blob: 344c92fd71c5c0b93ed4fb0327a3a74ca786a977 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ParseContext.h"
#include <stdarg.h>
#include <stdio.h>
#include "compiler/preprocessor/SourceLocation.h"
#include "compiler/translator/Cache.h"
#include "compiler/translator/glslang.h"
#include "compiler/translator/ValidateSwitch.h"
#include "compiler/translator/ValidateGlobalInitializer.h"
#include "compiler/translator/util.h"
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
namespace
{
const int kWebGLMaxStructNesting = 4;
bool ContainsSampler(const TType &type)
{
if (IsSampler(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
{
const TFieldList &fields = type.getStruct()->fields();
for (unsigned int i = 0; i < fields.size(); ++i)
{
if (ContainsSampler(*fields[i]->type()))
return true;
}
}
return false;
}
bool ContainsImage(const TType &type)
{
if (IsImage(type.getBasicType()))
return true;
if (type.getBasicType() == EbtStruct || type.isInterfaceBlock())
{
const TFieldList &fields = type.getStruct()->fields();
for (unsigned int i = 0; i < fields.size(); ++i)
{
if (ContainsImage(*fields[i]->type()))
return true;
}
}
return false;
}
} // namespace
//
// Look at a '.' field selector string and change it into offsets
// for a vector.
//
bool TParseContext::parseVectorFields(const TString &compString,
int vecSize,
TVectorFields &fields,
const TSourceLoc &line)
{
fields.num = (int)compString.size();
if (fields.num > 4)
{
error(line, "illegal vector field selection", compString.c_str());
return false;
}
enum
{
exyzw,
ergba,
estpq
} fieldSet[4];
for (int i = 0; i < fields.num; ++i)
{
switch (compString[i])
{
case 'x':
fields.offsets[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
fields.offsets[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
fields.offsets[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
fields.offsets[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
fields.offsets[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
fields.offsets[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
fields.offsets[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
fields.offsets[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
fields.offsets[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
fields.offsets[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
fields.offsets[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
fields.offsets[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(line, "illegal vector field selection", compString.c_str());
return false;
}
}
for (int i = 0; i < fields.num; ++i)
{
if (fields.offsets[i] >= vecSize)
{
error(line, "vector field selection out of range", compString.c_str());
return false;
}
if (i > 0)
{
if (fieldSet[i] != fieldSet[i - 1])
{
error(line, "illegal - vector component fields not from the same set",
compString.c_str());
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc &loc,
const char *reason,
const char *token,
const char *extraInfo)
{
mDiagnostics.error(loc, reason, token, extraInfo);
}
void TParseContext::warning(const TSourceLoc &loc,
const char *reason,
const char *token,
const char *extraInfo)
{
mDiagnostics.warning(loc, reason, token, extraInfo);
}
void TParseContext::outOfRangeError(bool isError,
const TSourceLoc &loc,
const char *reason,
const char *token,
const char *extraInfo)
{
if (isError)
{
error(loc, reason, token, extraInfo);
}
else
{
warning(loc, reason, token, extraInfo);
}
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
std::string extraInfo = extraInfoStream.str();
error(line, "", op, extraInfo.c_str());
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes an operand of type "
<< operand << " (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand type", op, extraInfo.c_str());
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc &line,
const char *op,
TString left,
TString right)
{
std::stringstream extraInfoStream;
extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '"
<< left << "' and a right operand of type '" << right
<< "' (or there is no acceptable conversion)";
std::string extraInfo = extraInfoStream.str();
error(line, " wrong operand types ", op, extraInfo.c_str());
}
void TParseContext::checkPrecisionSpecified(const TSourceLoc &line,
TPrecision precision,
TBasicType type)
{
if (!mChecksPrecisionErrors)
return;
if (precision != EbpUndefined && !SupportsPrecision(type))
{
error(line, "illegal type for precision qualifier", getBasicString(type));
}
if (precision == EbpUndefined)
{
switch (type)
{
case EbtFloat:
error(line, "No precision specified for (float)", "");
return;
case EbtInt:
case EbtUInt:
UNREACHABLE(); // there's always a predeclared qualifier
error(line, "No precision specified (int)", "");
return;
default:
if (IsSampler(type))
{
error(line, "No precision specified (sampler)", "");
return;
}
if (IsImage(type))
{
error(line, "No precision specified (image)", "");
return;
}
}
}
}
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node)
{
TIntermSymbol *symNode = node->getAsSymbolNode();
TIntermBinary *binaryNode = node->getAsBinaryNode();
TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
if (swizzleNode)
{
bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand());
if (ok && swizzleNode->hasDuplicateOffsets())
{
error(line, " l-value of swizzle cannot have duplicate components", op);
return false;
}
return ok;
}
if (binaryNode)
{
switch (binaryNode->getOp())
{
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
return checkCanBeLValue(line, op, binaryNode->getLeft());
default:
break;
}
error(line, " l-value required", op);
return false;
}
const char *symbol = 0;
if (symNode != 0)
symbol = symNode->getSymbol().c_str();
const char *message = 0;
switch (node->getQualifier())
{
case EvqConst:
message = "can't modify a const";
break;
case EvqConstReadOnly:
message = "can't modify a const";
break;
case EvqAttribute:
message = "can't modify an attribute";
break;
case EvqFragmentIn:
message = "can't modify an input";
break;
case EvqVertexIn:
message = "can't modify an input";
break;
case EvqUniform:
message = "can't modify a uniform";
break;
case EvqVaryingIn:
message = "can't modify a varying";
break;
case EvqFragCoord:
message = "can't modify gl_FragCoord";
break;
case EvqFrontFacing:
message = "can't modify gl_FrontFacing";
break;
case EvqPointCoord:
message = "can't modify gl_PointCoord";
break;
case EvqNumWorkGroups:
message = "can't modify gl_NumWorkGroups";
break;
case EvqWorkGroupSize:
message = "can't modify gl_WorkGroupSize";
break;
case EvqWorkGroupID:
message = "can't modify gl_WorkGroupID";
break;
case EvqLocalInvocationID:
message = "can't modify gl_LocalInvocationID";
break;
case EvqGlobalInvocationID:
message = "can't modify gl_GlobalInvocationID";
break;
case EvqLocalInvocationIndex:
message = "can't modify gl_LocalInvocationIndex";
break;
case EvqComputeIn:
message = "can't modify work group size variable";
break;
default:
//
// Type that can't be written to?
//
if (node->getBasicType() == EbtVoid)
{
message = "can't modify void";
}
if (IsSampler(node->getBasicType()))
{
message = "can't modify a sampler";
}
if (IsImage(node->getBasicType()))
{
message = "can't modify an image";
}
}
if (message == 0 && binaryNode == 0 && symNode == 0)
{
error(line, " l-value required", op);
return false;
}
//
// Everything else is okay, no error.
//
if (message == 0)
return true;
//
// If we get here, we have an error and a message.
//
if (symNode)
{
std::stringstream extraInfoStream;
extraInfoStream << "\"" << symbol << "\" (" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
else
{
std::stringstream extraInfoStream;
extraInfoStream << "(" << message << ")";
std::string extraInfo = extraInfoStream.str();
error(line, " l-value required", op, extraInfo.c_str());
}
return false;
}
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
void TParseContext::checkIsConst(TIntermTyped *node)
{
if (node->getQualifier() != EvqConst)
{
error(node->getLine(), "constant expression required", "");
}
}
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token)
{
if (!node->isScalarInt())
{
error(node->getLine(), "integer expression required", token);
}
}
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token)
{
if (!symbolTable.atGlobalLevel())
{
error(line, "only allowed at global scope", token);
return false;
}
return true;
}
// For now, keep it simple: if it starts "gl_", it's reserved, independent
// of scope. Except, if the symbol table is at the built-in push-level,
// which is when we are parsing built-ins.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
// webgl shader.
bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier)
{
static const char *reservedErrMsg = "reserved built-in name";
if (!symbolTable.atBuiltInLevel())
{
if (identifier.compare(0, 3, "gl_") == 0)
{
error(line, reservedErrMsg, "gl_");
return false;
}
if (IsWebGLBasedSpec(mShaderSpec))
{
if (identifier.compare(0, 6, "webgl_") == 0)
{
error(line, reservedErrMsg, "webgl_");
return false;
}
if (identifier.compare(0, 7, "_webgl_") == 0)
{
error(line, reservedErrMsg, "_webgl_");
return false;
}
}
if (identifier.find("__") != TString::npos)
{
error(line,
"identifiers containing two consecutive underscores (__) are reserved as "
"possible future keywords",
identifier.c_str());
return false;
}
}
return true;
}
// Make sure there is enough data provided to the constructor to build
// something of the type of the constructor. Also returns the type of
// the constructor.
bool TParseContext::checkConstructorArguments(const TSourceLoc &line,
TIntermNode *argumentsNode,
const TFunction &function,
TOperator op,
const TType &type)
{
bool constructingMatrix = false;
switch (op)
{
case EOpConstructMat2:
case EOpConstructMat2x3:
case EOpConstructMat2x4:
case EOpConstructMat3x2:
case EOpConstructMat3:
case EOpConstructMat3x4:
case EOpConstructMat4x2:
case EOpConstructMat4x3:
case EOpConstructMat4:
constructingMatrix = true;
break;
default:
break;
}
//
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop
// again, there is an extra argument, so 'overfull' will become true.
//
size_t size = 0;
bool full = false;
bool overFull = false;
bool matrixInMatrix = false;
bool arrayArg = false;
for (size_t i = 0; i < function.getParamCount(); ++i)
{
const TConstParameter &param = function.getParam(i);
size += param.type->getObjectSize();
if (constructingMatrix && param.type->isMatrix())
matrixInMatrix = true;
if (full)
overFull = true;
if (op != EOpConstructStruct && !type.isArray() && size >= type.getObjectSize())
full = true;
if (param.type->isArray())
arrayArg = true;
}
if (type.isArray())
{
// The size of an unsized constructor should already have been determined.
ASSERT(!type.isUnsizedArray());
if (static_cast<size_t>(type.getArraySize()) != function.getParamCount())
{
error(line, "array constructor needs one argument per array element", "constructor");
return false;
}
}
if (arrayArg && op != EOpConstructStruct)
{
error(line, "constructing from a non-dereferenced array", "constructor");
return false;
}
if (matrixInMatrix && !type.isArray())
{
if (function.getParamCount() != 1)
{
error(line, "constructing matrix from matrix can only take one argument",
"constructor");
return false;
}
}
if (overFull)
{
error(line, "too many arguments", "constructor");
return false;
}
if (op == EOpConstructStruct && !type.isArray() &&
type.getStruct()->fields().size() != function.getParamCount())
{
error(line,
"Number of constructor parameters does not match the number of structure fields",
"constructor");
return false;
}
if (!type.isMatrix() || !matrixInMatrix)
{
if ((op != EOpConstructStruct && size != 1 && size < type.getObjectSize()) ||
(op == EOpConstructStruct && size < type.getObjectSize()))
{
error(line, "not enough data provided for construction", "constructor");
return false;
}
}
if (argumentsNode == nullptr)
{
error(line, "constructor does not have any arguments", "constructor");
return false;
}
TIntermAggregate *argumentsAgg = argumentsNode->getAsAggregate();
for (TIntermNode *&argNode : *argumentsAgg->getSequence())
{
TIntermTyped *argTyped = argNode->getAsTyped();
ASSERT(argTyped != nullptr);
if (op != EOpConstructStruct && IsSampler(argTyped->getBasicType()))
{
error(line, "cannot convert a sampler", "constructor");
return false;
}
if (op != EOpConstructStruct && IsImage(argTyped->getBasicType()))
{
error(line, "cannot convert an image", "constructor");
return false;
}
if (argTyped->getBasicType() == EbtVoid)
{
error(line, "cannot convert a void", "constructor");
return false;
}
}
if (type.isArray())
{
// GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
// the array.
for (TIntermNode *&argNode : *argumentsAgg->getSequence())
{
const TType &argType = argNode->getAsTyped()->getType();
// It has already been checked that the argument is not an array.
