| /* | 
 | ** This file contains all sources (including headers) to the LEMON | 
 | ** LALR(1) parser generator.  The sources have been combined into a | 
 | ** single file to make it easy to include LEMON in the source tree | 
 | ** and Makefile of another program. | 
 | ** | 
 | ** The author of this program disclaims copyright. | 
 | */ | 
 | #include <stdio.h> | 
 | #include <stdarg.h> | 
 | #include <string.h> | 
 | #include <ctype.h> | 
 | #include <stdlib.h> | 
 | #include <assert.h> | 
 |  | 
 | #ifndef __WIN32__ | 
 | #   if defined(_WIN32) || defined(WIN32) | 
 | #	define __WIN32__ | 
 | #   endif | 
 | #endif | 
 |  | 
 | #ifdef __WIN32__ | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 | extern int access(const char *path, int mode); | 
 | #ifdef __cplusplus | 
 | } | 
 | #endif | 
 | #else | 
 | #include <unistd.h> | 
 | #endif | 
 |  | 
 | /* #define PRIVATE static */ | 
 | #define PRIVATE | 
 |  | 
 | #ifdef TEST | 
 | #define MAXRHS 5       /* Set low to exercise exception code */ | 
 | #else | 
 | #define MAXRHS 1000 | 
 | #endif | 
 |  | 
 | static int showPrecedenceConflict = 0; | 
 | static const char **made_files = NULL; | 
 | static int made_files_count = 0; | 
 | static int successful_exit = 0; | 
 | static void LemonAtExit(void) | 
 | { | 
 |     /* if we failed, delete (most) files we made, to unconfuse build tools. */ | 
 |     int i; | 
 |     for (i = 0; i < made_files_count; i++) { | 
 |         if (!successful_exit) { | 
 |             remove(made_files[i]); | 
 |         } | 
 |     } | 
 |     free(made_files); | 
 |     made_files_count = 0; | 
 |     made_files = NULL; | 
 | } | 
 |  | 
 | static char *msort(char*,char**,int(*)(const char*,const char*)); | 
 |  | 
 | /* | 
 | ** Compilers are getting increasingly pedantic about type conversions | 
 | ** as C evolves ever closer to Ada....  To work around the latest problems | 
 | ** we have to define the following variant of strlen(). | 
 | */ | 
 | #define lemonStrlen(X)   ((int)strlen(X)) | 
 |  | 
 | /* a few forward declarations... */ | 
 | struct rule; | 
 | struct lemon; | 
 | struct action; | 
 |  | 
 | static struct action *Action_new(void); | 
 | static struct action *Action_sort(struct action *); | 
 |  | 
 | /********** From the file "build.h" ************************************/ | 
 | void FindRulePrecedences(); | 
 | void FindFirstSets(); | 
 | void FindStates(); | 
 | void FindLinks(); | 
 | void FindFollowSets(); | 
 | void FindActions(); | 
 |  | 
 | /********* From the file "configlist.h" *********************************/ | 
 | void Configlist_init(void); | 
 | struct config *Configlist_add(struct rule *, int); | 
 | struct config *Configlist_addbasis(struct rule *, int); | 
 | void Configlist_closure(struct lemon *); | 
 | void Configlist_sort(void); | 
 | void Configlist_sortbasis(void); | 
 | struct config *Configlist_return(void); | 
 | struct config *Configlist_basis(void); | 
 | void Configlist_eat(struct config *); | 
 | void Configlist_reset(void); | 
 |  | 
 | /********* From the file "error.h" ***************************************/ | 
 | void ErrorMsg(const char *, int,const char *, ...); | 
 |  | 
 | /****** From the file "option.h" ******************************************/ | 
 | enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR, | 
 |          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; | 
 | struct s_options { | 
 |   enum option_type type; | 
 |   const char *label; | 
 |   char *arg; | 
 |   const char *message; | 
 | }; | 
 | int    OptInit(char**,struct s_options*,FILE*); | 
 | int    OptNArgs(void); | 
 | char  *OptArg(int); | 
 | void   OptErr(int); | 
 | void   OptPrint(void); | 
 |  | 
 | /******** From the file "parse.h" *****************************************/ | 
 | void Parse(struct lemon *lemp); | 
 |  | 
 | /********* From the file "plink.h" ***************************************/ | 
 | struct plink *Plink_new(void); | 
 | void Plink_add(struct plink **, struct config *); | 
 | void Plink_copy(struct plink **, struct plink *); | 
 | void Plink_delete(struct plink *); | 
 |  | 
 | /********** From the file "report.h" *************************************/ | 
 | void Reprint(struct lemon *); | 
 | void ReportOutput(struct lemon *); | 
 | void ReportTable(struct lemon *, int); | 
 | void ReportHeader(struct lemon *); | 
 | void CompressTables(struct lemon *); | 
 | void ResortStates(struct lemon *); | 
 |  | 
 | /********** From the file "set.h" ****************************************/ | 
 | void  SetSize(int);             /* All sets will be of size N */ | 
 | char *SetNew(void);               /* A new set for element 0..N */ | 
 | void  SetFree(char*);             /* Deallocate a set */ | 
 |  | 
 | char *SetNew(void);               /* A new set for element 0..N */ | 
 | int SetAdd(char*,int);            /* Add element to a set */ | 
 | int SetUnion(char *,char *);    /* A <- A U B, thru element N */ | 
 | #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */ | 
 |  | 
 | /********** From the file "struct.h" *************************************/ | 
 | /* | 
 | ** Principal data structures for the LEMON parser generator. | 
 | */ | 
 |  | 
 | typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; | 
 |  | 
 | /* Symbols (terminals and nonterminals) of the grammar are stored | 
 | ** in the following: */ | 
 | enum symbol_type { | 
 |   TERMINAL, | 
 |   NONTERMINAL, | 
 |   MULTITERMINAL | 
 | }; | 
 | enum e_assoc { | 
 |     LEFT, | 
 |     RIGHT, | 
 |     NONE, | 
 |     UNK | 
 | }; | 
 | struct symbol { | 
 |   const char *name;        /* Name of the symbol */ | 
 |   int index;               /* Index number for this symbol */ | 
 |   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */ | 
 |   struct rule *rule;       /* Linked list of rules of this (if an NT) */ | 
 |   struct symbol *fallback; /* fallback token in case this token doesn't parse */ | 
 |   int prec;                /* Precedence if defined (-1 otherwise) */ | 
 |   enum e_assoc assoc;      /* Associativity if precedence is defined */ | 
 |   char *firstset;          /* First-set for all rules of this symbol */ | 
 |   Boolean lambda;          /* True if NT and can generate an empty string */ | 
 |   int useCnt;              /* Number of times used */ | 
 |   char *destructor;        /* Code which executes whenever this symbol is | 
 |                            ** popped from the stack during error processing */ | 
 |   int destLineno;          /* Line number for start of destructor */ | 
 |   char *datatype;          /* The data type of information held by this | 
 |                            ** object. Only used if type==NONTERMINAL */ | 
 |   int dtnum;               /* The data type number.  In the parser, the value | 
 |                            ** stack is a union.  The .yy%d element of this | 
 |                            ** union is the correct data type for this object */ | 
 |   /* The following fields are used by MULTITERMINALs only */ | 
 |   int nsubsym;             /* Number of constituent symbols in the MULTI */ | 
 |   struct symbol **subsym;  /* Array of constituent symbols */ | 
 | }; | 
 |  | 
 | /* Each production rule in the grammar is stored in the following | 
 | ** structure.  */ | 
 | struct rule { | 
 |   struct symbol *lhs;      /* Left-hand side of the rule */ | 
 |   const char *lhsalias;    /* Alias for the LHS (NULL if none) */ | 
 |   int lhsStart;            /* True if left-hand side is the start symbol */ | 
 |   int ruleline;            /* Line number for the rule */ | 
 |   int nrhs;                /* Number of RHS symbols */ | 
 |   struct symbol **rhs;     /* The RHS symbols */ | 
 |   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */ | 
 |   int line;                /* Line number at which code begins */ | 
 |   const char *code;        /* The code executed when this rule is reduced */ | 
 |   struct symbol *precsym;  /* Precedence symbol for this rule */ | 
 |   int index;               /* An index number for this rule */ | 
 |   Boolean canReduce;       /* True if this rule is ever reduced */ | 
 |   struct rule *nextlhs;    /* Next rule with the same LHS */ | 
 |   struct rule *next;       /* Next rule in the global list */ | 
 | }; | 
 |  | 
 | /* A configuration is a production rule of the grammar together with | 
 | ** a mark (dot) showing how much of that rule has been processed so far. | 
 | ** Configurations also contain a follow-set which is a list of terminal | 
 | ** symbols which are allowed to immediately follow the end of the rule. | 
 | ** Every configuration is recorded as an instance of the following: */ | 
 | enum cfgstatus { | 
 |   COMPLETE, | 
 |   INCOMPLETE | 
 | }; | 
 | struct config { | 
 |   struct rule *rp;         /* The rule upon which the configuration is based */ | 
 |   int dot;                 /* The parse point */ | 
 |   char *fws;               /* Follow-set for this configuration only */ | 
 |   struct plink *fplp;      /* Follow-set forward propagation links */ | 
 |   struct plink *bplp;      /* Follow-set backwards propagation links */ | 
 |   struct state *stp;       /* Pointer to state which contains this */ | 
