMip;
return type == GL_TEXTURE_3D && desc.Texture3D.MostDetailedMip <= mipLevel &&
mipLevel < maxSrvMip;
}
default:
// We only handle the cases corresponding to valid image indexes
UNIMPLEMENTED();
}
return false;
}
// Does *not* increment the resource ref count!!
ID3D11Resource *GetViewResource(ID3D11View *view)
{
ID3D11Resource *resource = nullptr;
ASSERT(view);
view->GetResource(&resource);
resource->Release();
return resource;
}
} // anonymous namespace
void StateManager11::SRVCache::update(size_t resourceIndex, ID3D11ShaderResourceView *srv)
{
ASSERT(resourceIndex < mCurrentSRVs.size());
SRVRecord *record = &mCurrentSRVs[resourceIndex];
record->srv = reinterpret_cast<uintptr_t>(srv);
if (srv)
{
record->resource = reinterpret_cast<uintptr_t>(GetViewResource(srv));
srv->GetDesc(&record->desc);
mHighestUsedSRV = std::max(resourceIndex + 1, mHighestUsedSRV);
}
else
{
record->resource = 0;
if (resourceIndex + 1 == mHighestUsedSRV)
{
do
{
--mHighestUsedSRV;
} while (mHighestUsedSRV > 0 && mCurrentSRVs[mHighestUsedSRV].srv == 0);
}
}
}
void StateManager11::SRVCache::clear()
{
if (mCurrentSRVs.empty())
{
return;
}
memset(&mCurrentSRVs[0], 0, sizeof(SRVRecord) * mCurrentSRVs.size());
mHighestUsedSRV = 0;
}
static const GLenum QueryTypes[] = {GL_ANY_SAMPLES_PASSED, GL_ANY_SAMPLES_PASSED_CONSERVATIVE,
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN, GL_TIME_ELAPSED_EXT,
GL_COMMANDS_COMPLETED_CHROMIUM};
StateManager11::StateManager11(Renderer11 *renderer)
: mRenderer(renderer),
mBlendStateIsDirty(false),
mCurBlendColor(0, 0, 0, 0),
mCurSampleMask(0),
mDepthStencilStateIsDirty(false),
mCurStencilRef(0),
mCurStencilBackRef(0),
mCurStencilSize(0),
mRasterizerStateIsDirty(false),
mScissorStateIsDirty(false),
mCurScissorEnabled(false),
mCurScissorRect(),
mViewportStateIsDirty(false),
mCurViewport(),
mCurNear(0.0f),
mCurFar(0.0f),
mViewportBounds(),
mRenderTargetIsDirty(false),
mDirtyCurrentValueAttribs(),
mCurrentValueAttribs(),
mCurrentInputLayout()
{
mCurBlendState.blend = false;
mCurBlendState.sourceBlendRGB = GL_ONE;
mCurBlendState.destBlendRGB = GL_ZERO;
mCurBlendState.sourceBlendAlpha = GL_ONE;
mCurBlendState.destBlendAlpha = GL_ZERO;
mCurBlendState.blendEquationRGB = GL_FUNC_ADD;
mCurBlendState.blendEquationAlpha = GL_FUNC_ADD;
mCurBlendState.colorMaskRed = true;
mCurBlendState.colorMaskBlue = true;
mCurBlendState.colorMaskGreen = true;
mCurBlendState.colorMaskAlpha = true;
mCurBlendState.sampleAlphaToCoverage = false;
mCurBlendState.dither = false;
mCurDepthStencilState.depthTest = false;
mCurDepthStencilState.depthFunc = GL_LESS;
mCurDepthStencilState.depthMask = true;
mCurDepthStencilState.stencilTest = false;
mCurDepthStencilState.stencilMask = true;
mCurDepthStencilState.stencilFail = GL_KEEP;
mCurDepthStencilState.stencilPassDepthFail = GL_KEEP;
mCurDepthStencilState.stencilPassDepthPass = GL_KEEP;
mCurDepthStencilState.stencilWritemask = static_cast<GLuint>(-1);
mCurDepthStencilState.stencilBackFunc = GL_ALWAYS;
mCurDepthStencilState.stencilBackMask = static_cast<GLuint>(-1);
mCurDepthStencilState.stencilBackFail = GL_KEEP;
mCurDepthStencilState.stencilBackPassDepthFail = GL_KEEP;
mCurDepthStencilState.stencilBackPassDepthPass = GL_KEEP;
mCurDepthStencilState.stencilBackWritemask = static_cast<GLuint>(-1);
mCurRasterState.rasterizerDiscard = false;
mCurRasterState.cullFace = false;
mCurRasterState.cullMode = GL_BACK;
mCurRasterState.frontFace = GL_CCW;
mCurRasterState.polygonOffsetFill = false;
mCurRasterState.polygonOffsetFactor = 0.0f;
mCurRasterState.polygonOffsetUnits = 0.0f;
mCurRasterState.pointDrawMode = false;
mCurRasterState.multiSample = false;
// Initially all current value attributes must be updated on first use.