ASSERT(!argType.isArray());
if (!argType.sameElementType(type))
{
error(line, "Array constructor argument has an incorrect type", "Error");
return false;
}
}
}
else if (op == EOpConstructStruct)
{
const TFieldList &fields = type.getStruct()->fields();
TIntermSequence *args = argumentsAgg->getSequence();
for (size_t i = 0; i < fields.size(); i++)
{
if (i >= args->size() || (*args)[i]->getAsTyped()->getType() != *fields[i]->type())
{
error(line, "Structure constructor arguments do not match structure fields",
"Error");
return false;
}
}
}
return true;
}
// This function checks to see if a void variable has been declared and raise an error message for
// such a case
//
// returns true in case of an error
//
bool TParseContext::checkIsNonVoid(const TSourceLoc &line,
const TString &identifier,
const TBasicType &type)
{
if (type == EbtVoid)
{
error(line, "illegal use of type 'void'", identifier.c_str());
return false;
}
return true;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type)
{
if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector())
{
error(line, "boolean expression expected", "");
}
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType)
{
if (pType.getBasicType() != EbtBool || pType.isAggregate())
{
error(line, "boolean expression expected", "");
}
}
bool TParseContext::checkIsNotSampler(const TSourceLoc &line,
const TTypeSpecifierNonArray &pType,
const char *reason)
{
if (pType.type == EbtStruct)
{
if (ContainsSampler(*pType.userDef))
{
error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
return false;
}
return true;
}
else if (IsSampler(pType.type))
{
error(line, reason, getBasicString(pType.type));
return false;
}
return true;
}
bool TParseContext::checkIsNotImage(const TSourceLoc &line,
const TTypeSpecifierNonArray &pType,
const char *reason)
{
if (pType.type == EbtStruct)
{
if (ContainsImage(*pType.userDef))
{
error(line, reason, getBasicString(pType.type), "(structure contains an image)");
return false;
}
return true;
}
else if (IsImage(pType.type))
{
error(line, reason, getBasicString(pType.type));
return false;
}
return true;
}
void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line,
const TPublicType &pType)
{
if (pType.layoutQualifier.location != -1)
{
error(line, "location must only be specified for a single input or output variable",
"location");
}
}
void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
if (layoutQualifier.location != -1)
{
error(location, "invalid layout qualifier:", "location",
"only valid on program inputs and outputs");
}
}
void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
checkOutParameterIsNotSampler(line, qualifier, type);
checkOutParameterIsNotImage(line, qualifier, type);
}
void TParseContext::checkOutParameterIsNotSampler(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
if (IsSampler(type.getBasicType()))
{
error(line, "samplers cannot be output parameters", type.getBasicString());
}
}
void TParseContext::checkOutParameterIsNotImage(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
if (IsImage(type.getBasicType()))
{
error(line, "images cannot be output parameters", type.getBasicString());
}
}
// Do size checking for an array type's size.
unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr)
{
TIntermConstantUnion *constant = expr->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold as array size.
if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
{
error(line, "array size must be a constant integer expression", "");
return 1u;
}
unsigned int size = 0u;
if (constant->getBasicType() == EbtUInt)
{
size = constant->getUConst(0);
}
else
{
int signedSize = constant->getIConst(0);
if (signedSize < 0)
{
error(line, "array size must be non-negative", "");
return 1u;
}
size = static_cast<unsigned int>(signedSize);
}
if (size == 0u)
{
error(line, "array size must be greater than zero", "");
return 1u;
}
// The size of arrays is restricted here to prevent issues further down the
// compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
// 4096 registers so this should be reasonable even for aggressively optimizable code.
const unsigned int sizeLimit = 65536;
if (size > sizeLimit)
{
error(line, "array size too large", "");
return 1u;
}
return size;
}
// See if this qualifier can be an array.
bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line,
const TPublicType &elementQualifier)
{
if ((elementQualifier.qualifier == EvqAttribute) ||
(elementQualifier.qualifier == EvqVertexIn) ||
(elementQualifier.qualifier == EvqConst && mShaderVersion < 300))
{
error(line, "cannot declare arrays of this qualifier",
TType(elementQualifier).getQualifierString());
return false;
}
return true;
}
// See if this element type can be formed into an array.
bool TParseContext::checkIsValidTypeForArray(const TSourceLoc &line, const TPublicType &elementType)
{
//
// Can the type be an array?
//
if (elementType.array)
{
error(line, "cannot declare arrays of arrays",
TType(elementType).getCompleteString().c_str());
return false;
}
// In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
// In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
// 4.3.4).
if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct &&
sh::IsVarying(elementType.qualifier))
{
error(line, "cannot declare arrays of structs of this qualifier",
TType(elementType).getCompleteString().c_str());
return false;
}
return true;
}
// Check if this qualified element type can be formed into an array.
bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation,
const TPublicType &elementType)
{
if (checkIsValidTypeForArray(indexLocation, elementType))
{
return checkIsValidQualifierForArray(indexLocation, elementType);
}
return false;
}
// Enforce non-initializer type/qualifier rules.
void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line,
const TString &identifier,
TPublicType *type)
{
ASSERT(type != nullptr);
if (type->qualifier == EvqConst)
{
// Make the qualifier make sense.
type->qualifier = EvqTemporary;
// Generate informative error messages for ESSL1.
// In ESSL3 arrays and structures containing arrays can be constant.
if (mShaderVersion < 300 && type->isStructureContainingArrays())
{
error(line,
"structures containing arrays may not be declared constant since they cannot be "
"initialized",
identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
return;
}
if (type->isUnsizedArray())
{
error(line, "implicitly sized arrays need to be initialized", identifier.c_str());
}
}
// Do some simple checks that are shared between all variable declarations,
// and update the symbol table.
//
// Returns true if declaring the variable succeeded.
//
bool TParseContext::declareVariable(const TSourceLoc &line,
const TString &identifier,
const TType &type,
TVariable **variable)
{
ASSERT((*variable) == nullptr);
bool needsReservedCheck = true;
// gl_LastFragData may be redeclared with a new precision qualifier
if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
{
const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
if (static_cast<int>(type.getArraySize()) == maxDrawBuffers->getConstPointer()->getIConst())
{
if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
{
needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension());
}
}
else
{
error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
identifier.c_str());
return false;
}
}
if (needsReservedCheck && !checkIsNotReserved(line, identifier))
return false;
(*variable) = new TVariable(&identifier, type);
if (!symbolTable.declare(*variable))
{
error(line, "redefinition", identifier.c_str());
*variable = nullptr;
return false;
}
if (!checkIsNonVoid(line, identifier, type.getBasicType()))
return false;
return true;
}
void TParseContext::checkIsParameterQualifierValid(
const TSourceLoc &line,
const TTypeQualifierBuilder &typeQualifierBuilder,
TType *type)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(&mDiagnostics);
if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut)
{
checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type);
}
if (!IsImage(type->getBasicType()))
{
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, line);
}
else
{
type->setMemoryQualifier(typeQualifier.memoryQualifier);
}
type->setQualifier(typeQualifier.qualifier);
if (typeQualifier.precision != EbpUndefined)
{
type->setPrecision(typeQualifier.precision);
}
}
bool TParseContext::checkCanUseExtension(const TSourceLoc &line, const TString &extension)
{
const TExtensionBehavior &extBehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
if (iter == extBehavior.end())
{
error(line, "extension", extension.c_str(), "is not supported");
return false;
}
// In GLSL ES, an extension's default behavior is "disable".
if (iter->second == EBhDisable || iter->second == EBhUndefined)
{
error(line, "extension", extension.c_str(), "is disabled");
return false;
}
if (iter->second == EBhWarn)
{
warning(line, "extension", extension.c_str(), "is being used");
return true;
}
return true;
}
// These checks are common for all declarations starting a declarator list, and declarators that
// follow an empty declaration.
void TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType,
const TSourceLoc &identifierLocation)
{
switch (publicType.qualifier)
{
case EvqVaryingIn:
case EvqVaryingOut:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
case EvqComputeIn:
if (publicType.getBasicType() == EbtStruct)
{
error(identifierLocation, "cannot be used with a structure",
getQualifierString(publicType.qualifier));
return;
}
default:
break;
}
if (publicType.qualifier != EvqUniform &&
!checkIsNotSampler(identifierLocation, publicType.typeSpecifierNonArray,
"samplers must be uniform"))
{
return;
}
if (publicType.qualifier != EvqUniform &&
!checkIsNotImage(identifierLocation, publicType.typeSpecifierNonArray,
"images must be uniform"))
{
return;
}
// check for layout qualifier issues
const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
error(identifierLocation, "layout qualifier",
getMatrixPackingString(layoutQualifier.matrixPacking),
"only valid for interface blocks");
return;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
error(identifierLocation, "layout qualifier",
getBlockStorageString(layoutQualifier.blockStorage),
"only valid for interface blocks");
return;
}
if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut)
{
checkLocationIsNotSpecified(identifierLocation, publicType.layoutQualifier);
}
if (IsImage(publicType.getBasicType()))
{
switch (layoutQualifier.imageInternalFormat)
{
case EiifRGBA32F:
case EiifRGBA16F:
case EiifR32F:
case EiifRGBA8:
case EiifRGBA8_SNORM:
if (!IsFloatImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires a floating image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifRGBA32I:
case EiifRGBA16I:
case EiifRGBA8I:
case EiifR32I:
if (!IsIntegerImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires an integer image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifRGBA32UI:
case EiifRGBA16UI:
case EiifRGBA8UI:
case EiifR32UI:
if (!IsUnsignedImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires an unsigned image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifUnspecified:
error(identifierLocation, "layout qualifier", "No image internal format specified");
return;
default:
error(identifierLocation, "layout qualifier", "unrecognized token");
return;
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
switch (layoutQualifier.imageInternalFormat)
{
case EiifR32F:
case EiifR32I:
case EiifR32UI:
break;
default:
if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly)
{
error(identifierLocation, "layout qualifier",
"Except for images with the r32f, r32i and r32ui format qualifiers, "
"image variables must be qualified readonly and/or writeonly");
return;
}
break;
}
}
else
{
if (!checkInternalFormatIsNotSpecified(identifierLocation,
layoutQualifier.imageInternalFormat))
{
return;
}
if (!checkIsMemoryQualifierNotSpecified(publicType.memoryQualifier, identifierLocation))
{
return;
}
}
}
void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location,
const TString &layoutQualifierName,
int versionRequired)
{
if (mShaderVersion < versionRequired)
{
error(location, "invalid layout qualifier:", layoutQualifierName.c_str(), "not supported");
}
}
bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
const sh::WorkGroupSize &localSize = layoutQualifier.localSize;
for (size_t i = 0u; i < localSize.size(); ++i)
{
if (localSize[i] != -1)
{
error(location, "invalid layout qualifier:", getWorkGroupSizeString(i),
"only valid when used with 'in' in a compute shader global layout declaration");
return false;
}
}
return true;
}
bool TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location,
TLayoutImageInternalFormat internalFormat)
{
if (internalFormat != EiifUnspecified)
{
error(location, "invalid layout qualifier:", getImageInternalFormatString(internalFormat),
"only valid when used with images");
return false;
}
return true;
}
void TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate,
TIntermAggregate *fnCall)
{
for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
{
TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
if (qual == EvqOut || qual == EvqInOut)
{
TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped();
if (!checkCanBeLValue(argument->getLine(), "assign", argument))
{
error(argument->getLine(),
"Constant value cannot be passed for 'out' or 'inout' parameters.", "Error");
return;
}
}
}
}
void TParseContext::checkInvariantVariableQualifier(bool invariant,
const TQualifier qualifier,
const TSourceLoc &invariantLocation)
{
if (!invariant)
return;
if (mShaderVersion < 300)
{
// input variables in the fragment shader can be also qualified as invariant
if (!sh::CanBeInvariantESSL1(qualifier))
{
error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
}
}
else
{
if (!sh::CanBeInvariantESSL3OrGreater(qualifier))
{
error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
}
}
}
bool TParseContext::supportsExtension(const char *extension)
{
const TExtensionBehavior &extbehavior = extensionBehavior();
TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
return (iter != extbehavior.end());
}
bool TParseContext::isExtensionEnabled(const char *extension) const
{
return ::IsExtensionEnabled(extensionBehavior(), extension);
}
void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
const char *extName,
const char *behavior)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
const char *name,
const char *value,
bool stdgl)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
}
sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const
{
sh::WorkGroupSize result;
for (size_t i = 0u; i < result.size(); ++i)
{
if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1)
{
result[i] = 1;
}
else
{
result[i] = mComputeShaderLocalSize[i];
}
}
return result;
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = NULL;
if (!symbol)
{
error(location, "undeclared identifier", name->c_str());
}
else if (!symbol->isVariable())
{
error(location, "variable expected", name->c_str());
}
else
{
variable = static_cast<const TVariable *>(symbol);
if (symbolTable.findBuiltIn(variable->getName(), mShaderVersion) &&
!variable->getExtension().empty())
{
checkCanUseExtension(location, variable->getExtension());
}
// Reject shaders using both gl_FragData and gl_FragColor
TQualifier qualifier = variable->getType().getQualifier();
if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT)
{
mUsesFragData = true;
}
else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT)
{
mUsesFragColor = true;
}
if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT)
{
mUsesSecondaryOutputs = true;
}
// This validation is not quite correct - it's only an error to write to
// both FragData and FragColor. For simplicity, and because users shouldn't
// be rewarded for reading from undefined varaibles, return an error
// if they are both referenced, rather than assigned.
if (mUsesFragData && mUsesFragColor)
{
const char *errorMessage = "cannot use both gl_FragData and gl_FragColor";
if (mUsesSecondaryOutputs)
{
errorMessage =
"cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)"
" and (gl_FragColor, gl_SecondaryFragColorEXT)";
}
error(location, errorMessage, name->c_str());
}
// GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables
if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared &&
qualifier == EvqWorkGroupSize)
{
error(location,
"It is an error to use gl_WorkGroupSize before declaring the local group size",
"gl_WorkGroupSize");
}
}
if (!variable)
{
TType type(EbtFloat, EbpUndefined);
TVariable *fakeVariable = new TVariable(name, type);
symbolTable.declare(fakeVariable);
variable = fakeVariable;
}
return variable;
}
TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = getNamedVariable(location, name, symbol);
if (variable->getConstPointer())
{
const TConstantUnion *constArray = variable->getConstPointer();
return intermediate.addConstantUnion(constArray, variable->getType(), location);
}
else
{
return intermediate.addSymbol(variable->getUniqueId(), variable->getName(),
variable->getType(), location);
}
}
//
// Look up a function name in the symbol table, and make sure it is a function.
//
// Return the function symbol if found, otherwise 0.
//
const TFunction *TParseContext::findFunction(const TSourceLoc &line,
TFunction *call,
int inputShaderVersion,
bool *builtIn)
{
// First find by unmangled name to check whether the function name has been
// hidden by a variable name or struct typename.
// If a function is found, check for one with a matching argument list.
const TSymbol *symbol = symbolTable.find(call->getName(), inputShaderVersion, builtIn);
if (symbol == 0 || symbol->isFunction())
{
symbol = symbolTable.find(call->getMangledName(), inputShaderVersion, builtIn);
}
if (symbol == 0)
{
error(line, "no matching overloaded function found", call->getName().c_str());
return 0;
}
if (!symbol->isFunction())
{
error(line, "function name expected", call->getName().c_str());
return 0;
}
return static_cast<const TFunction *>(symbol);
}
//
// Initializers show up in several places in the grammar. Have one set of
// code to handle them here.
//
// Returns true on error, false if no error
//
bool TParseContext::executeInitializer(const TSourceLoc &line,
const TString &identifier,
const TPublicType &pType,
TIntermTyped *initializer,
TIntermBinary **initNode)
{
ASSERT(initNode != nullptr);
ASSERT(*initNode == nullptr);
TType type = TType(pType);
TVariable *variable = nullptr;
if (type.isUnsizedArray())
{
// We have not checked yet whether the initializer actually is an array or not.
if (initializer->isArray())
{
type.setArraySize(initializer->getArraySize());
}
else
{
// Having a non-array initializer for an unsized array will result in an error later,
// so we don't generate an error message here.
type.setArraySize(1u);
}
}
if (!declareVariable(line, identifier, type, &variable))
{
return true;
}
bool globalInitWarning = false;
if (symbolTable.atGlobalLevel() &&
!ValidateGlobalInitializer(initializer, this, &globalInitWarning))
{
// Error message does not completely match behavior with ESSL 1.00, but
// we want to steer developers towards only using constant expressions.
error(line, "global variable initializers must be constant expressions", "=");
return true;
}
if (globalInitWarning)
{
warning(
line,
"global variable initializers should be constant expressions "
"(uniforms and globals are allowed in global initializers for legacy compatibility)",
"=");
}
//
// identifier must be of type constant, a global, or a temporary
//
TQualifier qualifier = variable->getType().getQualifier();
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
{
error(line, " cannot initialize this type of qualifier ",
variable->getType().getQualifierString());
return true;
}
//
// test for and propagate constant
//
if (qualifier == EvqConst)
{
if (qualifier != initializer->getType().getQualifier())
{
std::stringstream extraInfoStream;
extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
std::string extraInfo = extraInfoStream.str();
error(line, " assigning non-constant to", "=", extraInfo.c_str());
variable->getType().setQualifier(EvqTemporary);
return true;
}
if (type != initializer->getType())
{
error(line, " non-matching types for const initializer ",
variable->getType().getQualifierString());
variable->getType().setQualifier(EvqTemporary);
return true;
}
// Save the constant folded value to the variable if possible. For example array
// initializers are not folded, since that way copying the array literal to multiple places
// in the shader is avoided.
// TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where
// it would be beneficial.
if (initializer->getAsConstantUnion())
{
variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
*initNode = nullptr;
return false;
}
else if (initializer->getAsSymbolNode())
{
const TSymbol *symbol =
symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
const TVariable *tVar = static_cast<const TVariable *>(symbol);
const TConstantUnion *constArray = tVar->getConstPointer();
if (constArray)
{
variable->shareConstPointer(constArray);
*initNode = nullptr;
return false;
}
}
}
TIntermSymbol *intermSymbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), line);
*initNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
if (*initNode == nullptr)
{
assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return true;
}
return false;
}
void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier)
{
checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision,
typeSpecifier->getBasicType());
if (mShaderVersion < 300 && typeSpecifier->array)
{
error(typeSpecifier->getLine(), "not supported", "first-class array");
typeSpecifier->clearArrayness();
}
}
TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder,
const TPublicType &typeSpecifier)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
TPublicType returnType = typeSpecifier;
returnType.qualifier = typeQualifier.qualifier;
returnType.invariant = typeQualifier.invariant;
returnType.layoutQualifier = typeQualifier.layoutQualifier;
returnType.memoryQualifier = typeQualifier.memoryQualifier;
returnType.precision = typeSpecifier.precision;
if (typeQualifier.precision != EbpUndefined)
{
returnType.precision = typeQualifier.precision;
}
checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision,
typeSpecifier.getBasicType());
checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier,
typeSpecifier.getLine());
checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier);
if (mShaderVersion < 300)
{
if (typeSpecifier.array)
{
error(typeSpecifier.getLine(), "not supported", "first-class array");
returnType.clearArrayness();
}
if (returnType.qualifier == EvqAttribute &&
(typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
{
error(typeSpecifier.getLine(), "cannot be bool or int",
getQualifierString(returnType.qualifier));
}
if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) &&
(typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
{
error(typeSpecifier.getLine(), "cannot be bool or int",
getQualifierString(returnType.qualifier));
}
}
else
{
if (!returnType.layoutQualifier.isEmpty())
{
checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout");
}
if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn ||
returnType.qualifier == EvqFragmentOut)
{
checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier,
typeSpecifier.getLine());
}
if (returnType.qualifier == EvqComputeIn)
{
error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size",
"in");
}
}
return returnType;
}
void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
const TPublicType &type,
const TSourceLoc &qualifierLocation)
{
// An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
if (type.getBasicType() == EbtBool)
{
error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
}
// Specific restrictions apply for vertex shader inputs and fragment shader outputs.
switch (qualifier)
{
case EvqVertexIn:
// ESSL 3.00 section 4.3.4
if (type.array)
{
error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
}
// Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
case EvqFragmentOut:
// ESSL 3.00 section 4.3.6
if (type.typeSpecifierNonArray.isMatrix())
{
error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
}
// Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck
return;
default:
break;
}
// Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
// restrictions.
bool typeContainsIntegers =
(type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt ||
type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt));
if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
{
error(qualifierLocation, "must use 'flat' interpolation here",
getQualifierString(qualifier));
}
if (type.getBasicType() == EbtStruct)
{
// ESSL 3.00 sections 4.3.4 and 4.3.6.
