blob: cfc19cb5fde8496f778abf4de46a18cdc5a129e9 [file] [log] [blame]
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// TextureGL.cpp: Implements the class methods for TextureGL.
#include "libANGLE/renderer/gl/TextureGL.h"
#include "common/debug.h"
#include "common/utilities.h"
#include "libANGLE/State.h"
#include "libANGLE/angletypes.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/gl/BlitGL.h"
#include "libANGLE/renderer/gl/BufferGL.h"
#include "libANGLE/renderer/gl/FramebufferGL.h"
#include "libANGLE/renderer/gl/FunctionsGL.h"
#include "libANGLE/renderer/gl/StateManagerGL.h"
#include "libANGLE/renderer/gl/WorkaroundsGL.h"
#include "libANGLE/renderer/gl/formatutilsgl.h"
#include "libANGLE/renderer/gl/renderergl_utils.h"
using angle::CheckedNumeric;
namespace rx
{
namespace
{
bool UseTexImage2D(GLenum textureType)
{
return textureType == GL_TEXTURE_2D || textureType == GL_TEXTURE_CUBE_MAP;
}
bool UseTexImage3D(GLenum textureType)
{
return textureType == GL_TEXTURE_2D_ARRAY || textureType == GL_TEXTURE_3D;
}
bool CompatibleTextureTarget(GLenum textureType, GLenum textureTarget)
{
if (textureType != GL_TEXTURE_CUBE_MAP)
{
return textureType == textureTarget;
}
else
{
return gl::IsCubeMapTextureTarget(textureTarget);
}
}
bool IsLUMAFormat(GLenum format)
{
return format == GL_LUMINANCE || format == GL_ALPHA || format == GL_LUMINANCE_ALPHA;
}
LUMAWorkaroundGL GetLUMAWorkaroundInfo(const gl::InternalFormat &originalFormatInfo,
GLenum destinationFormat)
{
if (IsLUMAFormat(originalFormatInfo.format))
{
const gl::InternalFormat &destinationFormatInfo =
gl::GetInternalFormatInfo(destinationFormat);
return LUMAWorkaroundGL(!IsLUMAFormat(destinationFormatInfo.format),
destinationFormatInfo.format);
}
else
{
return LUMAWorkaroundGL(false, GL_NONE);
}
}
bool IsDepthStencilFormat(GLenum format)
{
return format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL;
}
bool GetDepthStencilWorkaround(const gl::InternalFormat &originalFormatInfo)
{
return IsDepthStencilFormat(originalFormatInfo.format);
}
LevelInfoGL GetLevelInfo(GLenum originalFormat, GLenum destinationFormat)
{
const gl::InternalFormat &originalFormatInfo = gl::GetInternalFormatInfo(originalFormat);
return LevelInfoGL(originalFormat, GetDepthStencilWorkaround(originalFormatInfo),
GetLUMAWorkaroundInfo(originalFormatInfo, destinationFormat));
}
} // anonymous namespace
LUMAWorkaroundGL::LUMAWorkaroundGL() : LUMAWorkaroundGL(false, GL_NONE)
{
}
LUMAWorkaroundGL::LUMAWorkaroundGL(bool enabled_, GLenum workaroundFormat_)
: enabled(enabled_), workaroundFormat(workaroundFormat_)
{
}
LevelInfoGL::LevelInfoGL() : LevelInfoGL(GL_NONE, false, LUMAWorkaroundGL())
{
}
LevelInfoGL::LevelInfoGL(GLenum sourceFormat_,
bool depthStencilWorkaround_,
const LUMAWorkaroundGL &lumaWorkaround_)
: sourceFormat(sourceFormat_),
depthStencilWorkaround(depthStencilWorkaround_),
lumaWorkaround(lumaWorkaround_)
{
}
TextureGL::TextureGL(const gl::TextureState &state,
const FunctionsGL *functions,
const WorkaroundsGL &workarounds,
StateManagerGL *stateManager,
BlitGL *blitter)
: TextureImpl(state),
mFunctions(functions),
mWorkarounds(workarounds),
mStateManager(stateManager),
mBlitter(blitter),
mLevelInfo(gl::IMPLEMENTATION_MAX_TEXTURE_LEVELS + 1),
mAppliedTextureState(state.mTarget),
mTextureID(0)
{
ASSERT(mFunctions);
ASSERT(mStateManager);
ASSERT(mBlitter);
mFunctions->genTextures(1, &mTextureID);
mStateManager->bindTexture(mState.mTarget, mTextureID);
}
TextureGL::~TextureGL()
{
mStateManager->deleteTexture(mTextureID);
mTextureID = 0;
}
gl::Error TextureGL::setImage(GLenum target,
size_t level,
GLenum internalFormat,
const gl::Extents &size,
GLenum format,
GLenum type,
const gl::PixelUnpackState &unpack,
const uint8_t *pixels)
{
if (mWorkarounds.unpackOverlappingRowsSeparatelyUnpackBuffer && unpack.pixelBuffer.get() &&
unpack.rowLength != 0 && unpack.rowLength < size.width)
{
// The rows overlap in unpack memory. Upload the texture row by row to work around
// driver bug.