mDirtyCurrentValueAttribs.flip();
}
StateManager11::~StateManager11()
{
}
void StateManager11::updateStencilSizeIfChanged(bool depthStencilInitialized,
unsigned int stencilSize)
{
if (!depthStencilInitialized || stencilSize != mCurStencilSize)
{
mCurStencilSize = stencilSize;
mDepthStencilStateIsDirty = true;
}
}
void StateManager11::setViewportBounds(const int width, const int height)
{
if (mRenderer->getRenderer11DeviceCaps().featureLevel <= D3D_FEATURE_LEVEL_9_3 &&
(mViewportBounds.width != width || mViewportBounds.height != height))
{
mViewportBounds = gl::Extents(width, height, 1);
mViewportStateIsDirty = true;
}
}
void StateManager11::updatePresentPath(bool presentPathFastActive,
const gl::FramebufferAttachment *framebufferAttachment)
{
const int colorBufferHeight =
framebufferAttachment ? framebufferAttachment->getSize().height : 0;
if ((mCurPresentPathFastEnabled != presentPathFastActive) ||
(presentPathFastActive && (colorBufferHeight != mCurPresentPathFastColorBufferHeight)))
{
mCurPresentPathFastEnabled = presentPathFastActive;
mCurPresentPathFastColorBufferHeight = colorBufferHeight;
mViewportStateIsDirty = true; // Viewport may need to be vertically inverted
mScissorStateIsDirty = true; // Scissor rect may need to be vertically inverted
mRasterizerStateIsDirty = true; // Cull Mode may need to be inverted
}
}
void StateManager11::setComputeConstants(GLuint numGroupsX, GLuint numGroupsY, GLuint numGroupsZ)
{
mComputeConstants.numWorkGroups[0] = numGroupsX;
mComputeConstants.numWorkGroups[1] = numGroupsY;
mComputeConstants.numWorkGroups[2] = numGroupsZ;
}
void StateManager11::syncState(const gl::State &state, const gl::State::DirtyBits &dirtyBits)
{
if (!dirtyBits.any())
{
return;
}
for (auto dirtyBit : dirtyBits)
{
switch (dirtyBit)
{
case gl::State::DIRTY_BIT_BLEND_EQUATIONS:
{
const gl::BlendState &blendState = state.getBlendState();
if (blendState.blendEquationRGB != mCurBlendState.blendEquationRGB ||
blendState.blendEquationAlpha != mCurBlendState.blendEquationAlpha)
{
mBlendStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_BLEND_FUNCS:
{
const gl::BlendState &blendState = state.getBlendState();
if (blendState.sourceBlendRGB != mCurBlendState.sourceBlendRGB ||
blendState.destBlendRGB != mCurBlendState.destBlendRGB ||
blendState.sourceBlendAlpha != mCurBlendState.sourceBlendAlpha ||
blendState.destBlendAlpha != mCurBlendState.destBlendAlpha)
{
mBlendStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_BLEND_ENABLED:
if (state.getBlendState().blend != mCurBlendState.blend)
{
mBlendStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_SAMPLE_ALPHA_TO_COVERAGE_ENABLED:
if (state.getBlendState().sampleAlphaToCoverage !=
mCurBlendState.sampleAlphaToCoverage)
{
mBlendStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_DITHER_ENABLED:
if (state.getBlendState().dither != mCurBlendState.dither)
{
mBlendStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_COLOR_MASK:
{
const gl::BlendState &blendState = state.getBlendState();
if (blendState.colorMaskRed != mCurBlendState.colorMaskRed ||
blendState.colorMaskGreen != mCurBlendState.colorMaskGreen ||
blendState.colorMaskBlue != mCurBlendState.colorMaskBlue ||
blendState.colorMaskAlpha != mCurBlendState.colorMaskAlpha)
{
mBlendStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_BLEND_COLOR:
if (state.getBlendColor() != mCurBlendColor)
{
mBlendStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_DEPTH_MASK:
if (state.getDepthStencilState().depthMask != mCurDepthStencilState.depthMask)
{
mDepthStencilStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_DEPTH_TEST_ENABLED:
if (state.getDepthStencilState().depthTest != mCurDepthStencilState.depthTest)
{
mDepthStencilStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_DEPTH_FUNC:
if (state.getDepthStencilState().depthFunc != mCurDepthStencilState.depthFunc)
{
mDepthStencilStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_STENCIL_TEST_ENABLED:
if (state.getDepthStencilState().stencilTest != mCurDepthStencilState.stencilTest)
{
mDepthStencilStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_STENCIL_FUNCS_FRONT:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilFunc != mCurDepthStencilState.stencilFunc ||
depthStencil.stencilMask != mCurDepthStencilState.stencilMask ||
state.getStencilRef() != mCurStencilRef)
{
mDepthStencilStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_STENCIL_FUNCS_BACK:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilBackFunc != mCurDepthStencilState.stencilBackFunc ||
depthStencil.stencilBackMask != mCurDepthStencilState.stencilBackMask ||
state.getStencilBackRef() != mCurStencilBackRef)
{
mDepthStencilStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_STENCIL_WRITEMASK_FRONT:
if (state.getDepthStencilState().stencilWritemask !=
mCurDepthStencilState.stencilWritemask)
{
mDepthStencilStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_STENCIL_WRITEMASK_BACK:
if (state.getDepthStencilState().stencilBackWritemask !=
mCurDepthStencilState.stencilBackWritemask)
{
mDepthStencilStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_STENCIL_OPS_FRONT:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilFail != mCurDepthStencilState.stencilFail ||
depthStencil.stencilPassDepthFail !=
mCurDepthStencilState.stencilPassDepthFail ||
depthStencil.stencilPassDepthPass != mCurDepthStencilState.stencilPassDepthPass)
{
mDepthStencilStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_STENCIL_OPS_BACK:
{
const gl::DepthStencilState &depthStencil = state.getDepthStencilState();
if (depthStencil.stencilBackFail != mCurDepthStencilState.stencilBackFail ||
depthStencil.stencilBackPassDepthFail !=
mCurDepthStencilState.stencilBackPassDepthFail ||
depthStencil.stencilBackPassDepthPass !=
mCurDepthStencilState.stencilBackPassDepthPass)
{
mDepthStencilStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_CULL_FACE_ENABLED:
if (state.getRasterizerState().cullFace != mCurRasterState.cullFace)
{
mRasterizerStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_CULL_FACE:
if (state.getRasterizerState().cullMode != mCurRasterState.cullMode)
{
mRasterizerStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_FRONT_FACE:
if (state.getRasterizerState().frontFace != mCurRasterState.frontFace)
{
mRasterizerStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_POLYGON_OFFSET_FILL_ENABLED:
if (state.getRasterizerState().polygonOffsetFill !=
mCurRasterState.polygonOffsetFill)
{
mRasterizerStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_POLYGON_OFFSET:
{
const gl::RasterizerState &rasterState = state.getRasterizerState();
if (rasterState.polygonOffsetFactor != mCurRasterState.polygonOffsetFactor ||
rasterState.polygonOffsetUnits != mCurRasterState.polygonOffsetUnits)
{
mRasterizerStateIsDirty = true;
}
break;
}
case gl::State::DIRTY_BIT_RASTERIZER_DISCARD_ENABLED:
if (state.getRasterizerState().rasterizerDiscard !=
mCurRasterState.rasterizerDiscard)
{
mRasterizerStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_SCISSOR:
if (state.getScissor() != mCurScissorRect)
{
mScissorStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_SCISSOR_TEST_ENABLED:
if (state.isScissorTestEnabled() != mCurScissorEnabled)
{
mScissorStateIsDirty = true;
// Rasterizer state update needs mCurScissorsEnabled and updates when it changes
mRasterizerStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_DEPTH_RANGE:
if (state.getNearPlane() != mCurNear || state.getFarPlane() != mCurFar)
{
mViewportStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_VIEWPORT:
if (state.getViewport() != mCurViewport)
{
mViewportStateIsDirty = true;
}
break;
case gl::State::DIRTY_BIT_DRAW_FRAMEBUFFER_BINDING:
mRenderTargetIsDirty = true;
break;
default:
if (dirtyBit >= gl::State::DIRTY_BIT_CURRENT_VALUE_0 &&
dirtyBit < gl::State::DIRTY_BIT_CURRENT_VALUE_MAX)
{
size_t attribIndex =
static_cast<size_t>(dirtyBit - gl::State::DIRTY_BIT_CURRENT_VALUE_0);
mDirtyCurrentValueAttribs.set(attribIndex);
}
break;
}
}
}
gl::Error StateManager11::setBlendState(const gl::Framebuffer *framebuffer,
const gl::BlendState &blendState,
const gl::ColorF &blendColor,
unsigned int sampleMask)
{
if (!mBlendStateIsDirty && sampleMask == mCurSampleMask)
{
return gl::NoError();
}
ID3D11BlendState *dxBlendState = nullptr;
const d3d11::BlendStateKey &key = RenderStateCache::GetBlendStateKey(framebuffer, blendState);
ANGLE_TRY(mRenderer->getBlendState(key, &dxBlendState));
ASSERT(dxBlendState != nullptr);
float blendColors[4] = {0.0f};
if (blendState.sourceBlendRGB != GL_CONSTANT_ALPHA &&
blendState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
blendColors[0] = blendColor.red;
blendColors[1] = blendColor.green;
blendColors[2] = blendColor.blue;
blendColors[3] = blendColor.alpha;
}
else
{
blendColors[0] = blendColor.alpha;
blendColors[1] = blendColor.alpha;
blendColors[2] = blendColor.alpha;
blendColors[3] = blendColor.alpha;
}
mRenderer->getDeviceContext()->OMSetBlendState(dxBlendState, blendColors, sampleMask);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
mCurSampleMask = sampleMask;
mBlendStateIsDirty = false;
return gl::NoError();
}
gl::Error StateManager11::setDepthStencilState(const gl::State &glState)
{
const auto &fbo = *glState.getDrawFramebuffer();
// Disable the depth test/depth write if we are using a stencil-only attachment.