// These restrictions are only implied by the ESSL 3.00 spec, but
// the ESSL 3.10 spec lists these restrictions explicitly.
if (type.array)
{
error(qualifierLocation, "cannot be an array of structures",
getQualifierString(qualifier));
}
if (type.isStructureContainingArrays())
{
error(qualifierLocation, "cannot be a structure containing an array",
getQualifierString(qualifier));
}
if (type.isStructureContainingType(EbtStruct))
{
error(qualifierLocation, "cannot be a structure containing a structure",
getQualifierString(qualifier));
}
if (type.isStructureContainingType(EbtBool))
{
error(qualifierLocation, "cannot be a structure containing a bool",
getQualifierString(qualifier));
}
}
}
void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier)
{
if (qualifier.getType() == QtStorage)
{
const TStorageQualifierWrapper &storageQualifier =
static_cast<const TStorageQualifierWrapper &>(qualifier);
if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst &&
!symbolTable.atGlobalLevel())
{
error(storageQualifier.getLine(),
"Local variables can only use the const storage qualifier.",
storageQualifier.getQualifierString().c_str());
}
}
}
bool TParseContext::checkIsMemoryQualifierNotSpecified(const TMemoryQualifier &memoryQualifier,
const TSourceLoc &location)
{
if (memoryQualifier.readonly)
{
error(location, "Only allowed with images.", "readonly");
return false;
}
if (memoryQualifier.writeonly)
{
error(location, "Only allowed with images.", "writeonly");
return false;
}
return true;
}
TIntermDeclaration *TParseContext::parseSingleDeclaration(
TPublicType &publicType,
const TSourceLoc &identifierOrTypeLocation,
const TString &identifier)
{
TType type(publicType);
if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) &&
mDirectiveHandler.pragma().stdgl.invariantAll)
{
TQualifier qualifier = type.getQualifier();
// The directive handler has already taken care of rejecting invalid uses of this pragma
// (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all
// affected variable declarations:
//
// 1. Built-in special variables which are inputs to the fragment shader. (These are handled
// elsewhere, in TranslatorGLSL.)
//
// 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It
// is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but
// the way this is currently implemented we have to enable this compiler option before
// parsing the shader and determining the shading language version it uses. If this were
// implemented as a post-pass, the workaround could be more targeted.
//
// 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of
// the specification, but there are desktop OpenGL drivers that expect that this is the
// behavior of the #pragma when specified in ESSL 1.00 fragment shaders.
if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn)
{
type.setInvariant(true);
}
}
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, type, identifierOrTypeLocation);
bool emptyDeclaration = (identifier == "");
mDeferredSingleDeclarationErrorCheck = emptyDeclaration;
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierOrTypeLocation);
if (emptyDeclaration)
{
if (publicType.isUnsizedArray())
{
// ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
// error. It is assumed that this applies to empty declarations as well.
error(identifierOrTypeLocation, "empty array declaration needs to specify a size",
identifier.c_str());
}
}
else
{
singleDeclarationErrorCheck(publicType, identifierOrTypeLocation);
checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &publicType);
TVariable *variable = nullptr;
declareVariable(identifierOrTypeLocation, identifier, type, &variable);
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
}
}
// We append the symbol even if the declaration is empty, mainly because of struct declarations
// that may just declare a type.
declaration->appendDeclarator(symbol);
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression)
{
mDeferredSingleDeclarationErrorCheck = false;
singleDeclarationErrorCheck(publicType, identifierLocation);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
TType arrayType(publicType);
unsigned int size = checkIsValidArraySize(identifierLocation, indexExpression);
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, arrayType, &variable);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
declaration->appendDeclarator(symbol);
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
singleDeclarationErrorCheck(publicType, identifierLocation);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode))
{
if (initNode)
{
declaration->appendDeclarator(initNode);
}
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration(
TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredSingleDeclarationErrorCheck = false;
singleDeclarationErrorCheck(publicType, identifierLocation);
checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
TPublicType arrayType(publicType);
unsigned int size = 0u;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from
// the initializer.
if (indexExpression != nullptr)
{
size = checkIsValidArraySize(identifierLocation, indexExpression);
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
// initNode will correspond to the whole of "type b[n] = initializer".
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
declaration->appendDeclarator(initNode);
}
}
return declaration;
}
TIntermAggregate *TParseContext::parseInvariantDeclaration(
const TTypeQualifierBuilder &typeQualifierBuilder,
const TSourceLoc &identifierLoc,
const TString *identifier,
const TSymbol *symbol)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
if (!typeQualifier.invariant)
{
error(identifierLoc, "Expected invariant", identifier->c_str());
return nullptr;
}
if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying"))
{
return nullptr;
}
if (!symbol)
{
error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
return nullptr;
}
if (!IsQualifierUnspecified(typeQualifier.qualifier))
{
error(identifierLoc, "invariant declaration specifies qualifier",
getQualifierString(typeQualifier.qualifier));
}
if (typeQualifier.precision != EbpUndefined)
{
error(identifierLoc, "invariant declaration specifies precision",
getPrecisionString(typeQualifier.precision));
}
if (!typeQualifier.layoutQualifier.isEmpty())
{
error(identifierLoc, "invariant declaration specifies layout", "'layout'");
}
const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
ASSERT(variable);
const TType &type = variable->getType();
checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(),
typeQualifier.line);
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
symbolTable.addInvariantVarying(std::string(identifier->c_str()));
TIntermSymbol *intermSymbol =
intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc);
TIntermAggregate *aggregate = TIntermediate::MakeAggregate(intermSymbol, identifierLoc);
aggregate->setOp(EOpInvariantDeclaration);
return aggregate;
}
void TParseContext::parseDeclarator(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, TType(publicType), &variable);
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
if (variable && symbol)
{
symbol->setId(variable->getUniqueId());
declarationOut->appendDeclarator(symbol);
}
}
void TParseContext::parseArrayDeclarator(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &arrayLocation,
TIntermTyped *indexExpression,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &publicType);
if (checkIsValidTypeAndQualifierForArray(arrayLocation, publicType))
{
TType arrayType = TType(publicType);
unsigned int size = checkIsValidArraySize(arrayLocation, indexExpression);
arrayType.setArraySize(size);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, arrayType, &variable);
TIntermSymbol *symbol =
intermediate.addSymbol(0, identifier, arrayType, identifierLocation);
if (variable && symbol)
symbol->setId(variable->getUniqueId());
declarationOut->appendDeclarator(symbol);
}
}
void TParseContext::parseInitDeclarator(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, publicType, initializer, &initNode))
{
//
// build the intermediate representation
//
if (initNode)
{
declarationOut->appendDeclarator(initNode);
}
}
}
void TParseContext::parseArrayInitDeclarator(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
TIntermTyped *indexExpression,
const TSourceLoc &initLocation,
TIntermTyped *initializer,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredSingleDeclarationErrorCheck)
{
singleDeclarationErrorCheck(publicType, identifierLocation);
mDeferredSingleDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
checkIsValidTypeAndQualifierForArray(indexLocation, publicType);
TPublicType arrayType(publicType);
unsigned int size = 0u;
// If indexExpression is nullptr, then the array will eventually get its size implicitly from
// the initializer.
if (indexExpression != nullptr)
{
size = checkIsValidArraySize(identifierLocation, indexExpression);
}
// Make the type an array even if size check failed.
// This ensures useless error messages regarding the variable's non-arrayness won't follow.
arrayType.setArraySize(size);
// initNode will correspond to the whole of "b[n] = initializer".
TIntermBinary *initNode = nullptr;
if (!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
declarationOut->appendDeclarator(initNode);
}
}
}
void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier,
typeQualifier.line);
// It should never be the case, but some strange parser errors can send us here.
if (layoutQualifier.isEmpty())
{
error(typeQualifier.line, "Error during layout qualifier parsing.", "?");
return;
}
if (!layoutQualifier.isCombinationValid())
{
error(typeQualifier.line, "invalid combination:", "layout");
return;
}
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat);
if (typeQualifier.qualifier == EvqComputeIn)
{
if (mComputeShaderLocalSizeDeclared &&
!layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize))
{
error(typeQualifier.line, "Work group size does not match the previous declaration",
"layout");
return;
}
if (mShaderVersion < 310)
{
error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
return;
}
if (!layoutQualifier.localSize.isAnyValueSet())
{
error(typeQualifier.line, "No local work group size specified", "layout");
return;
}
const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion));
const TConstantUnion *maxComputeWorkGroupSizeData =
maxComputeWorkGroupSize->getConstPointer();
for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i)
{
if (layoutQualifier.localSize[i] != -1)
{
mComputeShaderLocalSize[i] = layoutQualifier.localSize[i];
const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst();
if (mComputeShaderLocalSize[i] < 1 ||
mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue)
{
std::stringstream errorMessageStream;
errorMessageStream << "Value must be at least 1 and no greater than "
<< maxComputeWorkGroupSizeValue;
const std::string &errorMessage = errorMessageStream.str();
error(typeQualifier.line, "invalid value:", getWorkGroupSizeString(i),
errorMessage.c_str());
return;
}
}
}
mComputeShaderLocalSizeDeclared = true;
}
else
{
if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier))
{
return;
}
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:",
getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
return;
}
if (mShaderVersion < 300)
{
error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above",
"layout");
return;
}
checkLocationIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier);
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
mDefaultMatrixPacking = layoutQualifier.matrixPacking;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
mDefaultBlockStorage = layoutQualifier.blockStorage;
}
}
}
TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &parsedFunction,
const TSourceLoc &location)
{
// Note: function found from the symbol table could be the same as parsedFunction if this is the
// first declaration. Either way the instance in the symbol table is used to track whether the
// function is declared multiple times.
TFunction *function = static_cast<TFunction *>(
symbolTable.find(parsedFunction.getMangledName(), getShaderVersion()));
if (function->hasPrototypeDeclaration() && mShaderVersion == 100)
{
// ESSL 1.00.17 section 4.2.7.
// Doesn't apply to ESSL 3.00.4: see section 4.2.3.
error(location, "duplicate function prototype declarations are not allowed", "function");
}
function->setHasPrototypeDeclaration();
TIntermAggregate *prototype = new TIntermAggregate;
// TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could
// point to the data that already exists in the symbol table.
prototype->setType(function->getReturnType());
prototype->getFunctionSymbolInfo()->setFromFunction(*function);
for (size_t i = 0; i < function->getParamCount(); i++)
{
const TConstParameter &param = function->getParam(i);
if (param.name != 0)
{
TVariable variable(param.name, *param.type);
TIntermSymbol *paramSymbol = intermediate.addSymbol(
variable.getUniqueId(), variable.getName(), variable.getType(), location);
prototype = intermediate.growAggregate(prototype, paramSymbol, location);
}
else
{
TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location);
prototype = intermediate.growAggregate(prototype, paramSymbol, location);
}
}
prototype->setOp(EOpPrototype);
symbolTable.pop();
if (!symbolTable.atGlobalLevel())
{
// ESSL 3.00.4 section 4.2.4.
error(location, "local function prototype declarations are not allowed", "function");
}
return prototype;
}
TIntermFunctionDefinition *TParseContext::addFunctionDefinition(
const TFunction &function,
TIntermAggregate *functionParameters,
TIntermBlock *functionBody,
const TSourceLoc &location)
{
// Check that non-void functions have at least one return statement.
if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
{
error(location, "function does not return a value:", "", function.getName().c_str());
}
if (functionBody == nullptr)
{
functionBody = new TIntermBlock();
functionBody->setLine(location);
}
TIntermFunctionDefinition *functionNode =
new TIntermFunctionDefinition(function.getReturnType(), functionParameters, functionBody);
functionNode->setLine(location);
functionNode->getFunctionSymbolInfo()->setFromFunction(function);
symbolTable.pop();
return functionNode;
}
void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location,
TFunction **function,
TIntermAggregate **aggregateOut)
{
ASSERT(function);
ASSERT(*function);
const TSymbol *builtIn =
symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion());
if (builtIn)
{
error(location, "built-in functions cannot be redefined", (*function)->getName().c_str());
}
else
{
TFunction *prevDec = static_cast<TFunction *>(
symbolTable.find((*function)->getMangledName(), getShaderVersion()));
// Note: 'prevDec' could be 'function' if this is the first time we've seen function as it
// would have just been put in the symbol table. Otherwise, we're looking up an earlier
// occurance.
if (*function != prevDec)
{
// Swap the parameters of the previous declaration to the parameters of the function
// definition (parameter names may differ).
prevDec->swapParameters(**function);
// The function definition will share the same symbol as any previous declaration.