 |   enum cfgstatus status;   /* used during followset and shift computations */ | 
 |   struct config *next;     /* Next configuration in the state */ | 
 |   struct config *bp;       /* The next basis configuration */ | 
 | }; | 
 |  | 
 | enum e_action { | 
 |   SHIFT, | 
 |   ACCEPT, | 
 |   REDUCE, | 
 |   ERROR, | 
 |   SSCONFLICT,              /* A shift/shift conflict */ | 
 |   SRCONFLICT,              /* Was a reduce, but part of a conflict */ | 
 |   RRCONFLICT,              /* Was a reduce, but part of a conflict */ | 
 |   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */ | 
 |   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */ | 
 |   NOT_USED                 /* Deleted by compression */ | 
 | }; | 
 |  | 
 | /* Every shift or reduce operation is stored as one of the following */ | 
 | struct action { | 
 |   struct symbol *sp;       /* The look-ahead symbol */ | 
 |   enum e_action type; | 
 |   union { | 
 |     struct state *stp;     /* The new state, if a shift */ | 
 |     struct rule *rp;       /* The rule, if a reduce */ | 
 |   } x; | 
 |   struct action *next;     /* Next action for this state */ | 
 |   struct action *collide;  /* Next action with the same hash */ | 
 | }; | 
 |  | 
 | /* Each state of the generated parser's finite state machine | 
 | ** is encoded as an instance of the following structure. */ | 
 | struct state { | 
 |   struct config *bp;       /* The basis configurations for this state */ | 
 |   struct config *cfp;      /* All configurations in this set */ | 
 |   int statenum;            /* Sequential number for this state */ | 
 |   struct action *ap;       /* Array of actions for this state */ | 
 |   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */ | 
 |   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */ | 
 |   int iDflt;               /* Default action */ | 
 | }; | 
 | #define NO_OFFSET (-2147483647) | 
 |  | 
 | /* A followset propagation link indicates that the contents of one | 
 | ** configuration followset should be propagated to another whenever | 
 | ** the first changes. */ | 
 | struct plink { | 
 |   struct config *cfp;      /* The configuration to which linked */ | 
 |   struct plink *next;      /* The next propagate link */ | 
 | }; | 
 |  | 
 | /* The state vector for the entire parser generator is recorded as | 
 | ** follows.  (LEMON uses no global variables and makes little use of | 
 | ** static variables.  Fields in the following structure can be thought | 
 | ** of as begin global variables in the program.) */ | 
 | struct lemon { | 
 |   struct state **sorted;   /* Table of states sorted by state number */ | 
 |   struct rule *rule;       /* List of all rules */ | 
 |   int nstate;              /* Number of states */ | 
 |   int nrule;               /* Number of rules */ | 
 |   int nsymbol;             /* Number of terminal and nonterminal symbols */ | 
 |   int nterminal;           /* Number of terminal symbols */ | 
 |   struct symbol **symbols; /* Sorted array of pointers to symbols */ | 
 |   int errorcnt;            /* Number of errors */ | 
 |   struct symbol *errsym;   /* The error symbol */ | 
 |   struct symbol *wildcard; /* Token that matches anything */ | 
 |   char *name;              /* Name of the generated parser */ | 
 |   char *arg;               /* Declaration of the 3th argument to parser */ | 
 |   char *tokentype;         /* Type of terminal symbols in the parser stack */ | 
 |   char *vartype;           /* The default type of non-terminal symbols */ | 
 |   char *start;             /* Name of the start symbol for the grammar */ | 
 |   char *stacksize;         /* Size of the parser stack */ | 
 |   char *include;           /* Code to put at the start of the C file */ | 
 |   char *error;             /* Code to execute when an error is seen */ | 
 |   char *overflow;          /* Code to execute on a stack overflow */ | 
 |   char *failure;           /* Code to execute on parser failure */ | 
 |   char *accept;            /* Code to execute when the parser excepts */ | 
 |   char *extracode;         /* Code appended to the generated file */ | 
 |   char *tokendest;         /* Code to execute to destroy token data */ | 
 |   char *vardest;           /* Code for the default non-terminal destructor */ | 
 |   char *filename;          /* Name of the input file */ | 
 |   char *outname;           /* Name of the current output file */ | 
 |   char *tokenprefix;       /* A prefix added to token names in the .h file */ | 
 |   int nconflict;           /* Number of parsing conflicts */ | 
 |   int tablesize;           /* Size of the parse tables */ | 
 |   int basisflag;           /* Print only basis configurations */ | 
 |   int has_fallback;        /* True if any %fallback is seen in the grammar */ | 
 |   int nolinenosflag;       /* True if #line statements should not be printed */ | 
 |   char *argv0;             /* Name of the program */ | 
 | }; | 
 |  | 
 | #define MemoryCheck(X) if((X)==0){ \ | 
 |   extern void memory_error(); \ | 
 |   memory_error(); \ | 
 | } | 
 |  | 
 | /**************** From the file "table.h" *********************************/ | 
 | /* | 
 | ** All code in this file has been automatically generated | 
 | ** from a specification in the file | 
 | **              "table.q" | 
 | ** by the associative array code building program "aagen". | 
 | ** Do not edit this file!  Instead, edit the specification | 
 | ** file, then rerun aagen. | 
 | */ | 
 | /* | 
 | ** Code for processing tables in the LEMON parser generator. | 
 | */ | 
 | /* Routines for handling a strings */ | 
 |  | 
 | const char *Strsafe(const char *); | 
 |  | 
 | void Strsafe_init(void); | 
 | int Strsafe_insert(const char *); | 
 | const char *Strsafe_find(const char *); | 
 |  | 
 | /* Routines for handling symbols of the grammar */ | 
 |  | 
 | struct symbol *Symbol_new(const char *); | 
 | int Symbolcmpp(const void *, const void *); | 
 | void Symbol_init(void); | 
 | int Symbol_insert(struct symbol *, const char *); | 
 | struct symbol *Symbol_find(const char *); | 
 | struct symbol *Symbol_Nth(int); | 
 | int Symbol_count(void); | 
 | struct symbol **Symbol_arrayof(void); | 
 |  | 
 | /* Routines to manage the state table */ | 
 |  | 
 | int Configcmp(const char *, const char *); | 
 | struct state *State_new(void); | 
 | void State_init(void); | 
 | int State_insert(struct state *, struct config *); | 
 | struct state *State_find(struct config *); | 
 | struct state **State_arrayof(/*  */); | 
 |  | 
 | /* Routines used for efficiency in Configlist_add */ | 
 |  | 
 | void Configtable_init(void); | 
 | int Configtable_insert(struct config *); | 
 | struct config *Configtable_find(struct config *); | 
 | void Configtable_clear(int(*)(struct config *)); | 
 |  | 
 | /****************** From the file "action.c" *******************************/ | 
 | /* | 
 | ** Routines processing parser actions in the LEMON parser generator. | 
 | */ | 
 |  | 
 | /* Allocate a new parser action */ | 
 | static struct action *Action_new(void){ | 
 |   static struct action *freelist = 0; | 
 |   struct action *newaction; | 
 |  | 
 |   if( freelist==0 ){ | 
 |     int i; | 
 |     int amt = 100; | 
 |     freelist = (struct action *)calloc(amt, sizeof(struct action)); | 
 |     if( freelist==0 ){ | 
 |       fprintf(stderr,"Unable to allocate memory for a new parser action."); | 
 |       exit(1); | 
 |     } | 
 |     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; | 
 |     freelist[amt-1].next = 0; | 
 |   } | 
 |   newaction = freelist; | 
 |   freelist = freelist->next; | 
 |   return newaction; | 
 | } | 
 |  | 
 | /* Compare two actions for sorting purposes.  Return negative, zero, or | 
 | ** positive if the first action is less than, equal to, or greater than | 
 | ** the first | 
 | */ | 
 | static int actioncmp( | 
 |   struct action *ap1, | 
 |   struct action *ap2 | 
 | ){ | 
 |   int rc; | 
 |   rc = ap1->sp->index - ap2->sp->index; | 
 |   if( rc==0 ){ | 
 |     rc = (int)ap1->type - (int)ap2->type; | 
 |   } | 
 |   if( rc==0 && ap1->type==REDUCE ){ | 
 |     rc = ap1->x.rp->index - ap2->x.rp->index; | 
 |   } | 
 |   if( rc==0 ){ | 
 |     rc = (int) (ap2 - ap1); | 
 |   } | 
 |   return rc; | 
 | } | 
 |  | 
 | /* Sort parser actions */ | 
 | static struct action *Action_sort( | 
 |   struct action *ap | 
 | ){ | 
 |   ap = (struct action *)msort((char *)ap,(char **)&ap->next, | 
 |                               (int(*)(const char*,const char*))actioncmp); | 
 |   return ap; | 
 | } | 
 |  | 
 | void Action_add( | 
 |   struct action **app, | 
 |   enum e_action type, | 
 |   struct symbol *sp, | 
 |   char *arg | 
 | ){ | 
 |   struct action *newaction; | 
 |   newaction = Action_new(); | 
 |   newaction->next = *app; | 
 |   *app = newaction; | 
 |   newaction->type = type; | 
 |   newaction->sp = sp; | 
 |   if( type==SHIFT ){ | 
 |     newaction->x.stp = (struct state *)arg; | 
 |   }else{ | 
 |     newaction->x.rp = (struct rule *)arg; | 
 |   } | 
 | } | 
 | /********************** New code to implement the "acttab" module ***********/ | 
 | /* | 
 | ** This module implements routines use to construct the yy_action[] table. | 