reserveTexImageToBeFilled(target, level, internalFormat, size, format, type);
if (size.width == 0 || size.height == 0 || size.depth == 0)
{
return gl::NoError();
}
gl::Box area(0, 0, 0, size.width, size.height, size.depth);
return setSubImageRowByRowWorkaround(target, level, area, format, type, unpack, pixels);
}
if (mWorkarounds.unpackLastRowSeparatelyForPaddingInclusion)
{
bool apply;
ANGLE_TRY_RESULT(ShouldApplyLastRowPaddingWorkaround(size, unpack, format, type,
UseTexImage3D(mState.mTarget), pixels),
apply);
// The driver will think the pixel buffer doesn't have enough data, work around this bug
// by uploading the last row (and last level if 3D) separately.
if (apply)
{
reserveTexImageToBeFilled(target, level, internalFormat, size, format, type);
if (size.width == 0 || size.height == 0 || size.depth == 0)
{
return gl::NoError();
}
gl::Box area(0, 0, 0, size.width, size.height, size.depth);
return setSubImagePaddingWorkaround(target, level, area, format, type, unpack, pixels);
}
}
setImageHelper(target, level, internalFormat, size, format, type, pixels);
return gl::NoError();
}
void TextureGL::setImageHelper(GLenum target,
size_t level,
GLenum internalFormat,
const gl::Extents &size,
GLenum format,
GLenum type,
const uint8_t *pixels)
{
UNUSED_ASSERTION_VARIABLE(&CompatibleTextureTarget); // Reference this function to avoid warnings.
ASSERT(CompatibleTextureTarget(mState.mTarget, target));
nativegl::TexImageFormat texImageFormat =
nativegl::GetTexImageFormat(mFunctions, mWorkarounds, internalFormat, format, type);
mStateManager->bindTexture(mState.mTarget, mTextureID);
if (UseTexImage2D(mState.mTarget))
{
ASSERT(size.depth == 1);
mFunctions->texImage2D(target, static_cast<GLint>(level), texImageFormat.internalFormat,
size.width, size.height, 0, texImageFormat.format,
texImageFormat.type, pixels);
}
else if (UseTexImage3D(mState.mTarget))
{
mFunctions->texImage3D(target, static_cast<GLint>(level), texImageFormat.internalFormat,
size.width, size.height, size.depth, 0, texImageFormat.format,
texImageFormat.type, pixels);
}
else
{
UNREACHABLE();
}
mLevelInfo[level] = GetLevelInfo(internalFormat, texImageFormat.internalFormat);
}
void TextureGL::reserveTexImageToBeFilled(GLenum target,
size_t level,
GLenum internalFormat,
const gl::Extents &size,
GLenum format,
GLenum type)
{
GLuint unpackBuffer = mStateManager->getBoundBuffer(GL_PIXEL_UNPACK_BUFFER);
mStateManager->bindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
gl::PixelUnpackState unpack;
setImageHelper(target, level, internalFormat, size, format, type, nullptr);
mStateManager->bindBuffer(GL_PIXEL_UNPACK_BUFFER, unpackBuffer);
}
gl::Error TextureGL::setSubImage(GLenum target, size_t level, const gl::Box &area, GLenum format, GLenum type,
const gl::PixelUnpackState &unpack, const uint8_t *pixels)
{
ASSERT(CompatibleTextureTarget(mState.mTarget, target));
nativegl::TexSubImageFormat texSubImageFormat =
nativegl::GetTexSubImageFormat(mFunctions, mWorkarounds, format, type);
ASSERT(mLevelInfo[level].lumaWorkaround.enabled ==
GetLevelInfo(format, texSubImageFormat.format).lumaWorkaround.enabled);
mStateManager->bindTexture(mState.mTarget, mTextureID);
if (mWorkarounds.unpackOverlappingRowsSeparatelyUnpackBuffer && unpack.pixelBuffer.get() &&
unpack.rowLength != 0 && unpack.rowLength < area.width)
{
return setSubImageRowByRowWorkaround(target, level, area, format, type, unpack, pixels);
}
if (mWorkarounds.unpackLastRowSeparatelyForPaddingInclusion)
{
gl::Extents size(area.width, area.height, area.depth);
bool apply;
ANGLE_TRY_RESULT(ShouldApplyLastRowPaddingWorkaround(size, unpack, format, type,
UseTexImage3D(mState.mTarget), pixels),
apply);
// The driver will think the pixel buffer doesn't have enough data, work around this bug
// by uploading the last row (and last level if 3D) separately.