// This is because ANGLE emulates stencil-only with D24S8 on D3D11 - we should neither read
// nor write to the unused depth part of this emulated texture.
bool disableDepth = (!fbo.hasDepth() && fbo.hasStencil());
// Similarly we disable the stencil portion of the DS attachment if the app only binds depth.
bool disableStencil = (fbo.hasDepth() && !fbo.hasStencil());
// CurDisableDepth/Stencil are reset automatically after we call forceSetDepthStencilState.
if (!mDepthStencilStateIsDirty && mCurDisableDepth.valid() &&
disableDepth == mCurDisableDepth.value() && mCurDisableStencil.valid() &&
disableStencil == mCurDisableStencil.value())
{
return gl::NoError();
}
mCurDepthStencilState = glState.getDepthStencilState();
mCurStencilRef = glState.getStencilRef();
mCurStencilBackRef = glState.getStencilBackRef();
mCurDisableDepth = disableDepth;
mCurDisableStencil = disableStencil;
// get the maximum size of the stencil ref
unsigned int maxStencil = 0;
if (mCurDepthStencilState.stencilTest && mCurStencilSize > 0)
{
maxStencil = (1 << mCurStencilSize) - 1;
}
ASSERT((mCurDepthStencilState.stencilWritemask & maxStencil) ==
(mCurDepthStencilState.stencilBackWritemask & maxStencil));
ASSERT(mCurStencilRef == mCurStencilBackRef);
ASSERT((mCurDepthStencilState.stencilMask & maxStencil) ==
(mCurDepthStencilState.stencilBackMask & maxStencil));
ID3D11DepthStencilState *dxDepthStencilState = nullptr;
gl::DepthStencilState dsStateKey = glState.getDepthStencilState();
if (disableDepth)
{
dsStateKey.depthTest = false;
dsStateKey.depthMask = false;
}
if (disableStencil)
{
dsStateKey.stencilWritemask = 0;
dsStateKey.stencilBackWritemask = 0;
dsStateKey.stencilTest = false;
}
ANGLE_TRY(mRenderer->getDepthStencilState(dsStateKey, &dxDepthStencilState));
ASSERT(dxDepthStencilState);
// Max D3D11 stencil reference value is 0xFF,
// corresponding to the max 8 bits in a stencil buffer
// GL specifies we should clamp the ref value to the
// nearest bit depth when doing stencil ops
static_assert(D3D11_DEFAULT_STENCIL_READ_MASK == 0xFF,
"Unexpected value of D3D11_DEFAULT_STENCIL_READ_MASK");
static_assert(D3D11_DEFAULT_STENCIL_WRITE_MASK == 0xFF,
"Unexpected value of D3D11_DEFAULT_STENCIL_WRITE_MASK");
UINT dxStencilRef = std::min<UINT>(mCurStencilRef, 0xFFu);
mRenderer->getDeviceContext()->OMSetDepthStencilState(dxDepthStencilState, dxStencilRef);
mDepthStencilStateIsDirty = false;
return gl::NoError();
}
gl::Error StateManager11::setRasterizerState(const gl::RasterizerState &rasterState)
{
// TODO: Remove pointDrawMode and multiSample from gl::RasterizerState.
if (!mRasterizerStateIsDirty && rasterState.pointDrawMode == mCurRasterState.pointDrawMode &&
rasterState.multiSample == mCurRasterState.multiSample)
{
return gl::NoError();
}
ID3D11RasterizerState *dxRasterState = nullptr;
if (mCurPresentPathFastEnabled)
{
gl::RasterizerState modifiedRasterState = rasterState;
// If prseent path fast is active then we need invert the front face state.