 | */ | 
 |  | 
 | /* | 
 | ** The state of the yy_action table under construction is an instance of | 
 | ** the following structure. | 
 | ** | 
 | ** The yy_action table maps the pair (state_number, lookahead) into an | 
 | ** action_number.  The table is an array of integers pairs.  The state_number | 
 | ** determines an initial offset into the yy_action array.  The lookahead | 
 | ** value is then added to this initial offset to get an index X into the | 
 | ** yy_action array. If the aAction[X].lookahead equals the value of the | 
 | ** of the lookahead input, then the value of the action_number output is | 
 | ** aAction[X].action.  If the lookaheads do not match then the | 
 | ** default action for the state_number is returned. | 
 | ** | 
 | ** All actions associated with a single state_number are first entered | 
 | ** into aLookahead[] using multiple calls to acttab_action().  Then the  | 
 | ** actions for that single state_number are placed into the aAction[]  | 
 | ** array with a single call to acttab_insert().  The acttab_insert() call | 
 | ** also resets the aLookahead[] array in preparation for the next | 
 | ** state number. | 
 | */ | 
 | struct lookahead_action { | 
 |   int lookahead;             /* Value of the lookahead token */ | 
 |   int action;                /* Action to take on the given lookahead */ | 
 | }; | 
 | typedef struct acttab acttab; | 
 | struct acttab { | 
 |   int nAction;                 /* Number of used slots in aAction[] */ | 
 |   int nActionAlloc;            /* Slots allocated for aAction[] */ | 
 |   struct lookahead_action | 
 |     *aAction,                  /* The yy_action[] table under construction */ | 
 |     *aLookahead;               /* A single new transaction set */ | 
 |   int mnLookahead;             /* Minimum aLookahead[].lookahead */ | 
 |   int mnAction;                /* Action associated with mnLookahead */ | 
 |   int mxLookahead;             /* Maximum aLookahead[].lookahead */ | 
 |   int nLookahead;              /* Used slots in aLookahead[] */ | 
 |   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */ | 
 | }; | 
 |  | 
 | /* Return the number of entries in the yy_action table */ | 
 | #define acttab_size(X) ((X)->nAction) | 
 |  | 
 | /* The value for the N-th entry in yy_action */ | 
 | #define acttab_yyaction(X,N)  ((X)->aAction[N].action) | 
 |  | 
 | /* The value for the N-th entry in yy_lookahead */ | 
 | #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead) | 
 |  | 
 | /* Free all memory associated with the given acttab */ | 
 | void acttab_free(acttab *p){ | 
 |   free( p->aAction ); | 
 |   free( p->aLookahead ); | 
 |   free( p ); | 
 | } | 
 |  | 
 | /* Allocate a new acttab structure */ | 
 | acttab *acttab_alloc(void){ | 
 |   acttab *p = (acttab *) calloc( 1, sizeof(*p) ); | 
 |   if( p==0 ){ | 
 |     fprintf(stderr,"Unable to allocate memory for a new acttab."); | 
 |     exit(1); | 
 |   } | 
 |   memset(p, 0, sizeof(*p)); | 
 |   return p; | 
 | } | 
 |  | 
 | /* Add a new action to the current transaction set.   | 
 | ** | 
 | ** This routine is called once for each lookahead for a particular | 
 | ** state. | 
 | */ | 
 | void acttab_action(acttab *p, int lookahead, int action){ | 
 |   if( p->nLookahead>=p->nLookaheadAlloc ){ | 
 |     p->nLookaheadAlloc += 25; | 
 |     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, | 
 |                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); | 
 |     if( p->aLookahead==0 ){ | 
 |       fprintf(stderr,"malloc failed\n"); | 
 |       exit(1); | 
 |     } | 
 |   } | 
 |   if( p->nLookahead==0 ){ | 
 |     p->mxLookahead = lookahead; | 
 |     p->mnLookahead = lookahead; | 
 |     p->mnAction = action; | 
 |   }else{ | 
 |     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; | 
 |     if( p->mnLookahead>lookahead ){ | 
 |       p->mnLookahead = lookahead; | 
 |       p->mnAction = action; | 
 |     } | 
 |   } | 
 |   p->aLookahead[p->nLookahead].lookahead = lookahead; | 
 |   p->aLookahead[p->nLookahead].action = action; | 
 |   p->nLookahead++; | 
 | } | 
 |  | 
 | /* | 
 | ** Add the transaction set built up with prior calls to acttab_action() | 
 | ** into the current action table.  Then reset the transaction set back | 
 | ** to an empty set in preparation for a new round of acttab_action() calls. | 
 | ** | 
 | ** Return the offset into the action table of the new transaction. | 
 | */ | 
 | int acttab_insert(acttab *p){ | 
 |   int i, j, k, n; | 
 |   assert( p->nLookahead>0 ); | 
 |  | 
 |   /* Make sure we have enough space to hold the expanded action table | 
 |   ** in the worst case.  The worst case occurs if the transaction set | 
 |   ** must be appended to the current action table | 
 |   */ | 
 |   n = p->mxLookahead + 1; | 
 |   if( p->nAction + n >= p->nActionAlloc ){ | 
 |     int oldAlloc = p->nActionAlloc; | 
 |     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; | 
 |     p->aAction = (struct lookahead_action *) realloc( p->aAction, | 
 |                           sizeof(p->aAction[0])*p->nActionAlloc); | 
 |     if( p->aAction==0 ){ | 
 |       fprintf(stderr,"malloc failed\n"); | 
 |       exit(1); | 
 |     } | 
 |     for(i=oldAlloc; i<p->nActionAlloc; i++){ | 
 |       p->aAction[i].lookahead = -1; | 
 |       p->aAction[i].action = -1; | 
 |     } | 
 |   } | 
 |  | 
 |   /* Scan the existing action table looking for an offset that is a  | 
 |   ** duplicate of the current transaction set.  Fall out of the loop | 
 |   ** if and when the duplicate is found. | 
 |   ** | 
 |   ** i is the index in p->aAction[] where p->mnLookahead is inserted. | 
 |   */ | 
 |   for(i=p->nAction-1; i>=0; i--){ | 
 |     if( p->aAction[i].lookahead==p->mnLookahead ){ | 
 |       /* All lookaheads and actions in the aLookahead[] transaction | 
 |       ** must match against the candidate aAction[i] entry. */ | 
 |       if( p->aAction[i].action!=p->mnAction ) continue; | 
 |       for(j=0; j<p->nLookahead; j++){ | 
 |         k = p->aLookahead[j].lookahead - p->mnLookahead + i; | 
 |         if( k<0 || k>=p->nAction ) break; | 
 |         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; | 
 |         if( p->aLookahead[j].action!=p->aAction[k].action ) break; | 
 |       } | 
 |       if( j<p->nLookahead ) continue; | 
 |  | 
 |       /* No possible lookahead value that is not in the aLookahead[] | 
 |       ** transaction is allowed to match aAction[i] */ | 
 |       n = 0; | 
 |       for(j=0; j<p->nAction; j++){ | 
 |         if( p->aAction[j].lookahead<0 ) continue; | 
 |         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; | 
 |       } | 
 |       if( n==p->nLookahead ){ | 
 |         break;  /* An exact match is found at offset i */ | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* If no existing offsets exactly match the current transaction, find an | 
 |   ** an empty offset in the aAction[] table in which we can add the | 
 |   ** aLookahead[] transaction. | 
 |   */ | 
 |   if( i<0 ){ | 
 |     /* Look for holes in the aAction[] table that fit the current | 
 |     ** aLookahead[] transaction.  Leave i set to the offset of the hole. | 
 |     ** If no holes are found, i is left at p->nAction, which means the | 
 |     ** transaction will be appended. */ | 
 |     for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ | 
 |       if( p->aAction[i].lookahead<0 ){ | 
 |         for(j=0; j<p->nLookahead; j++){ | 
 |           k = p->aLookahead[j].lookahead - p->mnLookahead + i; | 
 |           if( k<0 ) break; | 
 |           if( p->aAction[k].lookahead>=0 ) break; | 
 |         } | 
 |         if( j<p->nLookahead ) continue; | 
 |         for(j=0; j<p->nAction; j++){ | 
 |           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; | 
 |         } | 
 |         if( j==p->nAction ){ | 
 |           break;  /* Fits in empty slots */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   /* Insert transaction set at index i. */ | 
 |   for(j=0; j<p->nLookahead; j++){ | 
 |     k = p->aLookahead[j].lookahead - p->mnLookahead + i; | 
 |     p->aAction[k] = p->aLookahead[j]; | 
 |     if( k>=p->nAction ) p->nAction = k+1; | 
 |   } | 
 |   p->nLookahead = 0; | 
 |  | 
 |   /* Return the offset that is added to the lookahead in order to get the | 
 |   ** index into yy_action of the action */ | 
 |   return i - p->mnLookahead; | 
 | } | 
 |  | 
 | /********************** From the file "build.c" *****************************/ | 
 | /* | 
 | ** Routines to construction the finite state machine for the LEMON | 
 | ** parser generator. | 
 | */ | 
 |  | 
 | /* Find a precedence symbol of every rule in the grammar. | 
 | **  | 
 | ** Those rules which have a precedence symbol coded in the input | 
 | ** grammar using the "[symbol]" construct will already have the | 
 | ** rp->precsym field filled.  Other rules take as their precedence | 
 | ** symbol the first RHS symbol with a defined precedence.  If there | 
 | ** are not RHS symbols with a defined precedence, the precedence | 
 | ** symbol field is left blank. | 
 | */ | 
 | void FindRulePrecedences(struct lemon *xp) | 
 | { | 
 |   struct rule *rp; | 
 |   for(rp=xp->rule; rp; rp=rp->next){ | 
