blob: ef8d257d104a8a85706f3f3dc9a1500ffe472383 [file] [log] [blame]
//
// Copyright (C) 2017 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "update_engine/payload_generator/deflate_utils.h"
#include <algorithm>
#include <string>
#include <utility>
#include <base/files/file_util.h>
#include <base/logging.h>
#include <base/strings/string_util.h>
#include "update_engine/common/utils.h"
#include "update_engine/payload_generator/delta_diff_generator.h"
#include "update_engine/payload_generator/extent_ranges.h"
#include "update_engine/payload_generator/extent_utils.h"
#include "update_engine/payload_generator/squashfs_filesystem.h"
#include "update_engine/update_metadata.pb.h"
using puffin::BitExtent;
using puffin::ByteExtent;
using std::string;
using std::vector;
namespace chromeos_update_engine {
namespace deflate_utils {
namespace {
// The minimum size for a squashfs image to be processed.
const uint64_t kMinimumSquashfsImageSize = 1 * 1024 * 1024; // bytes
// TODO(*): Optimize this so we don't have to read all extents into memory in
// case it is large.
bool CopyExtentsToFile(const string& in_path,
const vector<Extent> extents,
const string& out_path,
size_t block_size) {
brillo::Blob data(utils::BlocksInExtents(extents) * block_size);
TEST_AND_RETURN_FALSE(
utils::ReadExtents(in_path, extents, &data, data.size(), block_size));
TEST_AND_RETURN_FALSE(
utils::WriteFile(out_path.c_str(), data.data(), data.size()));
return true;
}
bool IsSquashfsImage(const string& part_path,
const FilesystemInterface::File& file) {
// Only check for files with img postfix.
if (base::EndsWith(file.name, ".img", base::CompareCase::SENSITIVE) &&
utils::BlocksInExtents(file.extents) >=
kMinimumSquashfsImageSize / kBlockSize) {
brillo::Blob super_block;
TEST_AND_RETURN_FALSE(
utils::ReadFileChunk(part_path,
file.extents[0].start_block() * kBlockSize,
100,
&super_block));
return SquashfsFilesystem::IsSquashfsImage(super_block);
}
return false;
}
// Realigns subfiles |files| of a splitted file |file| into its correct
// positions. This can be used for squashfs, zip, apk, etc.
bool RealignSplittedFiles(const FilesystemInterface::File& file,
vector<FilesystemInterface::File>* files) {
// We have to shift all the Extents in |files|, based on the Extents of the
// |file| itself.
size_t num_blocks = 0;
for (auto& in_file : *files) { // We need to modify so no constant.
TEST_AND_RETURN_FALSE(
ShiftExtentsOverExtents(file.extents, &in_file.extents));
TEST_AND_RETURN_FALSE(
ShiftBitExtentsOverExtents(file.extents, &in_file.deflates));
in_file.name = file.name + "/" + in_file.name;
num_blocks += utils::BlocksInExtents(in_file.extents);
}
// Check that all files in |in_files| cover the entire image.
TEST_AND_RETURN_FALSE(utils::BlocksInExtents(file.extents) == num_blocks);
return true;
}
bool IsBitExtentInExtent(const Extent& extent, const BitExtent& bit_extent) {
return (bit_extent.offset / 8) >= (extent.start_block() * kBlockSize) &&
((bit_extent.offset + bit_extent.length + 7) / 8) <=
((extent.start_block() + extent.num_blocks()) * kBlockSize);
}
// Returns whether the given file |name| has an extension listed in
// |extensions|.
bool IsFileExtensions(const string& name,
const std::initializer_list<string>& extensions) {
return any_of(extensions.begin(), extensions.end(), [&name](const auto& ext) {
return base::EndsWith(name, ext, base::CompareCase::INSENSITIVE_ASCII);
});
}
} // namespace
ByteExtent ExpandToByteExtent(const BitExtent& extent) {
uint64_t offset = extent.offset / 8;
uint64_t length = ((extent.offset + extent.length + 7) / 8) - offset;
return {offset, length};
}
bool ShiftExtentsOverExtents(const vector<Extent>& base_extents,
vector<Extent>* over_extents) {
if (utils::BlocksInExtents(base_extents) <
utils::BlocksInExtents(*over_extents)) {
LOG(ERROR) << "over_extents have more blocks than base_extents! Invalid!";
return false;
}
for (size_t idx = 0; idx < over_extents->size(); idx++) {
auto over_ext = &over_extents->at(idx);
auto gap_blocks = base_extents[0].start_block();
auto last_end_block = base_extents[0].start_block();
for (auto base_ext : base_extents) { // We need to modify |base_ext|, so we
// use copy.
