blob: 0fc6508602ac8aef1272ff184d9af252546fa384 [file] [log] [blame]
// Copyright (C) 2015 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <pthread.h>
#include <gtest/gtest.h>
#include <bionic/libc/private/ScopedPthreadMutexLocker.h>
#include <private/pthread_context.h>
#include <thread_context.h>
namespace {
// Tests that need to create a thread and be cleaned up later.
class PthreadThreadContextThreadTest : public testing::Test {
public:
PthreadThreadContextThreadTest()
: thread_(), thread_has_started_(false),
thread_should_exit_(false) {
pthread_mutex_init(&mu_, NULL);
pthread_cond_init(&cond_, NULL);
}
virtual ~PthreadThreadContextThreadTest() {
pthread_cond_destroy(&cond_);
pthread_mutex_destroy(&mu_);
}
virtual void SetUp() {
ASSERT_EQ(1, __pthread_get_thread_count(true));
// Create a new thread and wait until it goes into futex_wait loop,
// which is instrumented to export thread context information.
{
ScopedPthreadMutexLocker lock(&mu_);
ASSERT_EQ(0, pthread_create(&thread_, NULL, WaitFn, this));
while (!thread_has_started_)
pthread_cond_wait(&cond_, &mu_);
}
}
virtual void TearDown() {
// Let the thread finish.
{
ScopedPthreadMutexLocker lock(&mu_);
thread_should_exit_ = true;
pthread_cond_signal(&cond_);
}
pthread_join(thread_, NULL);
}
static void* WaitFn(void* arg) {
PthreadThreadContextThreadTest* self =
static_cast<PthreadThreadContextThreadTest*>(arg);
{
ScopedPthreadMutexLocker lock(&self->mu_);
self->thread_has_started_ = true;
pthread_cond_signal(&self->cond_);
while (!self->thread_should_exit_)
pthread_cond_wait(&self->cond_, &self->mu_);
}
return NULL;
}
static bool HasContextRegs() {
__pthread_context_info_t info;
info.has_context_regs = true;
__pthread_get_current_thread_info(&info);
return info.has_context_regs;
}
protected:
pthread_t thread_;
bool thread_has_started_;
bool thread_should_exit_;
pthread_mutex_t mu_;
pthread_cond_t cond_;
};
TEST_F(PthreadThreadContextThreadTest, get_thread_infos) {
// Verify data in the thread list.
__pthread_context_info_t infos[100];
int thread_count = __pthread_get_thread_infos(true, true, 100, infos);
ASSERT_EQ(2, thread_count);
for (int i = 0; i < thread_count; ++i) {
SCOPED_TRACE(i);
ASSERT_TRUE(infos[i].stack_base != NULL);
EXPECT_GT(infos[i].stack_size, 0);
#if defined(BARE_METAL_BIONIC)
ASSERT_EQ(infos[i].stack_size, 1024 * 1024);
#endif
}
}
TEST_F(PthreadThreadContextThreadTest, get_thread_contexts) {
// We want the other thread to be inside futex call inside
// pthread_cond_wait(). The other option is to let the other thread
// __nanosleep. This is not reliable but better than nothing.
//
// This might turn out to be flaky, if so we should wait longer here.
usleep(100000);
// __nanosleep call would clear the context_regs.
ASSERT_FALSE(HasContextRegs());
SAVE_CONTEXT_REGS();
#if defined(__x86_64__) || defined(__arm__) || \
(defined(__i386__) && !defined(__native_client__))
ASSERT_TRUE(HasContextRegs());
#else
ASSERT_FALSE(HasContextRegs());
#endif
// Verify data in the thread list.
__pthread_context_info_t infos[100];
int thread_count = __pthread_get_thread_infos(true, true, 100, infos);
ASSERT_EQ(2, thread_count);
for (int i = 0; i < thread_count; ++i) {
SCOPED_TRACE(i);
ASSERT_TRUE(infos[i].stack_base != NULL);
EXPECT_GT(infos[i].stack_size, 0);
#if defined(__x86_64__)
ASSERT_TRUE(infos[i].has_context_regs);
EXPECT_NE(0, infos[i].context_regs[REG_RIP]);
#elif defined(__i386__) && !defined(__native_client__)
ASSERT_TRUE(infos[i].has_context_regs);
EXPECT_NE(0, infos[i].context_regs[REG_EIP]);
#elif defined(__arm__)
ASSERT_TRUE(infos[i].has_context_regs);
EXPECT_NE(0, infos[i].context_regs[15]);
#else
EXPECT_FALSE(infos[i].has_context_regs);
#endif
}
CLEAR_CONTEXT_REGS();
}
TEST(PthreadThreadContextSinglethreadTest, get_cur_thread_context) {
__pthread_context_info_t info;
info.has_context_regs = true;
__pthread_get_current_thread_info(&info);
ASSERT_FALSE(info.has_context_regs);
SAVE_CONTEXT_REGS();
memset(&info, 0, sizeof(info));
__pthread_get_current_thread_info(&info);
#if defined(__x86_64__)
ASSERT_TRUE(info.has_context_regs);
EXPECT_NE(0, info.context_regs[REG_RIP]);
#elif defined(__i386__) && !defined(__native_client__)
ASSERT_TRUE(info.has_context_regs);
EXPECT_NE(0, info.context_regs[REG_EIP]);
#elif defined(__arm__)
ASSERT_TRUE(info.has_context_regs);
EXPECT_NE(0, info.context_regs[15]);
#else
EXPECT_FALSE(info.has_context_regs);
#endif
CLEAR_CONTEXT_REGS();
info.has_context_regs = true;
__pthread_get_current_thread_info(&info);
ASSERT_FALSE(info.has_context_regs);
}
} // anonymous namespace