 |     if( rp->precsym==0 ){ | 
 |       int i, j; | 
 |       for(i=0; i<rp->nrhs && rp->precsym==0; i++){ | 
 |         struct symbol *sp = rp->rhs[i]; | 
 |         if( sp->type==MULTITERMINAL ){ | 
 |           for(j=0; j<sp->nsubsym; j++){ | 
 |             if( sp->subsym[j]->prec>=0 ){ | 
 |               rp->precsym = sp->subsym[j]; | 
 |               break; | 
 |             } | 
 |           } | 
 |         }else if( sp->prec>=0 ){ | 
 |           rp->precsym = rp->rhs[i]; | 
 | 	} | 
 |       } | 
 |     } | 
 |   } | 
 |   return; | 
 | } | 
 |  | 
 | /* Find all nonterminals which will generate the empty string. | 
 | ** Then go back and compute the first sets of every nonterminal. | 
 | ** The first set is the set of all terminal symbols which can begin | 
 | ** a string generated by that nonterminal. | 
 | */ | 
 | void FindFirstSets(struct lemon *lemp) | 
 | { | 
 |   int i, j; | 
 |   struct rule *rp; | 
 |   int progress; | 
 |  | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     lemp->symbols[i]->lambda = LEMON_FALSE; | 
 |   } | 
 |   for(i=lemp->nterminal; i<lemp->nsymbol; i++){ | 
 |     lemp->symbols[i]->firstset = SetNew(); | 
 |   } | 
 |  | 
 |   /* First compute all lambdas */ | 
 |   do{ | 
 |     progress = 0; | 
 |     for(rp=lemp->rule; rp; rp=rp->next){ | 
 |       if( rp->lhs->lambda ) continue; | 
 |       for(i=0; i<rp->nrhs; i++){ | 
 |          struct symbol *sp = rp->rhs[i]; | 
 |          if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break; | 
 |       } | 
 |       if( i==rp->nrhs ){ | 
 |         rp->lhs->lambda = LEMON_TRUE; | 
 |         progress = 1; | 
 |       } | 
 |     } | 
 |   }while( progress ); | 
 |  | 
 |   /* Now compute all first sets */ | 
 |   do{ | 
 |     struct symbol *s1, *s2; | 
 |     progress = 0; | 
 |     for(rp=lemp->rule; rp; rp=rp->next){ | 
 |       s1 = rp->lhs; | 
 |       for(i=0; i<rp->nrhs; i++){ | 
 |         s2 = rp->rhs[i]; | 
 |         if( s2->type==TERMINAL ){ | 
 |           progress += SetAdd(s1->firstset,s2->index); | 
 |           break; | 
 |         }else if( s2->type==MULTITERMINAL ){ | 
 |           for(j=0; j<s2->nsubsym; j++){ | 
 |             progress += SetAdd(s1->firstset,s2->subsym[j]->index); | 
 |           } | 
 |           break; | 
 | 	}else if( s1==s2 ){ | 
 |           if( s1->lambda==LEMON_FALSE ) break; | 
 | 	}else{ | 
 |           progress += SetUnion(s1->firstset,s2->firstset); | 
 |           if( s2->lambda==LEMON_FALSE ) break; | 
 | 	} | 
 |       } | 
 |     } | 
 |   }while( progress ); | 
 |   return; | 
 | } | 
 |  | 
 | /* Compute all LR(0) states for the grammar.  Links | 
 | ** are added to between some states so that the LR(1) follow sets | 
 | ** can be computed later. | 
 | */ | 
 | PRIVATE struct state *getstate(struct lemon *);  /* forward reference */ | 
 | void FindStates(struct lemon *lemp) | 
 | { | 
 |   struct symbol *sp; | 
 |   struct rule *rp; | 
 |  | 
 |   Configlist_init(); | 
 |  | 
 |   /* Find the start symbol */ | 
 |   if( lemp->start ){ | 
 |     sp = Symbol_find(lemp->start); | 
 |     if( sp==0 ){ | 
 |       ErrorMsg(lemp->filename,0, | 
 | "The specified start symbol \"%s\" is not \ | 
 | in a nonterminal of the grammar.  \"%s\" will be used as the start \ | 
 | symbol instead.",lemp->start,lemp->rule->lhs->name); | 
 |       lemp->errorcnt++; | 
 |       sp = lemp->rule->lhs; | 
 |     } | 
 |   }else{ | 
 |     sp = lemp->rule->lhs; | 
 |   } | 
 |  | 
 |   /* Make sure the start symbol doesn't occur on the right-hand side of | 
 |   ** any rule.  Report an error if it does.  (YACC would generate a new | 
 |   ** start symbol in this case.) */ | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     int i; | 
 |     for(i=0; i<rp->nrhs; i++){ | 
 |       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */ | 
 |         ErrorMsg(lemp->filename,0, | 
 | "The start symbol \"%s\" occurs on the \ | 
 | right-hand side of a rule. This will result in a parser which \ | 
 | does not work properly.",sp->name); | 
 |         lemp->errorcnt++; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* The basis configuration set for the first state | 
 |   ** is all rules which have the start symbol as their | 
 |   ** left-hand side */ | 
 |   for(rp=sp->rule; rp; rp=rp->nextlhs){ | 
 |     struct config *newcfp; | 
 |     rp->lhsStart = 1; | 
 |     newcfp = Configlist_addbasis(rp,0); | 
 |     SetAdd(newcfp->fws,0); | 
 |   } | 
 |  | 
 |   /* Compute the first state.  All other states will be | 
 |   ** computed automatically during the computation of the first one. | 
 |   ** The returned pointer to the first state is not used. */ | 
 |   (void)getstate(lemp); | 
 |   return; | 
 | } | 
 |  | 
 | /* Return a pointer to a state which is described by the configuration | 
 | ** list which has been built from calls to Configlist_add. | 
 | */ | 
 | PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ | 
 | PRIVATE struct state *getstate(struct lemon *lemp) | 
 | { | 
 |   struct config *cfp, *bp; | 
 |   struct state *stp; | 
 |  | 
 |   /* Extract the sorted basis of the new state.  The basis was constructed | 
 |   ** by prior calls to "Configlist_addbasis()". */ | 
 |   Configlist_sortbasis(); | 
 |   bp = Configlist_basis(); | 
 |  | 
 |   /* Get a state with the same basis */ | 
 |   stp = State_find(bp); | 
 |   if( stp ){ | 
 |     /* A state with the same basis already exists!  Copy all the follow-set | 
 |     ** propagation links from the state under construction into the | 
 |     ** preexisting state, then return a pointer to the preexisting state */ | 
 |     struct config *x, *y; | 
 |     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ | 
 |       Plink_copy(&y->bplp,x->bplp); | 
 |       Plink_delete(x->fplp); | 
 |       x->fplp = x->bplp = 0; | 
 |     } | 
 |     cfp = Configlist_return(); | 
 |     Configlist_eat(cfp); | 
 |   }else{ | 
 |     /* This really is a new state.  Construct all the details */ | 
 |     Configlist_closure(lemp);    /* Compute the configuration closure */ | 
 |     Configlist_sort();           /* Sort the configuration closure */ | 
 |     cfp = Configlist_return();   /* Get a pointer to the config list */ | 
 |     stp = State_new();           /* A new state structure */ | 
 |     MemoryCheck(stp); | 
 |     stp->bp = bp;                /* Remember the configuration basis */ | 
 |     stp->cfp = cfp;              /* Remember the configuration closure */ | 
 |     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ | 
 |     stp->ap = 0;                 /* No actions, yet. */ | 
 |     State_insert(stp,stp->bp);   /* Add to the state table */ | 
 |     buildshifts(lemp,stp);       /* Recursively compute successor states */ | 
 |   } | 
 |   return stp; | 
 | } | 
 |  | 
 | /* | 
 | ** Return true if two symbols are the same. | 
 | */ | 
 | int same_symbol(struct symbol *a, struct symbol *b) | 
 | { | 
 |   int i; | 
 |   if( a==b ) return 1; | 
 |   if( a->type!=MULTITERMINAL ) return 0; | 
 |   if( b->type!=MULTITERMINAL ) return 0; | 
 |   if( a->nsubsym!=b->nsubsym ) return 0; | 
 |   for(i=0; i<a->nsubsym; i++){ | 
 |     if( a->subsym[i]!=b->subsym[i] ) return 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Construct all successor states to the given state.  A "successor" | 
 | ** state is any state which can be reached by a shift action. | 
 | */ | 
 | PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) | 
 | { | 
 |   struct config *cfp;  /* For looping thru the config closure of "stp" */ | 
 |   struct config *bcfp; /* For the inner loop on config closure of "stp" */ | 
 |   struct config *newcfg;  /* */ | 
 |   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */ | 
 |   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */ | 
 |   struct state *newstp; /* A pointer to a successor state */ | 
 |  | 
 |   /* Each configuration becomes complete after it contibutes to a successor | 
 |   ** state.  Initially, all configurations are incomplete */ | 
 |   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; | 
 |  | 
 |   /* Loop through all configurations of the state "stp" */ | 
 |   for(cfp=stp->cfp; cfp; cfp=cfp->next){ | 
 |     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */ | 
 |     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */ | 
 |     Configlist_reset();                      /* Reset the new config set */ | 
 |     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */ | 
 |  | 
 |     /* For every configuration in the state "stp" which has the symbol "sp" | 
 |     ** following its dot, add the same configuration to the basis set under | 
 |     ** construction but with the dot shifted one symbol to the right. */ | 
 |     for(bcfp=cfp; bcfp; bcfp=bcfp->next){ | 
 |       if( bcfp->status==COMPLETE ) continue;    /* Already used */ | 
 |       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ | 
 |       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */ | 
 |       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */ | 
 |       bcfp->status = COMPLETE;                  /* Mark this config as used */ | 
 |       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); | 