if (apply)
{
return setSubImagePaddingWorkaround(target, level, area, format, type, unpack, pixels);
}
}
if (UseTexImage2D(mState.mTarget))
{
ASSERT(area.z == 0 && area.depth == 1);
mFunctions->texSubImage2D(target, static_cast<GLint>(level), area.x, area.y, area.width,
area.height, texSubImageFormat.format, texSubImageFormat.type,
pixels);
}
else
{
ASSERT(UseTexImage3D(mState.mTarget));
mFunctions->texSubImage3D(target, static_cast<GLint>(level), area.x, area.y, area.z,
area.width, area.height, area.depth, texSubImageFormat.format,
texSubImageFormat.type, pixels);
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureGL::setSubImageRowByRowWorkaround(GLenum target,
size_t level,
const gl::Box &area,
GLenum format,
GLenum type,
const gl::PixelUnpackState &unpack,
const uint8_t *pixels)
{
gl::PixelUnpackState directUnpack;
directUnpack.pixelBuffer = unpack.pixelBuffer;
directUnpack.alignment = 1;
mStateManager->setPixelUnpackState(directUnpack);
directUnpack.pixelBuffer.set(nullptr);
const gl::InternalFormat &glFormat =
gl::GetInternalFormatInfo(gl::GetSizedInternalFormat(format, type));
GLuint rowBytes = 0;
ANGLE_TRY_RESULT(glFormat.computeRowPitch(type, area.width, unpack.alignment, unpack.rowLength),
rowBytes);
GLuint imageBytes = 0;
ANGLE_TRY_RESULT(glFormat.computeDepthPitch(type, area.width, area.height, unpack.alignment,
unpack.rowLength, unpack.imageHeight),
imageBytes);
bool useTexImage3D = UseTexImage3D(mState.mTarget);
GLuint skipBytes = 0;
ANGLE_TRY_RESULT(glFormat.computeSkipBytes(rowBytes, imageBytes, unpack, useTexImage3D),
skipBytes);
const uint8_t *pixelsWithSkip = pixels + skipBytes;
if (useTexImage3D)
{
for (GLint image = 0; image < area.depth; ++image)
{
GLint imageByteOffset = image * imageBytes;
for (GLint row = 0; row < area.height; ++row)
{
GLint byteOffset = imageByteOffset + row * rowBytes;
const GLubyte *rowPixels = pixelsWithSkip + byteOffset;
mFunctions->texSubImage3D(target, static_cast<GLint>(level), area.x, row + area.y,
image + area.z, area.width, 1, 1, format, type,
rowPixels);
}
}
}
else
{
ASSERT(UseTexImage2D(mState.mTarget));
for (GLint row = 0; row < area.height; ++row)
{
GLint byteOffset = row * rowBytes;
const GLubyte *rowPixels = pixelsWithSkip + byteOffset;
mFunctions->texSubImage2D(target, static_cast<GLint>(level), area.x, row + area.y,
area.width, 1, format, type, rowPixels);
}
}
return gl::NoError();
}
gl::Error TextureGL::setSubImagePaddingWorkaround(GLenum target,
size_t level,
const gl::Box &area,
GLenum format,
GLenum type,
const gl::PixelUnpackState &unpack,
const uint8_t *pixels)
{
const gl::InternalFormat &glFormat =
gl::GetInternalFormatInfo(gl::GetSizedInternalFormat(format, type));
GLuint rowBytes = 0;
ANGLE_TRY_RESULT(glFormat.computeRowPitch(type, area.width, unpack.alignment, unpack.rowLength),
rowBytes);
GLuint imageBytes = 0;
ANGLE_TRY_RESULT(glFormat.computeDepthPitch(type, area.width, area.height, unpack.alignment,
unpack.rowLength, unpack.imageHeight),
imageBytes);
bool useTexImage3D = UseTexImage3D(mState.mTarget);
GLuint skipBytes = 0;
ANGLE_TRY_RESULT(glFormat.computeSkipBytes(rowBytes, imageBytes, unpack, useTexImage3D),
skipBytes);
gl::PixelUnpackState directUnpack;
directUnpack.pixelBuffer = unpack.pixelBuffer;
directUnpack.alignment = 1;
if (useTexImage3D)
{
// Upload all but the last slice