gap_blocks += base_ext.start_block() - last_end_block;
last_end_block = base_ext.start_block() + base_ext.num_blocks();
base_ext.set_start_block(base_ext.start_block() - gap_blocks);
if (over_ext->start_block() >= base_ext.start_block() &&
over_ext->start_block() <
base_ext.start_block() + base_ext.num_blocks()) {
if (over_ext->start_block() + over_ext->num_blocks() <=
base_ext.start_block() + base_ext.num_blocks()) {
// |over_ext| is inside |base_ext|, increase its start block.
over_ext->set_start_block(over_ext->start_block() + gap_blocks);
} else {
// |over_ext| spills over this |base_ext|, split it into two.
auto new_blocks = base_ext.start_block() + base_ext.num_blocks() -
over_ext->start_block();
vector<Extent> new_extents = {
ExtentForRange(gap_blocks + over_ext->start_block(), new_blocks),
ExtentForRange(over_ext->start_block() + new_blocks,
over_ext->num_blocks() - new_blocks)};
*over_ext = new_extents[0];
over_extents->insert(std::next(over_extents->begin(), idx + 1),
new_extents[1]);
}
break; // We processed |over_ext|, so break the loop;
}
}
}
return true;
}
bool ShiftBitExtentsOverExtents(const vector<Extent>& base_extents,
vector<BitExtent>* over_extents) {
if (over_extents->empty()) {
return true;
}
// This check is needed to make sure the number of bytes in |over_extents|
// does not exceed |base_extents|.
auto last_extent = ExpandToByteExtent(over_extents->back());
TEST_AND_RETURN_FALSE(last_extent.offset + last_extent.length <=
utils::BlocksInExtents(base_extents) * kBlockSize);
for (auto o_ext = over_extents->begin(); o_ext != over_extents->end();) {
size_t gap_blocks = base_extents[0].start_block();
size_t last_end_block = base_extents[0].start_block();
bool o_ext_processed = false;
for (auto b_ext : base_extents) { // We need to modify |b_ext|, so we copy.
gap_blocks += b_ext.start_block() - last_end_block;
last_end_block = b_ext.start_block() + b_ext.num_blocks();
b_ext.set_start_block(b_ext.start_block() - gap_blocks);
auto byte_o_ext = ExpandToByteExtent(*o_ext);
if (byte_o_ext.offset >= b_ext.start_block() * kBlockSize &&
byte_o_ext.offset <
(b_ext.start_block() + b_ext.num_blocks()) * kBlockSize) {
if ((byte_o_ext.offset + byte_o_ext.length) <=
(b_ext.start_block() + b_ext.num_blocks()) * kBlockSize) {
// |o_ext| is inside |b_ext|, increase its start block.
o_ext->offset += gap_blocks * kBlockSize * 8;
++o_ext;
} else {
// |o_ext| spills over this |b_ext|, remove it.
o_ext = over_extents->erase(o_ext);
}
o_ext_processed = true;
break; // We processed o_ext, so break the loop;
}
}
TEST_AND_RETURN_FALSE(o_ext_processed);
}
return true;
}
vector<BitExtent> FindDeflates(const vector<Extent>& extents,
const vector<BitExtent>& in_deflates) {
vector<BitExtent> result;
// TODO(ahassani): Replace this with binary_search style search.
for (const auto& deflate : in_deflates) {
for (const auto& extent : extents) {
if (IsBitExtentInExtent(extent, deflate)) {
result.push_back(deflate);
break;
}
}
}
return result;
}
bool CompactDeflates(const vector<Extent>& extents,
const vector<BitExtent>& in_deflates,
vector<BitExtent>* out_deflates) {
size_t bytes_passed = 0;
out_deflates->reserve(in_deflates.size());
for (const auto& extent : extents) {
size_t gap_bytes = extent.start_block() * kBlockSize - bytes_passed;
for (const auto& deflate : in_deflates) {
if (IsBitExtentInExtent(extent, deflate)) {
out_deflates->emplace_back(deflate.offset - (gap_bytes * 8),
deflate.length);
}
}
bytes_passed += extent.num_blocks() * kBlockSize;
}
// All given |in_deflates| items should've been inside one of the extents in
// |extents|.