 |       Plink_add(&newcfg->bplp,bcfp); | 
 |     } | 
 |  | 
 |     /* Get a pointer to the state described by the basis configuration set | 
 |     ** constructed in the preceding loop */ | 
 |     newstp = getstate(lemp); | 
 |  | 
 |     /* The state "newstp" is reached from the state "stp" by a shift action | 
 |     ** on the symbol "sp" */ | 
 |     if( sp->type==MULTITERMINAL ){ | 
 |       int i; | 
 |       for(i=0; i<sp->nsubsym; i++){ | 
 |         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); | 
 |       } | 
 |     }else{ | 
 |       Action_add(&stp->ap,SHIFT,sp,(char *)newstp); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /* | 
 | ** Construct the propagation links | 
 | */ | 
 | void FindLinks(struct lemon *lemp) | 
 | { | 
 |   int i; | 
 |   struct config *cfp, *other; | 
 |   struct state *stp; | 
 |   struct plink *plp; | 
 |  | 
 |   /* Housekeeping detail: | 
 |   ** Add to every propagate link a pointer back to the state to | 
 |   ** which the link is attached. */ | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     for(cfp=stp->cfp; cfp; cfp=cfp->next){ | 
 |       cfp->stp = stp; | 
 |     } | 
 |   } | 
 |  | 
 |   /* Convert all backlinks into forward links.  Only the forward | 
 |   ** links are used in the follow-set computation. */ | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     for(cfp=stp->cfp; cfp; cfp=cfp->next){ | 
 |       for(plp=cfp->bplp; plp; plp=plp->next){ | 
 |         other = plp->cfp; | 
 |         Plink_add(&other->fplp,cfp); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /* Compute all followsets. | 
 | ** | 
 | ** A followset is the set of all symbols which can come immediately | 
 | ** after a configuration. | 
 | */ | 
 | void FindFollowSets(struct lemon *lemp) | 
 | { | 
 |   int i; | 
 |   struct config *cfp; | 
 |   struct plink *plp; | 
 |   int progress; | 
 |   int change; | 
 |  | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ | 
 |       cfp->status = INCOMPLETE; | 
 |     } | 
 |   } | 
 |    | 
 |   do{ | 
 |     progress = 0; | 
 |     for(i=0; i<lemp->nstate; i++){ | 
 |       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ | 
 |         if( cfp->status==COMPLETE ) continue; | 
 |         for(plp=cfp->fplp; plp; plp=plp->next){ | 
 |           change = SetUnion(plp->cfp->fws,cfp->fws); | 
 |           if( change ){ | 
 |             plp->cfp->status = INCOMPLETE; | 
 |             progress = 1; | 
 | 	  } | 
 | 	} | 
 |         cfp->status = COMPLETE; | 
 |       } | 
 |     } | 
 |   }while( progress ); | 
 | } | 
 |  | 
 | static int resolve_conflict(struct action *,struct action *, struct symbol *); | 
 |  | 
 | /* Compute the reduce actions, and resolve conflicts. | 
 | */ | 
 | void FindActions(struct lemon *lemp) | 
 | { | 
 |   int i,j; | 
 |   struct config *cfp; | 
 |   struct state *stp; | 
 |   struct symbol *sp; | 
 |   struct rule *rp; | 
 |  | 
 |   /* Add all of the reduce actions  | 
 |   ** A reduce action is added for each element of the followset of | 
 |   ** a configuration which has its dot at the extreme right. | 
 |   */ | 
 |   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */ | 
 |     stp = lemp->sorted[i]; | 
 |     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */ | 
 |       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */ | 
 |         for(j=0; j<lemp->nterminal; j++){ | 
 |           if( SetFind(cfp->fws,j) ){ | 
 |             /* Add a reduce action to the state "stp" which will reduce by the | 
 |             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ | 
 |             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); | 
 |           } | 
 | 	} | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* Add the accepting token */ | 
 |   if( lemp->start ){ | 
 |     sp = Symbol_find(lemp->start); | 
 |     if( sp==0 ) sp = lemp->rule->lhs; | 
 |   }else{ | 
 |     sp = lemp->rule->lhs; | 
 |   } | 
 |   /* Add to the first state (which is always the starting state of the | 
 |   ** finite state machine) an action to ACCEPT if the lookahead is the | 
 |   ** start nonterminal.  */ | 
 |   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); | 
 |  | 
 |   /* Resolve conflicts */ | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     struct action *ap, *nap; | 
 |     struct state *stp; | 
 |     stp = lemp->sorted[i]; | 
 |     /* assert( stp->ap ); */ | 
 |     stp->ap = Action_sort(stp->ap); | 
 |     for(ap=stp->ap; ap && ap->next; ap=ap->next){ | 
 |       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ | 
 |          /* The two actions "ap" and "nap" have the same lookahead. | 
 |          ** Figure out which one should be used */ | 
 |          lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /* Report an error for each rule that can never be reduced. */ | 
 |   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     struct action *ap; | 
 |     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ | 
 |       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; | 
 |     } | 
 |   } | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     if( rp->canReduce ) continue; | 
 |     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); | 
 |     lemp->errorcnt++; | 
 |   } | 
 | } | 
 |  | 
 | /* Resolve a conflict between the two given actions.  If the | 
 | ** conflict can't be resolved, return non-zero. | 
 | ** | 
 | ** NO LONGER TRUE: | 
 | **   To resolve a conflict, first look to see if either action | 
 | **   is on an error rule.  In that case, take the action which | 
 | **   is not associated with the error rule.  If neither or both | 
 | **   actions are associated with an error rule, then try to | 
 | **   use precedence to resolve the conflict. | 
 | ** | 
 | ** If either action is a SHIFT, then it must be apx.  This | 
 | ** function won't work if apx->type==REDUCE and apy->type==SHIFT. | 
 | */ | 
 | static int resolve_conflict( | 
 |   struct action *apx, | 
 |   struct action *apy, | 
 |   struct symbol *errsym   /* The error symbol (if defined.  NULL otherwise) */ | 
 | ){ | 
 |   struct symbol *spx, *spy; | 
 |   int errcnt = 0; | 
 |   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */ | 
 |   if( apx->type==SHIFT && apy->type==SHIFT ){ | 
 |     apy->type = SSCONFLICT; | 
 |     errcnt++; | 
 |   } | 
 |   if( apx->type==SHIFT && apy->type==REDUCE ){ | 
 |     spx = apx->sp; | 
 |     spy = apy->x.rp->precsym; | 
 |     if( spy==0 || spx->prec<0 || spy->prec<0 ){ | 
 |       /* Not enough precedence information. */ | 
 |       apy->type = SRCONFLICT; | 
 |       errcnt++; | 
 |     }else if( spx->prec>spy->prec ){    /* higher precedence wins */ | 
 |       apy->type = RD_RESOLVED; | 
 |     }else if( spx->prec<spy->prec ){ | 
 |       apx->type = SH_RESOLVED; | 
 |     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ | 
 |       apy->type = RD_RESOLVED;                             /* associativity */ | 
 |     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */ | 
 |       apx->type = SH_RESOLVED; | 
 |     }else{ | 
 |       assert( spx->prec==spy->prec && spx->assoc==NONE ); | 
 |       apy->type = SRCONFLICT; | 
 |       errcnt++; | 
 |     } | 
 |   }else if( apx->type==REDUCE && apy->type==REDUCE ){ | 
 |     spx = apx->x.rp->precsym; | 
 |     spy = apy->x.rp->precsym; | 
 |     if( spx==0 || spy==0 || spx->prec<0 || | 
 |     spy->prec<0 || spx->prec==spy->prec ){ | 
 |       apy->type = RRCONFLICT; | 
 |       errcnt++; | 
 |     }else if( spx->prec>spy->prec ){ | 
 |       apy->type = RD_RESOLVED; | 
 |     }else if( spx->prec<spy->prec ){ | 
 |       apx->type = RD_RESOLVED; | 
 |     } | 
 |   }else{ | 
 |     assert(  | 
 |       apx->type==SH_RESOLVED || | 
 |       apx->type==RD_RESOLVED || | 
 |       apx->type==SSCONFLICT || | 
 |       apx->type==SRCONFLICT || | 
 |       apx->type==RRCONFLICT || | 
 |       apy->type==SH_RESOLVED || | 
 |       apy->type==RD_RESOLVED || | 
 |       apy->type==SSCONFLICT || | 
 |       apy->type==SRCONFLICT || | 
 |       apy->type==RRCONFLICT | 
 |     ); | 
 |     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before | 
 |     ** REDUCEs on the list.  If we reach this point it must be because | 
 |     ** the parser conflict had already been resolved. */ | 
 |   } | 
 |   return errcnt; | 
 | } | 
 | /********************* From the file "configlist.c" *************************/ | 
 | /* | 
 | ** Routines to processing a configuration list and building a state | 
 | ** in the LEMON parser generator. | 
 | */ | 
 |  | 
 | static struct config *freelist = 0;      /* List of free configurations */ | 
 | static struct config *current = 0;       /* Top of list of configurations */ | 
 | static struct config **currentend = 0;   /* Last on list of configs */ | 
 | static struct config *basis = 0;         /* Top of list of basis configs */ | 
 | static struct config **basisend = 0;     /* End of list of basis configs */ | 
 |  | 
 | /* Return a pointer to a new configuration */ | 
 | PRIVATE struct config *newconfig(){ | 
 |   struct config *newcfg; | 
 |   if( freelist==0 ){ | 
 |     int i; | 
 |     int amt = 3; | 
 |     freelist = (struct config *)calloc( amt, sizeof(struct config) ); | 