if (area.depth > 1)
{
mFunctions->texSubImage3D(target, static_cast<GLint>(level), area.x, area.y, area.z,
area.width, area.height, area.depth - 1, format, type,
pixels);
}
// Upload the last slice but its last row
if (area.height > 1)
{
// Do not include skipBytes in the last image pixel start offset as it will be done by
// the driver
GLint lastImageOffset = (area.depth - 1) * imageBytes;
const GLubyte *lastImagePixels = pixels + lastImageOffset;
mFunctions->texSubImage3D(target, static_cast<GLint>(level), area.x, area.y,
area.z + area.depth - 1, area.width, area.height - 1, 1,
format, type, lastImagePixels);
}
// Upload the last row of the last slice "manually"
mStateManager->setPixelUnpackState(directUnpack);
GLint lastRowOffset =
skipBytes + (area.depth - 1) * imageBytes + (area.height - 1) * rowBytes;
const GLubyte *lastRowPixels = pixels + lastRowOffset;
mFunctions->texSubImage3D(target, static_cast<GLint>(level), area.x,
area.y + area.height - 1, area.z + area.depth - 1, area.width, 1,
1, format, type, lastRowPixels);
}
else
{
ASSERT(UseTexImage2D(mState.mTarget));
// Upload all but the last row
if (area.height > 1)
{
mFunctions->texSubImage2D(target, static_cast<GLint>(level), area.x, area.y, area.width,
area.height - 1, format, type, pixels);
}
// Upload the last row "manually"
mStateManager->setPixelUnpackState(directUnpack);
GLint lastRowOffset = skipBytes + (area.height - 1) * rowBytes;
const GLubyte *lastRowPixels = pixels + lastRowOffset;
mFunctions->texSubImage2D(target, static_cast<GLint>(level), area.x,
area.y + area.height - 1, area.width, 1, format, type,
lastRowPixels);
}
directUnpack.pixelBuffer.set(nullptr);
return gl::NoError();
}
gl::Error TextureGL::setCompressedImage(GLenum target, size_t level, GLenum internalFormat, const gl::Extents &size,
const gl::PixelUnpackState &unpack, size_t imageSize, const uint8_t *pixels)
{
ASSERT(CompatibleTextureTarget(mState.mTarget, target));
nativegl::CompressedTexImageFormat compressedTexImageFormat =
nativegl::GetCompressedTexImageFormat(mFunctions, mWorkarounds, internalFormat);
mStateManager->bindTexture(mState.mTarget, mTextureID);
if (UseTexImage2D(mState.mTarget))
{
ASSERT(size.depth == 1);
mFunctions->compressedTexImage2D(target, static_cast<GLint>(level),
compressedTexImageFormat.internalFormat, size.width,
size.height, 0, static_cast<GLsizei>(imageSize), pixels);
}
else if (UseTexImage3D(mState.mTarget))
{
mFunctions->compressedTexImage3D(
target, static_cast<GLint>(level), compressedTexImageFormat.internalFormat, size.width,
size.height, size.depth, 0, static_cast<GLsizei>(imageSize), pixels);
}
else
{
UNREACHABLE();
}
mLevelInfo[level] = GetLevelInfo(internalFormat, compressedTexImageFormat.internalFormat);
ASSERT(!mLevelInfo[level].lumaWorkaround.enabled);
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureGL::setCompressedSubImage(GLenum target, size_t level, const gl::Box &area, GLenum format,
const gl::PixelUnpackState &unpack, size_t imageSize, const uint8_t *pixels)
{
ASSERT(CompatibleTextureTarget(mState.mTarget, target));
nativegl::CompressedTexSubImageFormat compressedTexSubImageFormat =
nativegl::GetCompressedSubTexImageFormat(mFunctions, mWorkarounds, format);
mStateManager->bindTexture(mState.mTarget, mTextureID);
if (UseTexImage2D(mState.mTarget))
{