*function = prevDec;
}
if ((*function)->isDefined())
{
error(location, "function already has a body", (*function)->getName().c_str());
}
(*function)->setDefined();
}
// Raise error message if main function takes any parameters or return anything other than void
if ((*function)->getName() == "main")
{
if ((*function)->getParamCount() > 0)
{
error(location, "function cannot take any parameter(s)",
(*function)->getName().c_str());
}
if ((*function)->getReturnType().getBasicType() != EbtVoid)
{
error(location, "", (*function)->getReturnType().getBasicString(),
"main function cannot return a value");
}
}
//
// Remember the return type for later checking for RETURN statements.
//
mCurrentFunctionType = &((*function)->getReturnType());
mFunctionReturnsValue = false;
//
// Insert parameters into the symbol table.
// If the parameter has no name, it's not an error, just don't insert it
// (could be used for unused args).
//
// Also, accumulate the list of parameters into the HIL, so lower level code
// knows where to find parameters.
//
TIntermAggregate *paramNodes = new TIntermAggregate;
for (size_t i = 0; i < (*function)->getParamCount(); i++)
{
const TConstParameter &param = (*function)->getParam(i);
if (param.name != 0)
{
TVariable *variable = new TVariable(param.name, *param.type);
//
// Insert the parameters with name in the symbol table.
//
if (!symbolTable.declare(variable))
{
error(location, "redefinition", variable->getName().c_str());
paramNodes = intermediate.growAggregate(
paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
continue;
}
//
// Add the parameter to the HIL
//
TIntermSymbol *symbol = intermediate.addSymbol(
variable->getUniqueId(), variable->getName(), variable->getType(), location);
paramNodes = intermediate.growAggregate(paramNodes, symbol, location);
}
else
{
paramNodes = intermediate.growAggregate(
paramNodes, intermediate.addSymbol(0, "", *param.type, location), location);
}
}
intermediate.setAggregateOperator(paramNodes, EOpParameters, location);
*aggregateOut = paramNodes;
setLoopNestingLevel(0);
}
TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
{
//
// We don't know at this point whether this is a function definition or a prototype.
// The definition production code will check for redefinitions.
// In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
//
// Return types and parameter qualifiers must match in all redeclarations, so those are checked
// here.
//
TFunction *prevDec =
static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
if (getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str()))
{
// With ESSL 3.00, names of built-in functions cannot be redeclared as functions.
// Therefore overloading or redefining builtin functions is an error.
error(location, "Name of a built-in function cannot be redeclared as function",
function->getName().c_str());
}
else if (prevDec)
{
if (prevDec->getReturnType() != function->getReturnType())
{
error(location, "function must have the same return type in all of its declarations",
function->getReturnType().getBasicString());
}
for (size_t i = 0; i < prevDec->getParamCount(); ++i)
{
if (prevDec->getParam(i).type->getQualifier() !=
function->getParam(i).type->getQualifier())
{
error(location,
"function must have the same parameter qualifiers in all of its declarations",
function->getParam(i).type->getQualifierString());
}
}
}
//
// Check for previously declared variables using the same name.
//
TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
if (prevSym)
{
if (!prevSym->isFunction())
{
error(location, "redefinition", function->getName().c_str(), "function");
}
}
else
{
// Insert the unmangled name to detect potential future redefinition as a variable.
symbolTable.getOuterLevel()->insertUnmangled(function);
}
// We're at the inner scope level of the function's arguments and body statement.
// Add the function prototype to the surrounding scope instead.
symbolTable.getOuterLevel()->insert(function);
//
// If this is a redeclaration, it could also be a definition, in which case, we want to use the
// variable names from this one, and not the one that's
// being redeclared. So, pass back up this declaration, not the one in the symbol table.
//
return function;
}
TFunction *TParseContext::parseFunctionHeader(const TPublicType &type,
const TString *name,
const TSourceLoc &location)
{
if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary)
{
error(location, "no qualifiers allowed for function return",
getQualifierString(type.qualifier));
}
if (!type.layoutQualifier.isEmpty())
{
error(location, "no qualifiers allowed for function return", "layout");
}
// make sure a sampler or an image is not involved as well...
checkIsNotSampler(location, type.typeSpecifierNonArray,
"samplers can't be function return values");
checkIsNotImage(location, type.typeSpecifierNonArray, "images can't be function return values");
if (mShaderVersion < 300)
{
// Array return values are forbidden, but there's also no valid syntax for declaring array
// return values in ESSL 1.00.
ASSERT(type.arraySize == 0 || mDiagnostics.numErrors() > 0);
if (type.isStructureContainingArrays())
{
// ESSL 1.00.17 section 6.1 Function Definitions
error(location, "structures containing arrays can't be function return values",
TType(type).getCompleteString().c_str());
}
}
// Add the function as a prototype after parsing it (we do not support recursion)
return new TFunction(name, new TType(type));
}
TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn)
{
TPublicType publicType = publicTypeIn;
if (publicType.isStructSpecifier())
{
error(publicType.getLine(), "constructor can't be a structure definition",
getBasicString(publicType.getBasicType()));
}
TOperator op = EOpNull;
if (publicType.getUserDef())
{
op = EOpConstructStruct;
}
else
{
op = sh::TypeToConstructorOperator(TType(publicType));
if (op == EOpNull)
{
error(publicType.getLine(), "cannot construct this type",
getBasicString(publicType.getBasicType()));
publicType.setBasicType(EbtFloat);
op = EOpConstructFloat;
}
}
TString tempString;
const TType *type = new TType(publicType);
return new TFunction(&tempString, type, op);
}
// This function is used to test for the correctness of the parameters passed to various constructor
// functions and also convert them to the right datatype if it is allowed and required.
//
// Returns a node to add to the tree regardless of if an error was generated or not.
//
TIntermTyped *TParseContext::addConstructor(TIntermNode *arguments,
TOperator op,
TFunction *fnCall,
const TSourceLoc &line)
{
TType type = fnCall->getReturnType();
if (type.isUnsizedArray())
{
if (fnCall->getParamCount() == 0)
{
error(line, "implicitly sized array constructor must have at least one argument", "[]");
type.setArraySize(1u);
return TIntermTyped::CreateZero(type);
}
type.setArraySize(static_cast<unsigned int>(fnCall->getParamCount()));
}
bool constType = true;
for (size_t i = 0; i < fnCall->getParamCount(); ++i)
{
const TConstParameter &param = fnCall->getParam(i);
if (param.type->getQualifier() != EvqConst)
constType = false;
}
if (constType)
type.setQualifier(EvqConst);
if (!checkConstructorArguments(line, arguments, *fnCall, op, type))
{
TIntermTyped *dummyNode = intermediate.setAggregateOperator(nullptr, op, line);
dummyNode->setType(type);
return dummyNode;
}
TIntermAggregate *constructor = arguments->getAsAggregate();
ASSERT(constructor != nullptr);
// Turn the argument list itself into a constructor
constructor->setOp(op);
constructor->setLine(line);
ASSERT(constructor->isConstructor());
// Need to set type before setPrecisionFromChildren() because bool doesn't have precision.
constructor->setType(type);
// Structs should not be precision qualified, the individual members may be.
// Built-in types on the other hand should be precision qualified.
if (op != EOpConstructStruct)
{
constructor->setPrecisionFromChildren();
type.setPrecision(constructor->getPrecision());
}
constructor->setType(type);
TIntermTyped *constConstructor = intermediate.foldAggregateBuiltIn(constructor, &mDiagnostics);
if (constConstructor)
{
return constConstructor;
}
return constructor;
}
//
// Interface/uniform blocks
//
TIntermDeclaration *TParseContext::addInterfaceBlock(
const TTypeQualifierBuilder &typeQualifierBuilder,
const TSourceLoc &nameLine,
const TString &blockName,
TFieldList *fieldList,
const TString *instanceName,
const TSourceLoc &instanceLine,
TIntermTyped *arrayIndex,
const TSourceLoc &arrayIndexLine)
{
checkIsNotReserved(nameLine, blockName);
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
if (typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier),
"interface blocks must be uniform");
}
if (typeQualifier.invariant)
{
error(typeQualifier.line, "invalid qualifier on interface block member", "invariant");
}
checkIsMemoryQualifierNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier);
if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
{
blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking;
}
if (blockLayoutQualifier.blockStorage == EbsUnspecified)
{
blockLayoutQualifier.blockStorage = mDefaultBlockStorage;
}
checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier);
checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat);
TSymbol *blockNameSymbol = new TInterfaceBlockName(&blockName);
if (!symbolTable.declare(blockNameSymbol))
{
error(nameLine, "redefinition", blockName.c_str(), "interface block name");
}
// check for sampler types and apply layout qualifiers
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
if (IsSampler(fieldType->getBasicType()))
{
error(field->line(), "unsupported type", fieldType->getBasicString(),
"sampler types are not allowed in interface blocks");
}
if (IsImage(fieldType->getBasicType()))
{
error(field->line(), "unsupported type", fieldType->getBasicString(),
"image types are not allowed in interface blocks");
}
const TQualifier qualifier = fieldType->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqUniform:
break;
default:
error(field->line(), "invalid qualifier on interface block member",
getQualifierString(qualifier));
break;
}
if (fieldType->isInvariant())
{
error(field->line(), "invalid qualifier on interface block member", "invariant");
}
// check layout qualifiers
TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier);
if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
{
error(field->line(), "invalid layout qualifier:",
getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
}
if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
{
fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
}
else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
{
warning(field->line(), "extraneous layout qualifier:",
getMatrixPackingString(fieldLayoutQualifier.matrixPacking),
"only has an effect on matrix types");
}
fieldType->setLayoutQualifier(fieldLayoutQualifier);
}
// add array index
unsigned int arraySize = 0;
if (arrayIndex != nullptr)
{
arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex);
}
TInterfaceBlock *interfaceBlock =
new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier,
arraySize);
TString symbolName = "";
int symbolId = 0;
if (!instanceName)
{
// define symbols for the members of the interface block
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
// set parent pointer of the field variable
fieldType->setInterfaceBlock(interfaceBlock);
TVariable *fieldVariable = new TVariable(&field->name(), *fieldType);
fieldVariable->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(fieldVariable))
{
error(field->line(), "redefinition", field->name().c_str(),
"interface block member name");
}
}
}
else
{
checkIsNotReserved(instanceLine, *instanceName);
// add a symbol for this interface block
TVariable *instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
instanceTypeDef->setQualifier(typeQualifier.qualifier);
if (!symbolTable.declare(instanceTypeDef))
{
error(instanceLine, "redefinition", instanceName->c_str(),
"interface block instance name");
}
symbolId = instanceTypeDef->getUniqueId();
symbolName = instanceTypeDef->getName();
}
TIntermSymbol *blockSymbol =
intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->appendDeclarator(blockSymbol);
declaration->setLine(nameLine);
exitStructDeclaration();
return declaration;
}
void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier)
{
++mStructNestingLevel;
// Embedded structure definitions are not supported per GLSL ES spec.