// This ensures that both gl_FrontFacing is correct, and front/back culling
// is performed correctly.
if (modifiedRasterState.frontFace == GL_CCW)
{
modifiedRasterState.frontFace = GL_CW;
}
else
{
ASSERT(modifiedRasterState.frontFace == GL_CW);
modifiedRasterState.frontFace = GL_CCW;
}
ANGLE_TRY(
mRenderer->getRasterizerState(modifiedRasterState, mCurScissorEnabled, &dxRasterState));
}
else
{
ANGLE_TRY(mRenderer->getRasterizerState(rasterState, mCurScissorEnabled, &dxRasterState));
}
mRenderer->getDeviceContext()->RSSetState(dxRasterState);
mCurRasterState = rasterState;
mRasterizerStateIsDirty = false;
return gl::NoError();
}
void StateManager11::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
if (!mScissorStateIsDirty)
return;
int modifiedScissorY = scissor.y;
if (mCurPresentPathFastEnabled)
{
modifiedScissorY = mCurPresentPathFastColorBufferHeight - scissor.height - scissor.y;
}
if (enabled)
{
D3D11_RECT rect;
rect.left = std::max(0, scissor.x);
rect.top = std::max(0, modifiedScissorY);
rect.right = scissor.x + std::max(0, scissor.width);
rect.bottom = modifiedScissorY + std::max(0, scissor.height);
mRenderer->getDeviceContext()->RSSetScissorRects(1, &rect);
}
mCurScissorRect = scissor;
mCurScissorEnabled = enabled;
mScissorStateIsDirty = false;
}
void StateManager11::setViewport(const gl::Caps *caps,
const gl::Rectangle &viewport,
float zNear,
float zFar)
{
if (!mViewportStateIsDirty)
return;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
int dxMaxViewportBoundsX = static_cast<int>(caps->maxViewportWidth);
int dxMaxViewportBoundsY = static_cast<int>(caps->maxViewportHeight);
int dxMinViewportBoundsX = -dxMaxViewportBoundsX;
int dxMinViewportBoundsY = -dxMaxViewportBoundsY;
if (mRenderer->getRenderer11DeviceCaps().featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
// Feature Level 9 viewports shouldn't exceed the dimensions of the rendertarget.
dxMaxViewportBoundsX = static_cast<int>(mViewportBounds.width);
dxMaxViewportBoundsY = static_cast<int>(mViewportBounds.height);
dxMinViewportBoundsX = 0;
dxMinViewportBoundsY = 0;
}
int dxViewportTopLeftX = gl::clamp(viewport.x, dxMinViewportBoundsX, dxMaxViewportBoundsX);
int dxViewportTopLeftY = gl::clamp(viewport.y, dxMinViewportBoundsY, dxMaxViewportBoundsY);
int dxViewportWidth = gl::clamp(viewport.width, 0, dxMaxViewportBoundsX - dxViewportTopLeftX);
int dxViewportHeight = gl::clamp(viewport.height, 0, dxMaxViewportBoundsY - dxViewportTopLeftY);
D3D11_VIEWPORT dxViewport;
dxViewport.TopLeftX = static_cast<float>(dxViewportTopLeftX);
if (mCurPresentPathFastEnabled)
{
// When present path fast is active and we're rendering to framebuffer 0, we must invert
// the viewport in Y-axis.
// NOTE: We delay the inversion until right before the call to RSSetViewports, and leave
// dxViewportTopLeftY unchanged. This allows us to calculate viewAdjust below using the
// unaltered dxViewportTopLeftY value.
dxViewport.TopLeftY = static_cast<float>(mCurPresentPathFastColorBufferHeight -
dxViewportTopLeftY - dxViewportHeight);
}
else
{
dxViewport.TopLeftY = static_cast<float>(dxViewportTopLeftY);
}
dxViewport.Width = static_cast<float>(dxViewportWidth);
dxViewport.Height = static_cast<float>(dxViewportHeight);
dxViewport.MinDepth = actualZNear;
dxViewport.MaxDepth = actualZFar;
mRenderer->getDeviceContext()->RSSetViewports(1, &dxViewport);
mCurViewport = viewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
// On Feature Level 9_*, we must emulate large and/or negative viewports in the shaders
// using viewAdjust (like the D3D9 renderer).