TEST_AND_RETURN_FALSE(in_deflates.size() == out_deflates->size());
// Make sure all outgoing deflates are ordered and non-overlapping.
auto result = std::adjacent_find(out_deflates->begin(),
out_deflates->end(),
[](const BitExtent& a, const BitExtent& b) {
return (a.offset + a.length) > b.offset;
});
TEST_AND_RETURN_FALSE(result == out_deflates->end());
return true;
}
bool FindAndCompactDeflates(const vector<Extent>& extents,
const vector<BitExtent>& in_deflates,
vector<BitExtent>* out_deflates) {
auto found_deflates = FindDeflates(extents, in_deflates);
TEST_AND_RETURN_FALSE(CompactDeflates(extents, found_deflates, out_deflates));
return true;
}
bool PreprocessPartitionFiles(const PartitionConfig& part,
vector<FilesystemInterface::File>* result_files,
bool extract_deflates) {
// Get the file system files.
vector<FilesystemInterface::File> tmp_files;
part.fs_interface->GetFiles(&tmp_files);
result_files->reserve(tmp_files.size());
for (auto& file : tmp_files) {
if (IsSquashfsImage(part.path, file)) {
// Read the image into a file.
base::FilePath path;
TEST_AND_RETURN_FALSE(base::CreateTemporaryFile(&path));
ScopedPathUnlinker old_unlinker(path.value());
TEST_AND_RETURN_FALSE(
CopyExtentsToFile(part.path, file.extents, path.value(), kBlockSize));
// Test if it is actually a Squashfs file.
auto sqfs = SquashfsFilesystem::CreateFromFile(path.value(),
extract_deflates,
/*load_settings=*/false);
if (sqfs) {
// It is an squashfs file. Get its files to replace with itself.
vector<FilesystemInterface::File> files;
sqfs->GetFiles(&files);
// Replace squashfs file with its files only if |files| has at least two
// files or if it has some deflates (since it is better to replace it to
// take advantage of the deflates.)
if (files.size() > 1 ||
(files.size() == 1 && !files[0].deflates.empty())) {
TEST_AND_RETURN_FALSE(RealignSplittedFiles(file, &files));
result_files->insert(result_files->end(), files.begin(), files.end());
continue;
}
} else {
LOG(WARNING) << "We thought file: " << file.name
<< " was a Squashfs file, but it was not.";
}
}
if (extract_deflates) {
// Search for deflates if the file is in zip or gzip format.
// .zvoice files may eventually move out of rootfs. If that happens,
// remove ".zvoice" (crbug.com/782918).
bool is_zip = IsFileExtensions(
file.name, {".apk", ".zip", ".jar", ".zvoice", ".apex"});
bool is_gzip = IsFileExtensions(file.name, {".gz", ".gzip", ".tgz"});
if (is_zip || is_gzip) {
brillo::Blob data;
TEST_AND_RETURN_FALSE(utils::ReadExtents(
part.path,
file.extents,
&data,
kBlockSize * utils::BlocksInExtents(file.extents),
kBlockSize));
vector<puffin::BitExtent> deflates;
if (is_zip) {
TEST_AND_RETURN_FALSE(
puffin::LocateDeflatesInZipArchive(data, &deflates));
} else if (is_gzip) {
TEST_AND_RETURN_FALSE(puffin::LocateDeflatesInGzip(data, &deflates));
}
// Shift the deflate's extent to the offset starting from the beginning
// of the current partition; and the delta processor will align the
// extents in a continuous buffer later.
TEST_AND_RETURN_FALSE(
ShiftBitExtentsOverExtents(file.extents, &deflates));
file.deflates = std::move(deflates);
}
}
result_files->push_back(file);
}
return true;
}
} // namespace deflate_utils
} // namespace chromeos_update_engine