ASSERT(area.z == 0 && area.depth == 1);
mFunctions->compressedTexSubImage2D(
target, static_cast<GLint>(level), area.x, area.y, area.width, area.height,
compressedTexSubImageFormat.format, static_cast<GLsizei>(imageSize), pixels);
}
else if (UseTexImage3D(mState.mTarget))
{
mFunctions->compressedTexSubImage3D(target, static_cast<GLint>(level), area.x, area.y,
area.z, area.width, area.height, area.depth,
compressedTexSubImageFormat.format,
static_cast<GLsizei>(imageSize), pixels);
}
else
{
UNREACHABLE();
}
ASSERT(!mLevelInfo[level].lumaWorkaround.enabled &&
!GetLevelInfo(format, compressedTexSubImageFormat.format).lumaWorkaround.enabled);
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureGL::copyImage(GLenum target, size_t level, const gl::Rectangle &sourceArea, GLenum internalFormat,
const gl::Framebuffer *source)
{
nativegl::CopyTexImageImageFormat copyTexImageFormat = nativegl::GetCopyTexImageImageFormat(
mFunctions, mWorkarounds, internalFormat, source->getImplementationColorReadType());
LevelInfoGL levelInfo = GetLevelInfo(internalFormat, copyTexImageFormat.internalFormat);
if (levelInfo.lumaWorkaround.enabled)
{
gl::Error error = mBlitter->copyImageToLUMAWorkaroundTexture(
mTextureID, mState.mTarget, target, levelInfo.sourceFormat, level, sourceArea,
copyTexImageFormat.internalFormat, source);
if (error.isError())
{
return error;
}
}
else
{
const FramebufferGL *sourceFramebufferGL = GetImplAs<FramebufferGL>(source);
mStateManager->bindTexture(mState.mTarget, mTextureID);
mStateManager->bindFramebuffer(GL_READ_FRAMEBUFFER,
sourceFramebufferGL->getFramebufferID());
if (UseTexImage2D(mState.mTarget))
{
mFunctions->copyTexImage2D(target, static_cast<GLint>(level),
copyTexImageFormat.internalFormat, sourceArea.x,
sourceArea.y, sourceArea.width, sourceArea.height, 0);
}
else
{
UNREACHABLE();
}
}
mLevelInfo[level] = levelInfo;
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureGL::copySubImage(GLenum target, size_t level, const gl::Offset &destOffset, const gl::Rectangle &sourceArea,
const gl::Framebuffer *source)
{
const FramebufferGL *sourceFramebufferGL = GetImplAs<FramebufferGL>(source);
mStateManager->bindTexture(mState.mTarget, mTextureID);
mStateManager->bindFramebuffer(GL_READ_FRAMEBUFFER, sourceFramebufferGL->getFramebufferID());
const LevelInfoGL &levelInfo = mLevelInfo[level];
if (levelInfo.lumaWorkaround.enabled)
{
gl::Error error = mBlitter->copySubImageToLUMAWorkaroundTexture(
mTextureID, mState.mTarget, target, levelInfo.sourceFormat, level, destOffset,
sourceArea, source);
if (error.isError())
{
return error;
}
}
else
{
if (UseTexImage2D(mState.mTarget))
{
ASSERT(destOffset.z == 0);
mFunctions->copyTexSubImage2D(target, static_cast<GLint>(level), destOffset.x,
destOffset.y, sourceArea.x, sourceArea.y,
sourceArea.width, sourceArea.height);
}
else if (UseTexImage3D(mState.mTarget))
{
mFunctions->copyTexSubImage3D(target, static_cast<GLint>(level), destOffset.x,
destOffset.y, destOffset.z, sourceArea.x, sourceArea.y,
sourceArea.width, sourceArea.height);
}
else
{
UNREACHABLE();
}
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureGL::setStorage(GLenum target, size_t levels, GLenum internalFormat, const gl::Extents &size)
{
// TODO: emulate texture storage with TexImage calls if on GL version <4.2 or the
// ARB_texture_storage extension is not available.