if (mRenderer->getRenderer11DeviceCaps().featureLevel <= D3D_FEATURE_LEVEL_9_3)
{
mVertexConstants.viewAdjust[0] = static_cast<float>((viewport.width - dxViewportWidth) +
2 * (viewport.x - dxViewportTopLeftX)) /
dxViewport.Width;
mVertexConstants.viewAdjust[1] = static_cast<float>((viewport.height - dxViewportHeight) +
2 * (viewport.y - dxViewportTopLeftY)) /
dxViewport.Height;
mVertexConstants.viewAdjust[2] = static_cast<float>(viewport.width) / dxViewport.Width;
mVertexConstants.viewAdjust[3] = static_cast<float>(viewport.height) / dxViewport.Height;
}
mPixelConstants.viewCoords[0] = viewport.width * 0.5f;
mPixelConstants.viewCoords[1] = viewport.height * 0.5f;
mPixelConstants.viewCoords[2] = viewport.x + (viewport.width * 0.5f);
mPixelConstants.viewCoords[3] = viewport.y + (viewport.height * 0.5f);
// Instanced pointsprite emulation requires ViewCoords to be defined in the
// the vertex shader.
mVertexConstants.viewCoords[0] = mPixelConstants.viewCoords[0];
mVertexConstants.viewCoords[1] = mPixelConstants.viewCoords[1];
mVertexConstants.viewCoords[2] = mPixelConstants.viewCoords[2];
mVertexConstants.viewCoords[3] = mPixelConstants.viewCoords[3];
mPixelConstants.depthFront[0] = (actualZFar - actualZNear) * 0.5f;
mPixelConstants.depthFront[1] = (actualZNear + actualZFar) * 0.5f;
mVertexConstants.depthRange[0] = actualZNear;
mVertexConstants.depthRange[1] = actualZFar;
mVertexConstants.depthRange[2] = actualZFar - actualZNear;
mPixelConstants.depthRange[0] = actualZNear;
mPixelConstants.depthRange[1] = actualZFar;
mPixelConstants.depthRange[2] = actualZFar - actualZNear;
mPixelConstants.viewScale[0] = 1.0f;
mPixelConstants.viewScale[1] = mCurPresentPathFastEnabled ? 1.0f : -1.0f;
mPixelConstants.viewScale[2] = 1.0f;
mPixelConstants.viewScale[3] = 1.0f;
mVertexConstants.viewScale[0] = mPixelConstants.viewScale[0];
mVertexConstants.viewScale[1] = mPixelConstants.viewScale[1];
mVertexConstants.viewScale[2] = mPixelConstants.viewScale[2];
mVertexConstants.viewScale[3] = mPixelConstants.viewScale[3];
mViewportStateIsDirty = false;
}
void StateManager11::invalidateRenderTarget()
{
mRenderTargetIsDirty = true;
}
void StateManager11::invalidateBoundViews()
{
mCurVertexSRVs.clear();
mCurPixelSRVs.clear();
invalidateRenderTarget();
}
void StateManager11::invalidateEverything()
{
mBlendStateIsDirty = true;
mDepthStencilStateIsDirty = true;
mRasterizerStateIsDirty = true;
mScissorStateIsDirty = true;
mViewportStateIsDirty = true;
// We reset the current SRV data because it might not be in sync with D3D's state
// anymore. For example when a currently used SRV is used as an RTV, D3D silently
// remove it from its state.
invalidateBoundViews();
// All calls to IASetInputLayout go through the state manager, so it shouldn't be
// necessary to invalidate the state.
}
void StateManager11::setOneTimeRenderTarget(ID3D11RenderTargetView *rtv,
ID3D11DepthStencilView *dsv)
{
mRenderer->getDeviceContext()->OMSetRenderTargets(1, &rtv, dsv);
mRenderTargetIsDirty = true;
}
void StateManager11::setOneTimeRenderTargets(ID3D11RenderTargetView **rtvs,
UINT numRtvs,
ID3D11DepthStencilView *dsv)
{
mRenderer->getDeviceContext()->OMSetRenderTargets(numRtvs, (numRtvs > 0) ? rtvs : nullptr, dsv);
mRenderTargetIsDirty = true;
}
void StateManager11::onBeginQuery(Query11 *query)
{
mCurrentQueries.insert(query);
}
void StateManager11::onDeleteQueryObject(Query11 *query)
{
mCurrentQueries.erase(query);
}
gl::Error StateManager11::onMakeCurrent(const gl::ContextState &data)
{
const gl::State &state = data.getState();
for (Query11 *query : mCurrentQueries)
{
query->pause();
}
mCurrentQueries.clear();
for (GLenum queryType : QueryTypes)
{
gl::Query *query = state.getActiveQuery(queryType);
if (query != nullptr)
{