// They aren't allowed in GLSL either, but we need to detect this here
// so we don't rely on the GLSL compiler to catch it.
if (mStructNestingLevel > 1)
{
error(line, "", "Embedded struct definitions are not allowed");
}
}
void TParseContext::exitStructDeclaration()
{
--mStructNestingLevel;
}
void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field)
{
if (!IsWebGLBasedSpec(mShaderSpec))
{
return;
}
if (field.type()->getBasicType() != EbtStruct)
{
return;
}
// We're already inside a structure definition at this point, so add
// one to the field's struct nesting.
if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
{
std::stringstream reasonStream;
reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str()
<< " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
std::string reason = reasonStream.str();
error(line, reason.c_str(), field.name().c_str(), "");
return;
}
}
//
// Parse an array index expression
//
TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
const TSourceLoc &location,
TIntermTyped *indexExpression)
{
if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
{
if (baseExpression->getAsSymbolNode())
{
error(location, " left of '[' is not of type array, matrix, or vector ",
baseExpression->getAsSymbolNode()->getSymbol().c_str());
}
else
{
error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
}
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setFConst(0.0f);
return intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst),
location);
}
TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able
// to constant fold all constant expressions. Right now we don't allow indexing interface blocks
// or fragment outputs with expressions that ANGLE is not able to constant fold, even if the
// index is a constant expression.
if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
{
if (baseExpression->isInterfaceBlock())
{
error(
location, "", "[",
"array indexes for interface blocks arrays must be constant integral expressions");
}
else if (baseExpression->getQualifier() == EvqFragmentOut)
{
error(location, "", "[",
"array indexes for fragment outputs must be constant integral expressions");
}
else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
{
error(location, "", "[", "array index for gl_FragData must be constant zero");
}
}
if (indexConstantUnion)
{
// If an out-of-range index is not qualified as constant, the behavior in the spec is
// undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may
// constant fold expressions that are not constant expressions). The most compatible way to
// handle this case is to report a warning instead of an error and force the index to be in
// the correct range.
bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
int index = indexConstantUnion->getIConst(0);
int safeIndex = -1;
if (baseExpression->isArray())
{
if (baseExpression->getQualifier() == EvqFragData && index > 0)
{
if (mShaderSpec == SH_WEBGL2_SPEC)
{
// Error has been already generated if index is not const.
if (indexExpression->getQualifier() == EvqConst)
{
error(location, "", "[",
"array index for gl_FragData must be constant zero");
}
safeIndex = 0;
}
else if (!isExtensionEnabled("GL_EXT_draw_buffers"))
{
outOfRangeError(outOfRangeIndexIsError, location, "", "[",
"array index for gl_FragData must be zero when "
"GL_EXT_draw_buffers is disabled");
safeIndex = 0;
}
}
// Only do generic out-of-range check if similar error hasn't already been reported.
if (safeIndex < 0)
{
safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
baseExpression->getArraySize(),
"array index out of range", "[]");
}
}
else if (baseExpression->isMatrix())
{
safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
baseExpression->getType().getCols(),
"matrix field selection out of range", "[]");
}
else if (baseExpression->isVector())
{
safeIndex = checkIndexOutOfRange(outOfRangeIndexIsError, location, index,
baseExpression->getType().getNominalSize(),
"vector field selection out of range", "[]");
}
ASSERT(safeIndex >= 0);
// Data of constant unions can't be changed, because it may be shared with other
// constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
// sanitized object.
if (safeIndex != index)
{
TConstantUnion *safeConstantUnion = new TConstantUnion();
safeConstantUnion->setIConst(safeIndex);
indexConstantUnion->replaceConstantUnion(safeConstantUnion);
}
return intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location,
&mDiagnostics);
}
else
{
return intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location,
&mDiagnostics);
}
}
int TParseContext::checkIndexOutOfRange(bool outOfRangeIndexIsError,
const TSourceLoc &location,
int index,
int arraySize,
const char *reason,
const char *token)
{
if (index >= arraySize || index < 0)
{
std::stringstream extraInfoStream;
extraInfoStream << "'" << index << "'";
std::string extraInfo = extraInfoStream.str();
outOfRangeError(outOfRangeIndexIsError, location, reason, token, extraInfo.c_str());
if (index < 0)
{
return 0;
}
else
{
return arraySize - 1;
}
}
return index;
}
TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
const TSourceLoc &dotLocation,
const TString &fieldString,
const TSourceLoc &fieldLocation)
{
if (baseExpression->isArray())
{
error(fieldLocation, "cannot apply dot operator to an array", ".");
return baseExpression;
}
if (baseExpression->isVector())
{
TVectorFields fields;
if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields,
fieldLocation))
{
fields.num = 1;
fields.offsets[0] = 0;
}
return TIntermediate::AddSwizzle(baseExpression, fields, dotLocation);
}
else if (baseExpression->getBasicType() == EbtStruct)
{
const TFieldList &fields = baseExpression->getType().getStruct()->fields();
if (fields.empty())
{
error(dotLocation, "structure has no fields", "Internal Error");
return baseExpression;
}
else
{
bool fieldFound = false;
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
index->setLine(fieldLocation);
return intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index,
dotLocation, &mDiagnostics);
}
else
{
error(dotLocation, " no such field in structure", fieldString.c_str());
return baseExpression;
}
}
}
else if (baseExpression->isInterfaceBlock())
{
const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
if (fields.empty())
{
error(dotLocation, "interface block has no fields", "Internal Error");
return baseExpression;
}
else
{
bool fieldFound = false;
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TIntermTyped *index = TIntermTyped::CreateIndexNode(i);
index->setLine(fieldLocation);
return intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index,
dotLocation, &mDiagnostics);
}
else
{
error(dotLocation, " no such field in interface block", fieldString.c_str());
return baseExpression;
}
}
}
else
{
if (mShaderVersion < 300)
{
error(dotLocation, " field selection requires structure or vector on left hand side",
fieldString.c_str());
}
else
{
error(dotLocation,
" field selection requires structure, vector, or interface block on left hand "
"side",
fieldString.c_str());
}
return baseExpression;
}
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine)
{
TLayoutQualifier qualifier = TLayoutQualifier::create();
if (qualifierType == "shared")
{
if (IsWebGLBasedSpec(mShaderSpec))
{
error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared");
}
qualifier.blockStorage = EbsShared;
}
else if (qualifierType == "packed")
{
if (IsWebGLBasedSpec(mShaderSpec))
{
error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed");
}
qualifier.blockStorage = EbsPacked;
}
else if (qualifierType == "std140")
{
qualifier.blockStorage = EbsStd140;
}
else if (qualifierType == "row_major")
{
qualifier.matrixPacking = EmpRowMajor;
}
else if (qualifierType == "column_major")
{
qualifier.matrixPacking = EmpColumnMajor;
}
else if (qualifierType == "location")
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(),
"location requires an argument");
}
else if (qualifierType == "rgba32f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32F;
}
else if (qualifierType == "rgba16f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16F;
}
else if (qualifierType == "r32f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32F;
}
else if (qualifierType == "rgba8")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8;
}
else if (qualifierType == "rgba8_snorm")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8_SNORM;
}
else if (qualifierType == "rgba32i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32I;
}
else if (qualifierType == "rgba16i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16I;
}
else if (qualifierType == "rgba8i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8I;
}
else if (qualifierType == "r32i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32I;
}
else if (qualifierType == "rgba32ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32UI;
}
else if (qualifierType == "rgba16ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16UI;
}
else if (qualifierType == "rgba8ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8UI;
}
else if (qualifierType == "r32ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32UI;
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
}
return qualifier;
}
void TParseContext::parseLocalSize(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
size_t index,
sh::WorkGroupSize *localSize)
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
if (intValue < 1)
{
std::string errorMessage = std::string(getWorkGroupSizeString(index)) + " must be positive";
error(intValueLine, "out of range:", intValueString.c_str(), errorMessage.c_str());
}
(*localSize)[index] = intValue;
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
int intValue,
const TSourceLoc &intValueLine)
{
TLayoutQualifier qualifier = TLayoutQualifier::create();
std::string intValueString = Str(intValue);
if (qualifierType == "location")
{
// must check that location is non-negative
if (intValue < 0)
{
error(intValueLine, "out of range:", intValueString.c_str(),
"location must be non-negative");
}
else
{
qualifier.location = intValue;
qualifier.locationsSpecified = 1;
}
}
else if (qualifierType == "local_size_x")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u,
&qualifier.localSize);
}
else if (qualifierType == "local_size_y")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u,
&qualifier.localSize);
}
else if (qualifierType == "local_size_z")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u,
&qualifier.localSize);
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
}
return qualifier;
}
TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc)
{
return new TTypeQualifierBuilder(
new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc),
mShaderVersion);
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
TLayoutQualifier rightQualifier,
const TSourceLoc &rightQualifierLocation)
{
return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation,
&mDiagnostics);
}
TFieldList *TParseContext::addStructDeclaratorListWithQualifiers(
const TTypeQualifierBuilder &typeQualifierBuilder,
TPublicType *typeSpecifier,
TFieldList *fieldList)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(&mDiagnostics);
typeSpecifier->qualifier = typeQualifier.qualifier;
typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier;
typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier;
typeSpecifier->invariant = typeQualifier.invariant;
if (typeQualifier.precision != EbpUndefined)
{
typeSpecifier->precision = typeQualifier.precision;
}
return addStructDeclaratorList(*typeSpecifier, fieldList);
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
TFieldList *fieldList)
{
checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision,
typeSpecifier.getBasicType());
checkIsNonVoid(typeSpecifier.getLine(), (*fieldList)[0]->name(), typeSpecifier.getBasicType());
checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier);
for (unsigned int i = 0; i < fieldList->size(); ++i)
{
//
// Careful not to replace already known aspects of type, like array-ness
//
TType *type = (*fieldList)[i]->type();
type->setBasicType(typeSpecifier.getBasicType());
type->setPrimarySize(typeSpecifier.getPrimarySize());
type->setSecondarySize(typeSpecifier.getSecondarySize());
type->setPrecision(typeSpecifier.precision);
type->setQualifier(typeSpecifier.qualifier);
type->setLayoutQualifier(typeSpecifier.layoutQualifier);
type->setMemoryQualifier(typeSpecifier.memoryQualifier);
type->setInvariant(typeSpecifier.invariant);
// don't allow arrays of arrays
if (type->isArray())
{
checkIsValidTypeForArray(typeSpecifier.getLine(), typeSpecifier);
}
if (typeSpecifier.array)
type->setArraySize(static_cast<unsigned int>(typeSpecifier.arraySize));
if (typeSpecifier.getUserDef())
{
type->setStruct(typeSpecifier.getUserDef()->getStruct());
}
checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *(*fieldList)[i]);
}
return fieldList;
}
TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine,
const TSourceLoc &nameLine,
const TString *structName,
TFieldList *fieldList)
{
TStructure *structure = new TStructure(structName, fieldList);
TType *structureType = new TType(structure);
// Store a bool in the struct if we're at global scope, to allow us to
// skip the local struct scoping workaround in HLSL.