nativegl::TexStorageFormat texStorageFormat =
nativegl::GetTexStorageFormat(mFunctions, mWorkarounds, internalFormat);
mStateManager->bindTexture(mState.mTarget, mTextureID);
if (UseTexImage2D(mState.mTarget))
{
ASSERT(size.depth == 1);
if (mFunctions->texStorage2D)
{
mFunctions->texStorage2D(target, static_cast<GLsizei>(levels),
texStorageFormat.internalFormat, size.width, size.height);
}
else
{
// Make sure no pixel unpack buffer is bound
mStateManager->bindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
const gl::InternalFormat &internalFormatInfo = gl::GetInternalFormatInfo(internalFormat);
// Internal format must be sized
ASSERT(internalFormatInfo.pixelBytes != 0);
for (size_t level = 0; level < levels; level++)
{
gl::Extents levelSize(std::max(size.width >> level, 1),
std::max(size.height >> level, 1),
1);
if (mState.mTarget == GL_TEXTURE_2D)
{
if (internalFormatInfo.compressed)
{
GLuint dataSize = 0;
ANGLE_TRY_RESULT(internalFormatInfo.computeCompressedImageSize(
GL_UNSIGNED_BYTE, levelSize),
dataSize);
mFunctions->compressedTexImage2D(target, static_cast<GLint>(level),
texStorageFormat.internalFormat,
levelSize.width, levelSize.height, 0,
static_cast<GLsizei>(dataSize), nullptr);
}
else
{
mFunctions->texImage2D(target, static_cast<GLint>(level),
texStorageFormat.internalFormat, levelSize.width,
levelSize.height, 0, internalFormatInfo.format,
internalFormatInfo.type, nullptr);
}
}
else if (mState.mTarget == GL_TEXTURE_CUBE_MAP)
{
for (GLenum face = gl::FirstCubeMapTextureTarget; face <= gl::LastCubeMapTextureTarget; face++)
{
if (internalFormatInfo.compressed)
{
GLuint dataSize = 0;
ANGLE_TRY_RESULT(internalFormatInfo.computeCompressedImageSize(
GL_UNSIGNED_BYTE, levelSize),
dataSize);
mFunctions->compressedTexImage2D(
face, static_cast<GLint>(level), texStorageFormat.internalFormat,
levelSize.width, levelSize.height, 0,
static_cast<GLsizei>(dataSize), nullptr);
}
else
{
mFunctions->texImage2D(face, static_cast<GLint>(level),
texStorageFormat.internalFormat, levelSize.width,
levelSize.height, 0, internalFormatInfo.format,
internalFormatInfo.type, nullptr);
}
}
}
else
{
UNREACHABLE();
}
}
}
}
else if (UseTexImage3D(mState.mTarget))
{
if (mFunctions->texStorage3D)
{
mFunctions->texStorage3D(target, static_cast<GLsizei>(levels),
texStorageFormat.internalFormat, size.width, size.height,
size.depth);
}
else
{
// Make sure no pixel unpack buffer is bound
mStateManager->bindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
const gl::InternalFormat &internalFormatInfo = gl::GetInternalFormatInfo(internalFormat);
// Internal format must be sized
ASSERT(internalFormatInfo.pixelBytes != 0);
for (GLsizei i = 0; i < static_cast<GLsizei>(levels); i++)
{
gl::Extents levelSize(
std::max(size.width >> i, 1), std::max(size.height >> i, 1),
mState.mTarget == GL_TEXTURE_3D ? std::max(size.depth >> i, 1) : size.depth);
if (internalFormatInfo.compressed)
{
GLuint dataSize = 0;
ANGLE_TRY_RESULT(
internalFormatInfo.computeCompressedImageSize(GL_UNSIGNED_BYTE, levelSize),
dataSize);
mFunctions->compressedTexImage3D(target, i, texStorageFormat.internalFormat,
levelSize.width, levelSize.height,
levelSize.depth, 0,
static_cast<GLsizei>(dataSize), nullptr);
}
else
{
mFunctions->texImage3D(target, i, texStorageFormat.internalFormat,
levelSize.width, levelSize.height, levelSize.depth, 0,
internalFormatInfo.format, internalFormatInfo.type,
nullptr);
}
}
}
}
else
{
UNREACHABLE();
}
LevelInfoGL levelInfo = GetLevelInfo(internalFormat, texStorageFormat.internalFormat);
for (size_t level = 0; level < mLevelInfo.size(); level++)
{
mLevelInfo[level] = levelInfo;
}
return gl::Error(GL_NO_ERROR);
}
gl::Error TextureGL::setImageExternal(GLenum target,
egl::Stream *stream,
const egl::Stream::GLTextureDescription &desc)
{
UNIMPLEMENTED();
return gl::Error(GL_INVALID_OPERATION);
}
gl::Error TextureGL::generateMipmap()
{
// Need to sync base level and max level to driver before calling GenerateMipmap.