Query11 *query11 = GetImplAs<Query11>(query);
query11->resume();
mCurrentQueries.insert(query11);
}
}
return gl::NoError();
}
void StateManager11::setShaderResource(gl::SamplerType shaderType,
UINT resourceSlot,
ID3D11ShaderResourceView *srv)
{
auto &currentSRVs = (shaderType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
ASSERT(static_cast<size_t>(resourceSlot) < currentSRVs.size());
const SRVRecord &record = currentSRVs[resourceSlot];
if (record.srv != reinterpret_cast<uintptr_t>(srv))
{
auto deviceContext = mRenderer->getDeviceContext();
if (shaderType == gl::SAMPLER_VERTEX)
{
deviceContext->VSSetShaderResources(resourceSlot, 1, &srv);
}
else
{
deviceContext->PSSetShaderResources(resourceSlot, 1, &srv);
}
currentSRVs.update(resourceSlot, srv);
}
}
gl::Error StateManager11::clearTextures(gl::SamplerType samplerType,
size_t rangeStart,
size_t rangeEnd)
{
if (rangeStart == rangeEnd)
{
return gl::NoError();
}
auto &currentSRVs = (samplerType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
gl::Range<size_t> clearRange(rangeStart, std::min(rangeEnd, currentSRVs.highestUsed()));
if (clearRange.empty())
{
return gl::NoError();
}
auto deviceContext = mRenderer->getDeviceContext();
if (samplerType == gl::SAMPLER_VERTEX)
{
deviceContext->VSSetShaderResources(static_cast<unsigned int>(clearRange.low()),
static_cast<unsigned int>(clearRange.length()),
&mNullSRVs[0]);
}
else
{
deviceContext->PSSetShaderResources(static_cast<unsigned int>(clearRange.low()),
static_cast<unsigned int>(clearRange.length()),
&mNullSRVs[0]);
}
for (size_t samplerIndex : clearRange)
{
currentSRVs.update(samplerIndex, nullptr);
}
return gl::NoError();
}
void StateManager11::unsetConflictingSRVs(gl::SamplerType samplerType,
uintptr_t resource,
const gl::ImageIndex &index)
{
auto &currentSRVs = (samplerType == gl::SAMPLER_VERTEX ? mCurVertexSRVs : mCurPixelSRVs);
for (size_t resourceIndex = 0; resourceIndex < currentSRVs.size(); ++resourceIndex)
{
auto &record = currentSRVs[resourceIndex];
if (record.srv && record.resource == resource &&
ImageIndexConflictsWithSRV(index, record.desc))
{
setShaderResource(samplerType, static_cast<UINT>(resourceIndex), nullptr);
}
}
}
void StateManager11::unsetConflictingAttachmentResources(
const gl::FramebufferAttachment *attachment,
ID3D11Resource *resource)
{
// Unbind render target SRVs from the shader here to prevent D3D11 warnings.
if (attachment->type() == GL_TEXTURE)
{
uintptr_t resourcePtr = reinterpret_cast<uintptr_t>(resource);
const gl::ImageIndex &index = attachment->getTextureImageIndex();
// The index doesn't need to be corrected for the small compressed texture workaround
// because a rendertarget is never compressed.
unsetConflictingSRVs(gl::SAMPLER_VERTEX, resourcePtr, index);
unsetConflictingSRVs(gl::SAMPLER_PIXEL, resourcePtr, index);
}
}
void StateManager11::initialize(const gl::Caps &caps)
{
mCurVertexSRVs.initialize(caps.maxVertexTextureImageUnits);
mCurPixelSRVs.initialize(caps.maxTextureImageUnits);
// Initialize cached NULL SRV block
mNullSRVs.resize(caps.maxTextureImageUnits, nullptr);
mCurrentValueAttribs.resize(caps.maxVertexAttributes);
}
void StateManager11::deinitialize()
{
mCurrentValueAttribs.clear();
}
gl::Error StateManager11::syncFramebuffer(const gl::Context *context, gl::Framebuffer *framebuffer)
{
Framebuffer11 *framebuffer11 = GetImplAs<Framebuffer11>(framebuffer);
ANGLE_TRY(framebuffer11->markAttachmentsDirty());
if (framebuffer11->hasAnyInternalDirtyBit())
{
ASSERT(framebuffer->id() != 0);
framebuffer11->syncInternalState(context);
}
if (!mRenderTargetIsDirty)
{
return gl::NoError();
}
mRenderTargetIsDirty = false;
// Check for zero-sized default framebuffer, which is a special case.
// in this case we do not wish to modify any state and just silently return false.