structure->setAtGlobalScope(symbolTable.atGlobalLevel());
if (!structName->empty())
{
checkIsNotReserved(nameLine, *structName);
TVariable *userTypeDef = new TVariable(structName, *structureType, true);
if (!symbolTable.declare(userTypeDef))
{
error(nameLine, "redefinition", structName->c_str(), "struct");
}
}
// ensure we do not specify any storage qualifiers on the struct members
for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
{
const TField &field = *(*fieldList)[typeListIndex];
const TQualifier qualifier = field.type()->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqTemporary:
break;
default:
error(field.line(), "invalid qualifier on struct member",
getQualifierString(qualifier));
break;
}
if (field.type()->isInvariant())
{
error(field.line(), "invalid qualifier on struct member", "invariant");
}
if (IsImage(field.type()->getBasicType()))
{
error(field.line(), "disallowed type in struct", field.type()->getBasicString());
}
checkIsMemoryQualifierNotSpecified(field.type()->getMemoryQualifier(), field.line());
checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier());
}
TTypeSpecifierNonArray typeSpecifierNonArray;
typeSpecifierNonArray.initialize(EbtStruct, structLine);
typeSpecifierNonArray.userDef = structureType;
typeSpecifierNonArray.isStructSpecifier = true;
exitStructDeclaration();
return typeSpecifierNonArray;
}
TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
TIntermBlock *statementList,
const TSourceLoc &loc)
{
TBasicType switchType = init->getBasicType();
if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
init->isVector())
{
error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
"switch");
return nullptr;
}
if (statementList)
{
if (!ValidateSwitch::validate(switchType, this, statementList, loc))
{
return nullptr;
}
}
TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc);
if (node == nullptr)
{
error(loc, "erroneous switch statement", "switch");
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "case labels need to be inside switch statements", "case");
return nullptr;
}
if (condition == nullptr)
{
error(loc, "case label must have a condition", "case");
return nullptr;
}
if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
condition->isMatrix() || condition->isArray() || condition->isVector())
{
error(condition->getLine(), "case label must be a scalar integer", "case");
}
TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold in case labels.
if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
{
error(condition->getLine(), "case label must be constant", "case");
}
TIntermCase *node = intermediate.addCase(condition, loc);
if (node == nullptr)
{
error(loc, "erroneous case statement", "case");
return nullptr;
}
return node;
}
TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "default labels need to be inside switch statements", "default");
return nullptr;
}
TIntermCase *node = intermediate.addCase(nullptr, loc);
if (node == nullptr)
{
error(loc, "erroneous default statement", "default");
return nullptr;
}
return node;
}
TIntermTyped *TParseContext::createUnaryMath(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc,
const TType *funcReturnType)
{
if (child == nullptr)
{
return nullptr;
}
switch (op)
{
case EOpLogicalNot:
if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
child->isVector())
{
return nullptr;
}
break;
case EOpBitwiseNot:
if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
child->isMatrix() || child->isArray())
{
return nullptr;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
case EOpPositive:
if (child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool ||
child->isArray() || IsOpaqueType(child->getBasicType()))
{
return nullptr;
}
// Operators for built-ins are already type checked against their prototype.
default:
break;
}
TIntermUnary *node = new TIntermUnary(op, child);
node->setLine(loc);
TIntermTyped *foldedNode = node->fold(&mDiagnostics);
if (foldedNode)
return foldedNode;
return node;
}
TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
TIntermTyped *node = createUnaryMath(op, child, loc, nullptr);
if (node == nullptr)
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return child;
}
return node;
}
TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc)
{
checkCanBeLValue(loc, GetOperatorString(op), child);
return addUnaryMath(op, child, loc);
}
bool TParseContext::binaryOpCommonCheck(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (left->getType().getStruct() || right->getType().getStruct())
{
switch (op)
{
case EOpIndexDirectStruct:
ASSERT(left->getType().getStruct());
break;
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
if (left->getType() != right->getType())
{
return false;
}
break;
default:
error(loc, "Invalid operation for structs", GetOperatorString(op));
return false;
}
}
if (left->isArray() || right->isArray())
{
if (mShaderVersion < 300)
{
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
if (left->isArray() != right->isArray())
{
error(loc, "array / non-array mismatch", GetOperatorString(op));
return false;
}
switch (op)
{
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
break;
default:
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
// At this point, size of implicitly sized arrays should be resolved.
if (left->getArraySize() != right->getArraySize())
{
error(loc, "array size mismatch", GetOperatorString(op));
return false;
}
}
// Check ops which require integer / ivec parameters
bool isBitShift = false;
switch (op)
{
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
// Unsigned can be bit-shifted by signed and vice versa, but we need to
// check that the basic type is an integer type.
isBitShift = true;
if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
{
return false;
}
break;
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
// It is enough to check the type of only one operand, since later it
// is checked that the operand types match.
if (!IsInteger(left->getBasicType()))
{
return false;
}
break;
default:
break;
}
// GLSL ES 1.00 and 3.00 do not support implicit type casting.
// So the basic type should usually match.
if (!isBitShift && left->getBasicType() != right->getBasicType())
{
return false;
}
// Check that:
// 1. Type sizes match exactly on ops that require that.
// 2. Restrictions for structs that contain arrays or samplers are respected.
// 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected.
switch (op)
{
case EOpAssign:
case EOpInitialize:
case EOpEqual:
case EOpNotEqual:
// ESSL 1.00 sections 5.7, 5.8, 5.9
if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
{
error(loc, "undefined operation for structs containing arrays",
GetOperatorString(op));
return false;
}
// Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
// we interpret the spec so that this extends to structs containing samplers,
// similarly to ESSL 1.00 spec.
if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingSamplers())
{
error(loc, "undefined operation for structs containing samplers",
GetOperatorString(op));
return false;
}
if ((op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingImages())
{
error(loc, "undefined operation for structs containing images",
GetOperatorString(op));
return false;
}
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if ((left->getNominalSize() != right->getNominalSize()) ||
(left->getSecondarySize() != right->getSecondarySize()))
{
return false;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpIMod:
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpAddAssign:
case EOpSubAssign:
case EOpDivAssign:
case EOpIModAssign:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
{
return false;
}
// Are the sizes compatible?
if (left->getNominalSize() != right->getNominalSize() ||
left->getSecondarySize() != right->getSecondarySize())
{
// If the nominal sizes of operands do not match:
// One of them must be a scalar.
if (!left->isScalar() && !right->isScalar())
return false;
// In the case of compound assignment other than multiply-assign,
// the right side needs to be a scalar. Otherwise a vector/matrix
// would be assigned to a scalar. A scalar can't be shifted by a
// vector either.
if (!right->isScalar() &&
(IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
return false;
}
break;
default:
break;
}
return true;
}
bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op,
const TType &left,
const TType &right)
{
switch (op)
{
case EOpMul:
case EOpMulAssign:
return left.getNominalSize() == right.getNominalSize() &&
left.getSecondarySize() == right.getSecondarySize();
case EOpVectorTimesScalar:
return true;
case EOpVectorTimesScalarAssign:
ASSERT(!left.isMatrix() && !right.isMatrix());
return left.isVector() && !right.isVector();
case EOpVectorTimesMatrix:
return left.getNominalSize() == right.getRows();
case EOpVectorTimesMatrixAssign:
ASSERT(!left.isMatrix() && right.isMatrix());
return left.isVector() && left.getNominalSize() == right.getRows() &&
left.getNominalSize() == right.getCols();
case EOpMatrixTimesVector:
return left.getCols() == right.getNominalSize();
case EOpMatrixTimesScalar:
return true;
case EOpMatrixTimesScalarAssign:
ASSERT(left.isMatrix() && !right.isMatrix());
return !right.isVector();
case EOpMatrixTimesMatrix:
return left.getCols() == right.getRows();
case EOpMatrixTimesMatrixAssign:
ASSERT(left.isMatrix() && right.isMatrix());
// We need to check two things:
// 1. The matrix multiplication step is valid.
// 2. The result will have the same number of columns as the lvalue.
return left.getCols() == right.getRows() && left.getCols() == right.getCols();
default:
UNREACHABLE();
return false;
}
}
TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (!binaryOpCommonCheck(op, left, right, loc))
return nullptr;
switch (op)
{
case EOpEqual:
case EOpNotEqual:
break;
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->isMatrix() || left->isVector())
{
return nullptr;
}
break;
case EOpLogicalOr:
case EOpLogicalXor:
case EOpLogicalAnd:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar())
{
return nullptr;
}
// Basic types matching should have been already checked.
ASSERT(right->getBasicType() == EbtBool);
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpMul:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->getBasicType() == EbtBool)
{
return nullptr;
}
break;
case EOpIMod:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
// Note that this is only for the % operator, not for mod()
if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
{
return nullptr;
}
break;
default:
break;
}
if (op == EOpMul)
{
op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType());
if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
{
return nullptr;
}
}
TIntermBinary *node = new TIntermBinary(op, left, right);
node->setLine(loc);
// See if we can fold constants.