syncState(0);
mStateManager->bindTexture(mState.mTarget, mTextureID);
mFunctions->generateMipmap(mState.mTarget);
const GLuint effectiveBaseLevel = mState.getEffectiveBaseLevel();
const GLuint maxLevel = mState.getMipmapMaxLevel();
ASSERT(maxLevel < mLevelInfo.size());
for (GLuint level = effectiveBaseLevel; level <= maxLevel; level++)
{
mLevelInfo[level] = mLevelInfo[effectiveBaseLevel];
}
return gl::Error(GL_NO_ERROR);
}
void TextureGL::bindTexImage(egl::Surface *surface)
{
ASSERT(mState.mTarget == GL_TEXTURE_2D);
// Make sure this texture is bound
mStateManager->bindTexture(mState.mTarget, mTextureID);
mLevelInfo[0] = LevelInfoGL();
}
void TextureGL::releaseTexImage()
{
// Not all Surface implementations reset the size of mip 0 when releasing, do it manually
ASSERT(mState.mTarget == GL_TEXTURE_2D);
mStateManager->bindTexture(mState.mTarget, mTextureID);
if (UseTexImage2D(mState.mTarget))
{
mFunctions->texImage2D(mState.mTarget, 0, GL_RGBA, 0, 0, 0, GL_RGBA, GL_UNSIGNED_BYTE,
nullptr);
}
else
{
UNREACHABLE();
}
}
gl::Error TextureGL::setEGLImageTarget(GLenum target, egl::Image *image)
{
UNIMPLEMENTED();
return gl::Error(GL_INVALID_OPERATION);
}
template <typename T, typename ApplyTextureFuncType>
static inline void SyncSamplerStateMember(const FunctionsGL *functions,
ApplyTextureFuncType applyTextureFunc,
const gl::SamplerState &newState,
gl::SamplerState &curState,
GLenum textureType,
GLenum name,
T(gl::SamplerState::*samplerMember))
{
if (curState.*samplerMember != newState.*samplerMember)
{
applyTextureFunc();
curState.*samplerMember = newState.*samplerMember;
functions->texParameterf(textureType, name, static_cast<GLfloat>(curState.*samplerMember));
}
}
template <typename T, typename ApplyTextureFuncType>
static inline void SyncTextureStateMember(const FunctionsGL *functions,
ApplyTextureFuncType applyTextureFunc,
const gl::TextureState &newState,
gl::TextureState &curState,
GLenum textureType,
GLenum name,
T(gl::TextureState::*stateMember))
{
if (curState.*stateMember != newState.*stateMember)
{
applyTextureFunc();
curState.*stateMember = newState.*stateMember;
functions->texParameterf(textureType, name, static_cast<GLfloat>(curState.*stateMember));
}
}
template <typename T, typename ApplyTextureFuncType>
static inline void SyncTextureStateSwizzle(const FunctionsGL *functions,
ApplyTextureFuncType applyTextureFunc,
const LevelInfoGL &levelInfo,
const gl::SwizzleState &newState,
gl::SwizzleState &curState,
GLenum textureType,
GLenum name,
T(gl::SwizzleState::*stateMember))
{
GLenum resultSwizzle = newState.*stateMember;
if (levelInfo.lumaWorkaround.enabled || levelInfo.depthStencilWorkaround)
{
if (levelInfo.lumaWorkaround.enabled)
{
UNUSED_ASSERTION_VARIABLE(levelInfo.lumaWorkaround.workaroundFormat);
switch (newState.*stateMember)
{
case GL_RED:
case GL_GREEN:
case GL_BLUE:
if (levelInfo.sourceFormat == GL_LUMINANCE ||
levelInfo.sourceFormat == GL_LUMINANCE_ALPHA)
{
// Texture is backed by a RED or RG texture, point all color channels at the red
// channel.
ASSERT(levelInfo.lumaWorkaround.workaroundFormat == GL_RED ||
levelInfo.lumaWorkaround.workaroundFormat == GL_RG);
resultSwizzle = GL_RED;
}
else if (levelInfo.sourceFormat == GL_ALPHA)
{
// Color channels are not supposed to exist, make them always sample 0.
resultSwizzle = GL_ZERO;
}
else
{
UNREACHABLE();
}
break;
case GL_ALPHA:
if (levelInfo.sourceFormat == GL_LUMINANCE)
{
// Alpha channel is not supposed to exist, make it always sample 1.
resultSwizzle = GL_ONE;
}
else if (levelInfo.sourceFormat == GL_ALPHA)
{
// Texture is backed by a RED texture, point the alpha channel at the red
// channel.
ASSERT(levelInfo.lumaWorkaround.workaroundFormat == GL_RED);
resultSwizzle = GL_RED;
}
else if (levelInfo.sourceFormat == GL_LUMINANCE_ALPHA)
{
// Texture is backed by an RG texture, point the alpha channel at the green
// channel.