// this will not report any gl error but will cause the calling method to return.
if (framebuffer->id() == 0)
{
ASSERT(!framebuffer11->hasAnyInternalDirtyBit());
const gl::Extents &size = framebuffer->getFirstColorbuffer()->getSize();
if (size.width == 0 || size.height == 0)
{
return gl::NoError();
}
}
// Get the color render buffer and serial
// Also extract the render target dimensions and view
unsigned int renderTargetWidth = 0;
unsigned int renderTargetHeight = 0;
RTVArray framebufferRTVs;
bool missingColorRenderTarget = true;
framebufferRTVs.fill(nullptr);
const auto &colorRTs = framebuffer11->getCachedColorRenderTargets();
size_t appliedRTIndex = 0;
bool skipInactiveRTs = mRenderer->getWorkarounds().mrtPerfWorkaround;
const auto &drawStates = framebuffer->getDrawBufferStates();
UINT maxExistingRT = 0;
for (size_t rtIndex = 0; rtIndex < colorRTs.size(); ++rtIndex)
{
const RenderTarget11 *renderTarget = colorRTs[rtIndex];
// Skip inactive rendertargets if the workaround is enabled.
if (skipInactiveRTs && (!renderTarget || drawStates[rtIndex] == GL_NONE))
{
continue;
}
if (renderTarget)
{
framebufferRTVs[appliedRTIndex] = renderTarget->getRenderTargetView().get();
ASSERT(framebufferRTVs[appliedRTIndex]);
maxExistingRT = static_cast<UINT>(appliedRTIndex) + 1;
if (missingColorRenderTarget)
{
renderTargetWidth = renderTarget->getWidth();
renderTargetHeight = renderTarget->getHeight();
missingColorRenderTarget = false;
}
}
// Unset conflicting texture SRVs
const auto *attachment = framebuffer->getColorbuffer(rtIndex);
ASSERT(attachment);
unsetConflictingAttachmentResources(attachment, renderTarget->getTexture().get());
appliedRTIndex++;
}
// Get the depth stencil buffers
ID3D11DepthStencilView *framebufferDSV = nullptr;
const auto *depthStencilRenderTarget = framebuffer11->getCachedDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
framebufferDSV = depthStencilRenderTarget->getDepthStencilView().get();
ASSERT(framebufferDSV);
// If there is no render buffer, the width, height and format values come from
// the depth stencil
if (missingColorRenderTarget)
{
renderTargetWidth = depthStencilRenderTarget->getWidth();
renderTargetHeight = depthStencilRenderTarget->getHeight();
}
// Unset conflicting texture SRVs
const auto *attachment = framebuffer->getDepthOrStencilbuffer();
ASSERT(attachment);
unsetConflictingAttachmentResources(attachment,
depthStencilRenderTarget->getTexture().get());
}
// TODO(jmadill): Use context caps?
ASSERT(maxExistingRT <= static_cast<UINT>(mRenderer->getNativeCaps().maxDrawBuffers));
// Apply the render target and depth stencil
mRenderer->getDeviceContext()->OMSetRenderTargets(maxExistingRT, framebufferRTVs.data(),
framebufferDSV);
// The D3D11 blend state is heavily dependent on the current render target.
mBlendStateIsDirty = true;
setViewportBounds(renderTargetWidth, renderTargetHeight);
return gl::NoError();
}
gl::Error StateManager11::updateCurrentValueAttribs(const gl::State &state,
VertexDataManager *vertexDataManager)
{
const auto &activeAttribsMask = state.getProgram()->getActiveAttribLocationsMask();
const auto &dirtyActiveAttribs = (activeAttribsMask & mDirtyCurrentValueAttribs);
const auto &vertexAttributes = state.getVertexArray()->getVertexAttributes();
const auto &vertexBindings = state.getVertexArray()->getVertexBindings();
for (auto attribIndex : dirtyActiveAttribs)
{
if (vertexAttributes[attribIndex].enabled)
continue;
mDirtyCurrentValueAttribs.reset(attribIndex);
const auto *attrib = &vertexAttributes[attribIndex];
const auto &currentValue = state.getVertexAttribCurrentValue(attribIndex);
auto currentValueAttrib = &mCurrentValueAttribs[attribIndex];
currentValueAttrib->currentValueType = currentValue.Type;
currentValueAttrib->attribute = attrib;
currentValueAttrib->binding = &vertexBindings[attrib->bindingIndex];
ANGLE_TRY(vertexDataManager->storeCurrentValue(currentValue, currentValueAttrib,
static_cast<size_t>(attribIndex)));
}
return gl::NoError();
}
const std::vector<TranslatedAttribute> &StateManager11::getCurrentValueAttribs() const
{
return mCurrentValueAttribs;
}
void StateManager11::setInputLayout(const d3d11::InputLayout *inputLayout)
{
ID3D11DeviceContext *deviceContext = mRenderer->getDeviceContext();
if (inputLayout == nullptr)
{
if (mCurrentInputLayout != 0)
{
deviceContext->IASetInputLayout(nullptr);
mCurrentInputLayout = 0;
}
}
else if (inputLayout->getSerial() != mCurrentInputLayout)
{
deviceContext->IASetInputLayout(inputLayout->get());
mCurrentInputLayout = inputLayout->getSerial();
}
}
} // namespace rx