TIntermTyped *foldedNode = node->fold(&mDiagnostics);
if (foldedNode)
return foldedNode;
return node;
}
TIntermTyped *TParseContext::addBinaryMath(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
return left;
}
return node;
}
TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setBConst(false);
return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConst),
loc);
}
return node;
}
TIntermBinary *TParseContext::createAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (binaryOpCommonCheck(op, left, right, loc))
{
if (op == EOpMulAssign)
{
op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType());
if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
{
return nullptr;
}
}
TIntermBinary *node = new TIntermBinary(op, left, right);
node->setLine(loc);
return node;
}
return nullptr;
}
TIntermTyped *TParseContext::addAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = createAssign(op, left, right, loc);
if (node == nullptr)
{
assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
return left;
}
return node;
}
TIntermTyped *TParseContext::addComma(TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
// WebGL2 section 5.26, the following results in an error:
// "Sequence operator applied to void, arrays, or structs containing arrays"
if (mShaderSpec == SH_WEBGL2_SPEC && (left->isArray() || left->getBasicType() == EbtVoid ||
left->getType().isStructureContainingArrays() ||
right->isArray() || right->getBasicType() == EbtVoid ||
right->getType().isStructureContainingArrays()))
{
error(loc,
"sequence operator is not allowed for void, arrays, or structs containing arrays",
",");
}
return TIntermediate::AddComma(left, right, loc, mShaderVersion);
}
TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
{
switch (op)
{
case EOpContinue:
if (mLoopNestingLevel <= 0)
{
error(loc, "continue statement only allowed in loops", "");
}
break;
case EOpBreak:
if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
{
error(loc, "break statement only allowed in loops and switch statements", "");
}
break;
case EOpReturn:
if (mCurrentFunctionType->getBasicType() != EbtVoid)
{
error(loc, "non-void function must return a value", "return");
}
break;
default:
// No checks for discard
break;
}
return intermediate.addBranch(op, loc);
}
TIntermBranch *TParseContext::addBranch(TOperator op,
TIntermTyped *returnValue,
const TSourceLoc &loc)
{
ASSERT(op == EOpReturn);
mFunctionReturnsValue = true;
if (mCurrentFunctionType->getBasicType() == EbtVoid)
{
error(loc, "void function cannot return a value", "return");
}
else if (*mCurrentFunctionType != returnValue->getType())
{
error(loc, "function return is not matching type:", "return");
}
return intermediate.addBranch(op, returnValue, loc);
}
void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall)
{
ASSERT(!functionCall->isUserDefined());
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
TIntermNode *offset = nullptr;
TIntermSequence *arguments = functionCall->getSequence();
if (name.compare(0, 16, "texelFetchOffset") == 0 ||
name.compare(0, 16, "textureLodOffset") == 0 ||
name.compare(0, 20, "textureProjLodOffset") == 0 ||
name.compare(0, 17, "textureGradOffset") == 0 ||
name.compare(0, 21, "textureProjGradOffset") == 0)
{
offset = arguments->back();
}
else if (name.compare(0, 13, "textureOffset") == 0 ||
name.compare(0, 17, "textureProjOffset") == 0)
{
// A bias parameter might follow the offset parameter.
ASSERT(arguments->size() >= 3);
offset = (*arguments)[2];
}
if (offset != nullptr)
{
TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion)
{
TString unmangledName = TFunction::unmangleName(name);
error(functionCall->getLine(), "Texture offset must be a constant expression",
unmangledName.c_str());
}
else
{
ASSERT(offsetConstantUnion->getBasicType() == EbtInt);
size_t size = offsetConstantUnion->getType().getObjectSize();
const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer();
for (size_t i = 0u; i < size; ++i)
{
int offsetValue = values[i].getIConst();
if (offsetValue > mMaxProgramTexelOffset || offsetValue < mMinProgramTexelOffset)
{
std::stringstream tokenStream;
tokenStream << offsetValue;
std::string token = tokenStream.str();
error(offset->getLine(), "Texture offset value out of valid range",
token.c_str());
}
}
}
}
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall)
{
ASSERT(!functionCall->isUserDefined());
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
if (name.compare(0, 5, "image") == 0)
{
TIntermSequence *arguments = functionCall->getSequence();
TIntermNode *imageNode = (*arguments)[0];
TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode();
const TMemoryQualifier &memoryQualifier = imageSymbol->getMemoryQualifier();
if (name.compare(5, 5, "Store") == 0)
{
if (memoryQualifier.readonly)
{
error(imageNode->getLine(),
"'imageStore' cannot be used with images qualified as 'readonly'",
imageSymbol->getSymbol().c_str());
}
}
else if (name.compare(5, 4, "Load") == 0)
{
if (memoryQualifier.writeonly)
{
error(imageNode->getLine(),
"'imageLoad' cannot be used with images qualified as 'writeonly'",
imageSymbol->getSymbol().c_str());
}
}
}
}
// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters
void TParseContext::checkImageMemoryAccessForUserDefinedFunctions(
const TFunction *functionDefinition,
const TIntermAggregate *functionCall)
{
ASSERT(functionCall->isUserDefined());
const TIntermSequence &arguments = *functionCall->getSequence();
ASSERT(functionDefinition->getParamCount() == arguments.size());
for (size_t i = 0; i < arguments.size(); ++i)
{
const TType &functionArgumentType = arguments[i]->getAsTyped()->getType();
const TType &functionParameterType = *functionDefinition->getParam(i).type;
ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType());
if (IsImage(functionArgumentType.getBasicType()))
{
const TMemoryQualifier &functionArgumentMemoryQualifier =
functionArgumentType.getMemoryQualifier();
const TMemoryQualifier &functionParameterMemoryQualifier =
functionParameterType.getMemoryQualifier();
if (functionArgumentMemoryQualifier.readonly &&
!functionParameterMemoryQualifier.readonly)
{
error(functionCall->getLine(),
"Function call discards the 'readonly' qualifier from image",
arguments[i]->getAsSymbolNode()->getSymbol().c_str());
}
if (functionArgumentMemoryQualifier.writeonly &&
!functionParameterMemoryQualifier.writeonly)
{
error(functionCall->getLine(),
"Function call discards the 'writeonly' qualifier from image",
arguments[i]->getAsSymbolNode()->getSymbol().c_str());
}
}
}
}
TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall,
TIntermNode *paramNode,
TIntermNode *thisNode,
const TSourceLoc &loc,
bool *fatalError)
{
*fatalError = false;
TOperator op = fnCall->getBuiltInOp();
TIntermTyped *callNode = nullptr;
if (thisNode != nullptr)
{
TConstantUnion *unionArray = new TConstantUnion[1];
int arraySize = 0;
TIntermTyped *typedThis = thisNode->getAsTyped();
if (fnCall->getName() != "length")
{
error(loc, "invalid method", fnCall->getName().c_str());
}
else if (paramNode != nullptr)
{
error(loc, "method takes no parameters", "length");
}
else if (typedThis == nullptr || !typedThis->isArray())
{
error(loc, "length can only be called on arrays", "length");
}
else
{
arraySize = typedThis->getArraySize();
if (typedThis->getAsSymbolNode() == nullptr)
{
// This code path can be hit with expressions like these:
// (a = b).length()
// (func()).length()
// (int[3](0, 1, 2)).length()
// ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid
// expression.
// It allows "An array name with the length method applied" in contrast to GLSL 4.4
// spec section 5.9 which allows "An array, vector or matrix expression with the
// length method applied".
error(loc, "length can only be called on array names, not on array expressions",
"length");
}
}
unionArray->setIConst(arraySize);
callNode =
intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), loc);
}
else if (op != EOpNull)
{
// Then this should be a constructor.
callNode = addConstructor(paramNode, op, fnCall, loc);
}
else
{
//
// Not a constructor. Find it in the symbol table.
//
const TFunction *fnCandidate;
bool builtIn;
fnCandidate = findFunction(loc, fnCall, mShaderVersion, &builtIn);
if (fnCandidate)
{
//
// A declared function.
//
if (builtIn && !fnCandidate->getExtension().empty())
{
checkCanUseExtension(loc, fnCandidate->getExtension());
}
op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull)
{
//
// A function call mapped to a built-in operation.
//
if (fnCandidate->getParamCount() == 1)
{
//
// Treat it like a built-in unary operator.
//
TIntermAggregate *paramAgg = paramNode->getAsAggregate();
paramNode = paramAgg->getSequence()->front();
callNode = createUnaryMath(op, paramNode->getAsTyped(), loc,
&fnCandidate->getReturnType());
if (callNode == nullptr)
{
std::stringstream extraInfoStream;
extraInfoStream
<< "built in unary operator function. Type: "
<< static_cast<TIntermTyped *>(paramNode)->getCompleteString();
std::string extraInfo = extraInfoStream.str();
error(paramNode->getLine(), " wrong operand type", "Internal Error",
extraInfo.c_str());
*fatalError = true;
return nullptr;
}
}
else
{
TIntermAggregate *aggregate =
intermediate.setAggregateOperator(paramNode, op, loc);
aggregate->setType(fnCandidate->getReturnType());
aggregate->setPrecisionFromChildren();
if (aggregate->areChildrenConstQualified())
{
aggregate->getTypePointer()->setQualifier(EvqConst);
}
// Some built-in functions have out parameters too.
functionCallLValueErrorCheck(fnCandidate, aggregate);
// See if we can constant fold a built-in. Note that this may be possible even
// if it is not const-qualified.
TIntermTyped *foldedNode =
intermediate.foldAggregateBuiltIn(aggregate, &mDiagnostics);
if (foldedNode)
{
callNode = foldedNode;
}
else
{
callNode = aggregate;
}
}
}
else
{
// This is a real function call
TIntermAggregate *aggregate =
intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc);
aggregate->setType(fnCandidate->getReturnType());
// this is how we know whether the given function is a builtIn function or a user
// defined function
// if builtIn == false, it's a userDefined -> could be an overloaded
// builtIn function also
// if builtIn == true, it's definitely a builtIn function with EOpNull
if (!builtIn)
aggregate->setUserDefined();
aggregate->getFunctionSymbolInfo()->setFromFunction(*fnCandidate);
// This needs to happen after the function info including name is set
if (builtIn)
{
aggregate->setBuiltInFunctionPrecision();
checkTextureOffsetConst(aggregate);
checkImageMemoryAccessForBuiltinFunctions(aggregate);
}
else
{
checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, aggregate);
}
callNode = aggregate;
functionCallLValueErrorCheck(fnCandidate, aggregate);
}
}
else
{
// error message was put out by findFunction()
// Put on a dummy node for error recovery
TConstantUnion *unionArray = new TConstantUnion[1];
unionArray->setFConst(0.0f);
callNode = intermediate.addConstantUnion(unionArray,
TType(EbtFloat, EbpUndefined, EvqConst), loc);
}
}
return callNode;
}
TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
TIntermTyped *trueExpression,
TIntermTyped *falseExpression,
const TSourceLoc &loc)
{
checkIsScalarBool(loc, cond);
if (trueExpression->getType() != falseExpression->getType())
{
binaryOpError(loc, ":", trueExpression->getCompleteString(),
falseExpression->getCompleteString());
return falseExpression;
}
if (IsOpaqueType(trueExpression->getBasicType()))
{
// ESSL 1.00 section 4.1.7
// ESSL 3.00 section 4.1.7
// Opaque/sampler types are not allowed in most types of expressions, including ternary.
// Note that structs containing opaque types don't need to be checked as structs are
// forbidden below.
error(loc, "ternary operator is not allowed for opaque types", ":");
return falseExpression;
}
// ESSL1 sections 5.2 and 5.7:
// ESSL3 section 5.7:
// Ternary operator is not among the operators allowed for structures/arrays.
if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct)
{
error(loc, "ternary operator is not allowed for structures or arrays", ":");
return falseExpression;
}
// WebGL2 section 5.26, the following results in an error:
// "Ternary operator applied to void, arrays, or structs containing arrays"
if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid)
{
error(loc, "ternary operator is not allowed for void", ":");
return falseExpression;
}
return TIntermediate::AddTernarySelection(cond, trueExpression, falseExpression, loc);
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(size_t count,
const char *const string[],
const int length[],
TParseContext *context)
{
if ((count == 0) || (string == NULL))
return 1;
if (glslang_initialize(context))
return 1;
int error = glslang_scan(count, string, length, context);
if (!error)
error = glslang_parse(context);
glslang_finalize(context);
return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}