ASSERT(levelInfo.lumaWorkaround.workaroundFormat == GL_RG);
resultSwizzle = GL_GREEN;
}
else
{
UNREACHABLE();
}
break;
case GL_ZERO:
case GL_ONE:
// Don't modify the swizzle state when requesting ZERO or ONE.
resultSwizzle = newState.*stateMember;
break;
default:
UNREACHABLE();
break;
}
}
else if (levelInfo.depthStencilWorkaround)
{
switch (newState.*stateMember)
{
case GL_RED:
// Don't modify the swizzle state when requesting the red channel.
resultSwizzle = newState.*stateMember;
break;
case GL_GREEN:
case GL_BLUE:
// Depth textures should sample 0 from the green and blue channels.
resultSwizzle = GL_ZERO;
break;
case GL_ALPHA:
// Depth textures should sample 1 from the alpha channel.
resultSwizzle = GL_ONE;
break;
case GL_ZERO:
case GL_ONE:
// Don't modify the swizzle state when requesting ZERO or ONE.
resultSwizzle = newState.*stateMember;
break;
default:
UNREACHABLE();
break;
}
}
else
{
UNREACHABLE();
}
}
if (curState.*stateMember != resultSwizzle)
{
applyTextureFunc();
curState.*stateMember = resultSwizzle;
functions->texParameterf(textureType, name, static_cast<GLfloat>(resultSwizzle));
}
}
void TextureGL::syncState(size_t textureUnit) const
{
// Callback lamdba to bind this texture only if needed.
bool textureApplied = false;
auto applyTextureFunc = [&]()
{
if (!textureApplied)
{
mStateManager->activeTexture(textureUnit);
mStateManager->bindTexture(mState.mTarget, mTextureID);
textureApplied = true;
}
};
// Sync texture state
// Apply the effective base level and max level instead of the base level and max level set from
// the API. This can help with buggy drivers.
if (mAppliedTextureState.getEffectiveBaseLevel() != mState.getEffectiveBaseLevel())
{
applyTextureFunc();
mFunctions->texParameteri(mState.mTarget, GL_TEXTURE_BASE_LEVEL,
mState.getEffectiveBaseLevel());
}
mAppliedTextureState.mBaseLevel = mState.mBaseLevel;
if (mAppliedTextureState.getEffectiveMaxLevel() != mState.getEffectiveMaxLevel())
{
applyTextureFunc();
mFunctions->texParameteri(mState.mTarget, GL_TEXTURE_MAX_LEVEL,
mState.getEffectiveMaxLevel());
}
mAppliedTextureState.mMaxLevel = mState.mMaxLevel;
// clang-format off
const LevelInfoGL &levelInfo = mLevelInfo[mState.getEffectiveBaseLevel()];
SyncTextureStateSwizzle(mFunctions, applyTextureFunc, levelInfo, mState.mSwizzleState, mAppliedTextureState.mSwizzleState, mState.mTarget, GL_TEXTURE_SWIZZLE_R, &gl::SwizzleState::swizzleRed);
SyncTextureStateSwizzle(mFunctions, applyTextureFunc, levelInfo, mState.mSwizzleState, mAppliedTextureState.mSwizzleState, mState.mTarget, GL_TEXTURE_SWIZZLE_G, &gl::SwizzleState::swizzleGreen);
SyncTextureStateSwizzle(mFunctions, applyTextureFunc, levelInfo, mState.mSwizzleState, mAppliedTextureState.mSwizzleState, mState.mTarget, GL_TEXTURE_SWIZZLE_B, &gl::SwizzleState::swizzleBlue);
SyncTextureStateSwizzle(mFunctions, applyTextureFunc, levelInfo, mState.mSwizzleState, mAppliedTextureState.mSwizzleState, mState.mTarget, GL_TEXTURE_SWIZZLE_A, &gl::SwizzleState::swizzleAlpha);
// Sync sampler state
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_MIN_FILTER, &gl::SamplerState::minFilter);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_MAG_FILTER, &gl::SamplerState::magFilter);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_WRAP_S, &gl::SamplerState::wrapS);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_WRAP_T, &gl::SamplerState::wrapT);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_WRAP_R, &gl::SamplerState::wrapR);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_MAX_ANISOTROPY_EXT, &gl::SamplerState::maxAnisotropy);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_MIN_LOD, &gl::SamplerState::minLod);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_MAX_LOD, &gl::SamplerState::maxLod);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_COMPARE_MODE, &gl::SamplerState::compareMode);
SyncSamplerStateMember(mFunctions, applyTextureFunc, mState.mSamplerState, mAppliedTextureState.mSamplerState, mState.mTarget, GL_TEXTURE_COMPARE_FUNC, &gl::SamplerState::compareFunc);
// clang-format on
}
GLuint TextureGL::getTextureID() const
{
return mTextureID;
}
}