 |     if( freelist==0 ){ | 
 |       fprintf(stderr,"Unable to allocate memory for a new configuration."); | 
 |       exit(1); | 
 |     } | 
 |     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; | 
 |     freelist[amt-1].next = 0; | 
 |   } | 
 |   newcfg = freelist; | 
 |   freelist = freelist->next; | 
 |   return newcfg; | 
 | } | 
 |  | 
 | /* The configuration "old" is no longer used */ | 
 | PRIVATE void deleteconfig(struct config *old) | 
 | { | 
 |   old->next = freelist; | 
 |   freelist = old; | 
 | } | 
 |  | 
 | /* Initialized the configuration list builder */ | 
 | void Configlist_init(){ | 
 |   current = 0; | 
 |   currentend = ¤t; | 
 |   basis = 0; | 
 |   basisend = &basis; | 
 |   Configtable_init(); | 
 |   return; | 
 | } | 
 |  | 
 | /* Initialized the configuration list builder */ | 
 | void Configlist_reset(){ | 
 |   current = 0; | 
 |   currentend = ¤t; | 
 |   basis = 0; | 
 |   basisend = &basis; | 
 |   Configtable_clear(0); | 
 |   return; | 
 | } | 
 |  | 
 | /* Add another configuration to the configuration list */ | 
 | struct config *Configlist_add( | 
 |   struct rule *rp,    /* The rule */ | 
 |   int dot             /* Index into the RHS of the rule where the dot goes */ | 
 | ){ | 
 |   struct config *cfp, model; | 
 |  | 
 |   assert( currentend!=0 ); | 
 |   model.rp = rp; | 
 |   model.dot = dot; | 
 |   cfp = Configtable_find(&model); | 
 |   if( cfp==0 ){ | 
 |     cfp = newconfig(); | 
 |     cfp->rp = rp; | 
 |     cfp->dot = dot; | 
 |     cfp->fws = SetNew(); | 
 |     cfp->stp = 0; | 
 |     cfp->fplp = cfp->bplp = 0; | 
 |     cfp->next = 0; | 
 |     cfp->bp = 0; | 
 |     *currentend = cfp; | 
 |     currentend = &cfp->next; | 
 |     Configtable_insert(cfp); | 
 |   } | 
 |   return cfp; | 
 | } | 
 |  | 
 | /* Add a basis configuration to the configuration list */ | 
 | struct config *Configlist_addbasis(struct rule *rp, int dot) | 
 | { | 
 |   struct config *cfp, model; | 
 |  | 
 |   assert( basisend!=0 ); | 
 |   assert( currentend!=0 ); | 
 |   model.rp = rp; | 
 |   model.dot = dot; | 
 |   cfp = Configtable_find(&model); | 
 |   if( cfp==0 ){ | 
 |     cfp = newconfig(); | 
 |     cfp->rp = rp; | 
 |     cfp->dot = dot; | 
 |     cfp->fws = SetNew(); | 
 |     cfp->stp = 0; | 
 |     cfp->fplp = cfp->bplp = 0; | 
 |     cfp->next = 0; | 
 |     cfp->bp = 0; | 
 |     *currentend = cfp; | 
 |     currentend = &cfp->next; | 
 |     *basisend = cfp; | 
 |     basisend = &cfp->bp; | 
 |     Configtable_insert(cfp); | 
 |   } | 
 |   return cfp; | 
 | } | 
 |  | 
 | /* Compute the closure of the configuration list */ | 
 | void Configlist_closure(struct lemon *lemp) | 
 | { | 
 |   struct config *cfp, *newcfp; | 
 |   struct rule *rp, *newrp; | 
 |   struct symbol *sp, *xsp; | 
 |   int i, dot; | 
 |  | 
 |   assert( currentend!=0 ); | 
 |   for(cfp=current; cfp; cfp=cfp->next){ | 
 |     rp = cfp->rp; | 
 |     dot = cfp->dot; | 
 |     if( dot>=rp->nrhs ) continue; | 
 |     sp = rp->rhs[dot]; | 
 |     if( sp->type==NONTERMINAL ){ | 
 |       if( sp->rule==0 && sp!=lemp->errsym ){ | 
 |         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", | 
 |           sp->name); | 
 |         lemp->errorcnt++; | 
 |       } | 
 |       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ | 
 |         newcfp = Configlist_add(newrp,0); | 
 |         for(i=dot+1; i<rp->nrhs; i++){ | 
 |           xsp = rp->rhs[i]; | 
 |           if( xsp->type==TERMINAL ){ | 
 |             SetAdd(newcfp->fws,xsp->index); | 
 |             break; | 
 |           }else if( xsp->type==MULTITERMINAL ){ | 
 |             int k; | 
 |             for(k=0; k<xsp->nsubsym; k++){ | 
 |               SetAdd(newcfp->fws, xsp->subsym[k]->index); | 
 |             } | 
 |             break; | 
 | 	  }else{ | 
 |             SetUnion(newcfp->fws,xsp->firstset); | 
 |             if( xsp->lambda==LEMON_FALSE ) break; | 
 | 	  } | 
 | 	} | 
 |         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); | 
 |       } | 
 |     } | 
 |   } | 
 |   return; | 
 | } | 
 |  | 
 | /* Sort the configuration list */ | 
 | void Configlist_sort(){ | 
 |   current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp); | 
 |   currentend = 0; | 
 |   return; | 
 | } | 
 |  | 
 | /* Sort the basis configuration list */ | 
 | void Configlist_sortbasis(){ | 
 |   basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp); | 
 |   basisend = 0; | 
 |   return; | 
 | } | 
 |  | 
 | /* Return a pointer to the head of the configuration list and | 
 | ** reset the list */ | 
 | struct config *Configlist_return(){ | 
 |   struct config *old; | 
 |   old = current; | 
 |   current = 0; | 
 |   currentend = 0; | 
 |   return old; | 
 | } | 
 |  | 
 | /* Return a pointer to the head of the configuration list and | 
 | ** reset the list */ | 
 | struct config *Configlist_basis(){ | 
 |   struct config *old; | 
 |   old = basis; | 
 |   basis = 0; | 
 |   basisend = 0; | 
 |   return old; | 
 | } | 
 |  | 
 | /* Free all elements of the given configuration list */ | 
 | void Configlist_eat(struct config *cfp) | 
 | { | 
 |   struct config *nextcfp; | 
 |   for(; cfp; cfp=nextcfp){ | 
 |     nextcfp = cfp->next; | 
 |     assert( cfp->fplp==0 ); | 
 |     assert( cfp->bplp==0 ); | 
 |     if( cfp->fws ) SetFree(cfp->fws); | 
 |     deleteconfig(cfp); | 
 |   } | 
 |   return; | 
 | } | 
 | /***************** From the file "error.c" *********************************/ | 
 | /* | 
 | ** Code for printing error message. | 
 | */ | 
 |  | 
 | void ErrorMsg(const char *filename, int lineno, const char *format, ...){ | 
 |   va_list ap; | 
 |   fprintf(stderr, "%s:%d: ", filename, lineno); | 
 |   va_start(ap, format); | 
 |   vfprintf(stderr,format,ap); | 
 |   va_end(ap); | 
 |   fprintf(stderr, "\n"); | 
 | } | 
 | /**************** From the file "main.c" ************************************/ | 
 | /* | 
 | ** Main program file for the LEMON parser generator. | 
 | */ | 
 |  | 
 | /* Report an out-of-memory condition and abort.  This function | 
 | ** is used mostly by the "MemoryCheck" macro in struct.h | 
 | */ | 
 | void memory_error(){ | 
 |   fprintf(stderr,"Out of memory.  Aborting...\n"); | 
 |   exit(1); | 
 | } | 
 |  | 
 | static int nDefine = 0;      /* Number of -D options on the command line */ | 
 | static char **azDefine = 0;  /* Name of the -D macros */ | 
 |  | 
 | /* This routine is called with the argument to each -D command-line option. | 
 | ** Add the macro defined to the azDefine array. | 
 | */ | 
 | static void handle_D_option(char *z){ | 
 |   char **paz; | 
 |   nDefine++; | 
 |   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); | 
 |   if( azDefine==0 ){ | 
 |     fprintf(stderr,"out of memory\n"); | 
 |     exit(1); | 
 |   } | 
 |   paz = &azDefine[nDefine-1]; | 
 |   *paz = (char *) malloc( lemonStrlen(z)+1 ); | 
 |   if( *paz==0 ){ | 
 |     fprintf(stderr,"out of memory\n"); | 
 |     exit(1); | 
 |   } | 
 |   strcpy(*paz, z); | 
 |   for(z=*paz; *z && *z!='='; z++){} | 
 |   *z = 0; | 
 | } | 
 |  | 
 | static char *user_templatename = NULL; | 
 | static void handle_T_option(char *z){ | 
 |   user_templatename = (char *) malloc( lemonStrlen(z)+1 ); | 
 |   if( user_templatename==0 ){ | 
 |     memory_error(); | 
 |   } | 
 |   strcpy(user_templatename, z); | 
 | } | 
 |  | 
 | /* The main program.  Parse the command line and do it... */ | 
 | int main(int argc, char **argv) | 
 | { | 
 |   static int version = 0; | 
 |   static int rpflag = 0; | 
 |   static int basisflag = 0; | 
 |   static int compress = 0; | 
 |   static int quiet = 0; | 
 |   static int statistics = 0; | 
 |   static int mhflag = 0; | 
 |   static int nolinenosflag = 0; | 
 |   static int noResort = 0; | 
 |   static struct s_options options[] = { | 
 |     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, | 
 |     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, | 
 |     {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, | 
 |     {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, | 
 |     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, | 
 |     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, | 
 |     {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, | 
 |     {OPT_FLAG, "p", (char*)&showPrecedenceConflict, | 
 |                     "Show conflicts resolved by precedence rules"}, | 
 |     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, | 
 |     {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, | 
 |     {OPT_FLAG, "s", (char*)&statistics, | 
 |                                    "Print parser stats to standard output."}, | 
 |     {OPT_FLAG, "x", (char*)&version, "Print the version number."}, | 
 |     {OPT_FLAG,0,0,0} | 
 |   }; | 
 |   int i; | 
 |   int exitcode; | 
 |   struct lemon lem; | 
 |  | 
 |   atexit(LemonAtExit); | 
 |  | 
 |   OptInit(argv,options,stderr); | 
 |   if( version ){ | 
 |      printf("Lemon version 1.0\n"); | 
 |      exit(0);  | 
 |   } | 
 |   if( OptNArgs()!=1 ){ | 
 |     fprintf(stderr,"Exactly one filename argument is required.\n"); | 
 |     exit(1); | 
 |   } | 
 |   memset(&lem, 0, sizeof(lem)); | 
 |   lem.errorcnt = 0; | 
 |  | 
 |   /* Initialize the machine */ | 
 |   Strsafe_init(); | 
 |   Symbol_init(); | 
 |   State_init(); | 
 |   lem.argv0 = argv[0]; | 
 |   lem.filename = OptArg(0); | 
 |   lem.basisflag = basisflag; | 
 |   lem.nolinenosflag = nolinenosflag; | 
 |   Symbol_new("$"); | 
 |   lem.errsym = Symbol_new("error"); | 
 |   lem.errsym->useCnt = 0; | 
 |  | 
 |   /* Parse the input file */ | 
 |   Parse(&lem); | 
 |   if( lem.errorcnt ) exit(lem.errorcnt); | 
 |   if( lem.nrule==0 ){ | 
 |     fprintf(stderr,"Empty grammar.\n"); | 
 |     exit(1); | 
 |   } | 
 |  | 
 |   /* Count and index the symbols of the grammar */ | 
 |   lem.nsymbol = Symbol_count(); | 
 |   Symbol_new("{default}"); | 
 |   lem.symbols = Symbol_arrayof(); | 
 |   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; | 
 |   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp); | 
 |   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; | 
 |   for(i=1; isupper(lem.symbols[i]->name[0]); i++); | 
 |   lem.nterminal = i; | 
 |  | 
 |   /* Generate a reprint of the grammar, if requested on the command line */ | 
 |   if( rpflag ){ | 
 |     Reprint(&lem); | 
 |   }else{ | 
 |     /* Initialize the size for all follow and first sets */ | 
 |     SetSize(lem.nterminal+1); | 
 |  | 
 |     /* Find the precedence for every production rule (that has one) */ | 
 |     FindRulePrecedences(&lem); | 
 |  | 
 |     /* Compute the lambda-nonterminals and the first-sets for every | 
 |     ** nonterminal */ | 
 |     FindFirstSets(&lem); | 
 |  | 
 |     /* Compute all LR(0) states.  Also record follow-set propagation | 
 |     ** links so that the follow-set can be computed later */ | 
 |     lem.nstate = 0; | 
 |     FindStates(&lem); | 
 |     lem.sorted = State_arrayof(); | 
 |  | 
 |     /* Tie up loose ends on the propagation links */ | 
 |     FindLinks(&lem); | 
 |  | 
 |     /* Compute the follow set of every reducible configuration */ | 
 |     FindFollowSets(&lem); | 
 |  | 
 |     /* Compute the action tables */ | 
 |     FindActions(&lem); | 
 |  | 
 |     /* Compress the action tables */ | 
 |     if( compress==0 ) CompressTables(&lem); | 
 |  | 
 |     /* Reorder and renumber the states so that states with fewer choices | 
 |     ** occur at the end.  This is an optimization that helps make the | 
 |     ** generated parser tables smaller. */ | 
 |     if( noResort==0 ) ResortStates(&lem); | 
 |  | 
 |     /* Generate a report of the parser generated.  (the "y.output" file) */ | 
 |     if( !quiet ) ReportOutput(&lem); | 
 |  | 
 |     /* Generate the source code for the parser */ | 
 |     ReportTable(&lem, mhflag); | 
 |  | 
 |     /* Produce a header file for use by the scanner.  (This step is | 
 |     ** omitted if the "-m" option is used because makeheaders will | 
 |     ** generate the file for us.) */ | 
 |     if( !mhflag ) ReportHeader(&lem); | 
 |   } | 
 |   if( statistics ){ | 
 |     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", | 
 |       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); | 
 |     printf("                   %d states, %d parser table entries, %d conflicts\n", | 
 |       lem.nstate, lem.tablesize, lem.nconflict); | 
 |   } | 
 |   if( lem.nconflict > 0 ){ | 
 |     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); | 
 |   } | 
 |  | 
 |   /* return 0 on success, 1 on failure. */ | 
 |   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; | 
 |   successful_exit = (exitcode == 0); | 
 |   exit(exitcode); | 
 |   return (exitcode); | 
 | } | 
 | /******************** From the file "msort.c" *******************************/ | 
 | /* | 
 | ** A generic merge-sort program. | 
 | ** | 
 | ** USAGE: | 
 | ** Let "ptr" be a pointer to some structure which is at the head of | 
 | ** a null-terminated list.  Then to sort the list call: | 
 | ** | 
 | **     ptr = msort(ptr,&(ptr->next),cmpfnc); | 
 | ** | 
 | ** In the above, "cmpfnc" is a pointer to a function which compares | 
 | ** two instances of the structure and returns an integer, as in | 
 | ** strcmp.  The second argument is a pointer to the pointer to the | 
 | ** second element of the linked list.  This address is used to compute | 
 | ** the offset to the "next" field within the structure.  The offset to | 
 | ** the "next" field must be constant for all structures in the list. | 
 | ** | 
 | ** The function returns a new pointer which is the head of the list | 
 | ** after sorting. | 
 | ** | 
 | ** ALGORITHM: | 
 | ** Merge-sort. | 
 | */ | 
 |  | 
 | /* | 
 | ** Return a pointer to the next structure in the linked list. | 
 | */ | 
 | #define NEXT(A) (*(char**)(((unsigned long)A)+offset)) | 
 |  | 
 | /* | 
 | ** Inputs: | 
 | **   a:       A sorted, null-terminated linked list.  (May be null). | 
 | **   b:       A sorted, null-terminated linked list.  (May be null). | 
 | **   cmp:     A pointer to the comparison function. | 
 | **   offset:  Offset in the structure to the "next" field. | 
 | ** | 
 | ** Return Value: | 
 | **   A pointer to the head of a sorted list containing the elements | 
 | **   of both a and b. | 
 | ** | 
 | ** Side effects: | 
 | **   The "next" pointers for elements in the lists a and b are | 
 | **   changed. | 
 | */ | 
 | static char *merge( | 
 |   char *a, | 
 |   char *b, | 
 |   int (*cmp)(const char*,const char*), | 
 |   int offset | 
 | ){ | 
 |   char *ptr, *head; | 
 |  | 
 |   if( a==0 ){ | 
 |     head = b; | 
 |   }else if( b==0 ){ | 
 |     head = a; | 
 |   }else{ | 
 |     if( (*cmp)(a,b)<=0 ){ | 
 |       ptr = a; | 
 |       a = NEXT(a); | 
 |     }else{ | 
 |       ptr = b; | 
 |       b = NEXT(b); | 
 |     } | 
 |     head = ptr; | 
 |     while( a && b ){ | 
 |       if( (*cmp)(a,b)<=0 ){ | 
 |         NEXT(ptr) = a; | 
 |         ptr = a; | 
 |         a = NEXT(a); | 
 |       }else{ | 
 |         NEXT(ptr) = b; | 
 |         ptr = b; | 
 |         b = NEXT(b); | 
 |       } | 
 |     } | 
 |     if( a ) NEXT(ptr) = a; | 
 |     else    NEXT(ptr) = b; | 
 |   } | 
 |   return head; | 
 | } | 
 |  | 
 | /* | 
 | ** Inputs: | 
 | **   list:      Pointer to a singly-linked list of structures. | 
 | **   next:      Pointer to pointer to the second element of the list. | 
 | **   cmp:       A comparison function. | 
 | ** | 
 | ** Return Value: | 
 | **   A pointer to the head of a sorted list containing the elements | 
 | **   orginally in list. | 
 | ** | 
 | ** Side effects: | 
 | **   The "next" pointers for elements in list are changed. | 
 | */ | 
 | #define LISTSIZE 30 | 
 | static char *msort( | 
 |   char *list, | 
 |   char **next, | 
 |   int (*cmp)(const char*,const char*) | 
 | ){ | 
 |   unsigned long offset; | 
 |   char *ep; | 
 |   char *set[LISTSIZE]; | 
 |   int i; | 
 |   offset = (unsigned long)next - (unsigned long)list; | 
 |   for(i=0; i<LISTSIZE; i++) set[i] = 0; | 
 |   while( list ){ | 
 |     ep = list; | 
 |     list = NEXT(list); | 
 |     NEXT(ep) = 0; | 
 |     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ | 
 |       ep = merge(ep,set[i],cmp,offset); | 
 |       set[i] = 0; | 
 |     } | 
 |     set[i] = ep; | 
 |   } | 
 |   ep = 0; | 
 |   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); | 
 |   return ep; | 
 | } | 
 | /************************ From the file "option.c" **************************/ | 
 | static char **argv; | 
 | static struct s_options *op; | 
 | static FILE *errstream; | 
 |  | 
 | #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) | 
 |  | 
 | /* | 
 | ** Print the command line with a carrot pointing to the k-th character | 
 | ** of the n-th field. | 
 | */ | 
 | static void errline(int n, int k, FILE *err) | 
 | { | 
 |   int spcnt, i; | 
 |   if( argv[0] ) fprintf(err,"%s",argv[0]); | 
 |   spcnt = lemonStrlen(argv[0]) + 1; | 
 |   for(i=1; i<n && argv[i]; i++){ | 
 |     fprintf(err," %s",argv[i]); | 
 |     spcnt += lemonStrlen(argv[i])+1; | 
 |   } | 
 |   spcnt += k; | 
 |   for(; argv[i]; i++) fprintf(err," %s",argv[i]); | 
 |   if( spcnt<20 ){ | 
 |     fprintf(err,"\n%*s^-- here\n",spcnt,""); | 
 |   }else{ | 
 |     fprintf(err,"\n%*shere --^\n",spcnt-7,""); | 
 |   } | 
 | } | 
 |  | 
 | /* | 
 | ** Return the index of the N-th non-switch argument.  Return -1 | 
 | ** if N is out of range. | 
 | */ | 
 | static int argindex(int n) | 
 | { | 
 |   int i; | 
 |   int dashdash = 0; | 
 |   if( argv!=0 && *argv!=0 ){ | 
 |     for(i=1; argv[i]; i++){ | 
 |       if( dashdash || !ISOPT(argv[i]) ){ | 
 |         if( n==0 ) return i; | 
 |         n--; | 
 |       } | 
 |       if( strcmp(argv[i],"--")==0 ) dashdash = 1; | 
 |     } | 
 |   } | 
 |   return -1; | 
 | } | 
 |  | 
 | static char emsg[] = "Command line syntax error: "; | 
 |  | 
 | /* | 
 | ** Process a flag command line argument. | 
 | */ | 
 | static int handleflags(int i, FILE *err) | 
 | { | 
 |   int v; | 
 |   int errcnt = 0; | 
 |   int j; | 
 |   for(j=0; op[j].label; j++){ | 
 |     if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; | 
 |   } | 
 |   v = argv[i][0]=='-' ? 1 : 0; | 
 |   if( op[j].label==0 ){ | 
 |     if( err ){ | 
 |       fprintf(err,"%sundefined option.\n",emsg); | 
 |       errline(i,1,err); | 
 |     } | 
 |     errcnt++; | 
 |   }else if( op[j].type==OPT_FLAG ){ | 
 |     *((int*)op[j].arg) = v; | 
 |   }else if( op[j].type==OPT_FFLAG ){ | 
 |     (*(void(*)(int))(op[j].arg))(v); | 
 |   }else if( op[j].type==OPT_FSTR ){ | 
 |     (*(void(*)(char *))(op[j].arg))(&argv[i][2]); | 
 |   }else{ | 
 |     if( err ){ | 
 |       fprintf(err,"%smissing argument on switch.\n",emsg); | 
 |       errline(i,1,err); | 
 |     } | 
 |     errcnt++; | 
 |   } | 
 |   return errcnt; | 
 | } | 
 |  | 
 | /* | 
 | ** Process a command line switch which has an argument. | 
 | */ | 
 | static int handleswitch(int i, FILE *err) | 
 | { | 
 |   int lv = 0; | 
 |   double dv = 0.0; | 
 |   char *sv = 0, *end; | 
 |   char *cp; | 
 |   int j; | 
 |   int errcnt = 0; | 
 |   cp = strchr(argv[i],'='); | 
 |   assert( cp!=0 ); | 
 |   *cp = 0; | 
 |   for(j=0; op[j].label; j++){ | 
 |     if( strcmp(argv[i],op[j].label)==0 ) break; | 
 |   } | 
 |   *cp = '='; | 
 |   if( op[j].label==0 ){ | 
 |     if( err ){ | 
 |       fprintf(err,"%sundefined option.\n",emsg); | 
 |       errline(i,0,err); | 
 |     } | 
 |     errcnt++; | 
 |   }else{ | 
 |     cp++; | 
 |     switch( op[j].type ){ | 
 |       case OPT_FLAG: | 
 |       case OPT_FFLAG: | 
 |         if( err ){ | 
 |           fprintf(err,"%soption requires an argument.\n",emsg); | 
 |           errline(i,0,err); | 
 |         } | 
 |         errcnt++; | 
 |         break; | 
 |       case OPT_DBL: | 
 |       case OPT_FDBL: | 
 |         dv = strtod(cp,&end); | 
 |         if( *end ){ | 
 |           if( err ){ | 
 |             fprintf(err,"%sillegal character in floating-point argument.\n",emsg); | 
 |             errline(i,((unsigned long)end)-(unsigned long)argv[i],err); | 
 |           } | 
 |           errcnt++; | 
 |         } | 
 |         break; | 
 |       case OPT_INT: | 
 |       case OPT_FINT: | 
 |         lv = strtol(cp,&end,0); | 
 |         if( *end ){ | 
 |           if( err ){ | 
 |             fprintf(err,"%sillegal character in integer argument.\n",emsg); | 
 |             errline(i,((unsigned long)end)-(unsigned long)argv[i],err); | 
 |           } | 
 |           errcnt++; | 
 |         } | 
 |         break; | 
 |       case OPT_STR: | 
 |       case OPT_FSTR: | 
 |         sv = cp; | 
 |         break; | 
 |     } | 
 |     switch( op[j].type ){ | 
 |       case OPT_FLAG: | 
 |       case OPT_FFLAG: | 
 |         break; | 
 |       case OPT_DBL: | 
 |         *(double*)(op[j].arg) = dv; | 
 |         break; | 
 |       case OPT_FDBL: | 
 |         (*(void(*)(double))(op[j].arg))(dv); | 
 |         break; | 
 |       case OPT_INT: | 
 |         *(int*)(op[j].arg) = lv; | 
 |         break; | 
 |       case OPT_FINT: | 
 |         (*(void(*)(int))(op[j].arg))((int)lv); | 
 |         break; | 
 |       case OPT_STR: | 
 |         *(char**)(op[j].arg) = sv; | 
 |         break; | 
 |       case OPT_FSTR: | 
 |         (*(void(*)(char *))(op[j].arg))(sv); | 
 |         break; | 
 |     } | 
 |   } | 
 |   return errcnt; | 
 | } | 
 |  | 
 | int OptInit(char **a, struct s_options *o, FILE *err) | 
 | { | 
 |   int errcnt = 0; | 
 |   argv = a; | 
 |   op = o; | 
 |   errstream = err; | 
 |   if( argv && *argv && op ){ | 
 |     int i; | 
 |     for(i=1; argv[i]; i++){ | 
 |       if( argv[i][0]=='+' || argv[i][0]=='-' ){ | 
 |         errcnt += handleflags(i,err); | 
 |       }else if( strchr(argv[i],'=') ){ | 
 |         errcnt += handleswitch(i,err); | 
 |       } | 
 |     } | 
 |   } | 
 |   if( errcnt>0 ){ | 
 |     fprintf(err,"Valid command line options for \"%s\" are:\n",*a); | 
 |     OptPrint(); | 
 |     exit(1); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | int OptNArgs(){ | 
 |   int cnt = 0; | 
 |   int dashdash = 0; | 
 |   int i; | 
 |   if( argv!=0 && argv[0]!=0 ){ | 
 |     for(i=1; argv[i]; i++){ | 
 |       if( dashdash || !ISOPT(argv[i]) ) cnt++; | 
 |       if( strcmp(argv[i],"--")==0 ) dashdash = 1; | 
 |     } | 
 |   } | 
 |   return cnt; | 
 | } | 
 |  | 
 | char *OptArg(int n) | 
 | { | 
 |   int i; | 
 |   i = argindex(n); | 
 |   return i>=0 ? argv[i] : 0; | 
 | } | 
 |  | 
 | void OptErr(int n) | 
 | { | 
 |   int i; | 
 |   i = argindex(n); | 
 |   if( i>=0 ) errline(i,0,errstream); | 
 | } | 
 |  | 
 | void OptPrint(){ | 
 |   int i; | 
 |   int max, len; | 
 |   max = 0; | 
 |   for(i=0; op[i].label; i++){ | 
 |     len = lemonStrlen(op[i].label) + 1; | 
 |     switch( op[i].type ){ | 
 |       case OPT_FLAG: | 
 |       case OPT_FFLAG: | 
 |         break; | 
 |       case OPT_INT: | 
 |       case OPT_FINT: | 
 |         len += 9;       /* length of "<integer>" */ | 
 |         break; | 
 |       case OPT_DBL: | 
 |       case OPT_FDBL: | 
 |         len += 6;       /* length of "<real>" */ | 
 |         break; | 
 |       case OPT_STR: | 
 |       case OPT_FSTR: | 
 |         len += 8;       /* length of "<string>" */ | 
 |         break; | 
 |     } | 
 |     if( len>max ) max = len; | 
 |   } | 
 |   for(i=0; op[i].label; i++){ | 
 |     switch( op[i].type ){ | 
 |       case OPT_FLAG: | 
 |       case OPT_FFLAG: | 
 |         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message); | 
 |         break; | 
 |       case OPT_INT: | 
 |       case OPT_FINT: | 
 |         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label, | 
 |           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); | 
 |         break; | 
 |       case OPT_DBL: | 
 |       case OPT_FDBL: | 
 |         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label, | 
 |           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); | 
 |         break; | 
 |       case OPT_STR: | 
 |       case OPT_FSTR: | 
 |         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label, | 
 |           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 | /*********************** From the file "parse.c" ****************************/ | 
 | /* | 
 | ** Input file parser for the LEMON parser generator. | 
 | */ | 
 |  | 
 | /* The state of the parser */ | 
 | enum e_state { | 
 |   INITIALIZE, | 
 |   WAITING_FOR_DECL_OR_RULE, | 
 |   WAITING_FOR_DECL_KEYWORD, | 
 |   WAITING_FOR_DECL_ARG, | 
 |   WAITING_FOR_PRECEDENCE_SYMBOL, | 
 |   WAITING_FOR_ARROW, | 
 |   IN_RHS, | 
 |   LHS_ALIAS_1, | 
 |   LHS_ALIAS_2, | 
 |   LHS_ALIAS_3, | 
 |   RHS_ALIAS_1, | 
 |   RHS_ALIAS_2, | 
 |   PRECEDENCE_MARK_1, | 
 |   PRECEDENCE_MARK_2, | 
 |   RESYNC_AFTER_RULE_ERROR, | 
 |   RESYNC_AFTER_DECL_ERROR, | 
 |   WAITING_FOR_DESTRUCTOR_SYMBOL, | 
 |   WAITING_FOR_DATATYPE_SYMBOL, | 
 |   WAITING_FOR_FALLBACK_ID, | 
 |   WAITING_FOR_WILDCARD_ID | 
 | }; | 
 | struct pstate { | 
 |   char *filename;       /* Name of the input file */ | 
 |   int tokenlineno;      /* Linenumber at which current token starts */ | 
 |   int errorcnt;         /* Number of errors so far */ | 
 |   char *tokenstart;     /* Text of current token */ | 
 |   struct lemon *gp;     /* Global state vector */ | 
 |   enum e_state state;        /* The state of the parser */ | 
 |   struct symbol *fallback;   /* The fallback token */ | 
 |   struct symbol *lhs;        /* Left-hand side of current rule */ | 
 |   const char *lhsalias;      /* Alias for the LHS */ | 
 |   int nrhs;                  /* Number of right-hand side symbols seen */ | 
 |   struct symbol *rhs[MAXRHS];  /* RHS symbols */ | 
 |   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ | 
 |   struct rule *prevrule;     /* Previous rule parsed */ | 
 |   const char *declkeyword;   /* Keyword of a declaration */ | 
 |   char **declargslot;        /* Where the declaration argument should be put */ | 
 |   int insertLineMacro;       /* Add #line before declaration insert */ | 
 |   int *decllinenoslot;       /* Where to write declaration line number */ | 
 |   enum e_assoc declassoc;    /* Assign this association to decl arguments */ | 
 |   int preccounter;           /* Assign this precedence to decl arguments */ | 
 |   struct rule *firstrule;    /* Pointer to first rule in the grammar */ | 
 |   struct rule *lastrule;     /* Pointer to the most recently parsed rule */ | 
 | }; | 
 |  | 
 | /* Parse a single token */ | 
 | static void parseonetoken(struct pstate *psp) | 
 | { | 
 |   const char *x; | 
 |   x = Strsafe(psp->tokenstart);     /* Save the token permanently */ | 
 | #if 0 | 
 |   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, | 
 |     x,psp->state); | 
 | #endif | 
 |   switch( psp->state ){ | 
 |     case INITIALIZE: | 
 |       psp->prevrule = 0; | 
 |       psp->preccounter = 0; | 
 |       psp->firstrule = psp->lastrule = 0; | 
 |       psp->gp->nrule = 0; | 
 |       /* Fall thru to next case */ | 
 |     case WAITING_FOR_DECL_OR_RULE: | 
 |       if( x[0]=='%' ){ | 
 |         psp->state = WAITING_FOR_DECL_KEYWORD; | 
 |       }else if( islower(x[0]) ){ | 
 |         psp->lhs = Symbol_new(x); | 
 |         psp->nrhs = 0; | 
 |         psp->lhsalias = 0; | 
 |         psp->state = WAITING_FOR_ARROW; | 
 |       }else if( x[0]=='{' ){ | 
 |         if( psp->prevrule==0 ){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 | "There is no prior rule opon which to attach the code \ | 
 | fragment which begins on this line."); | 
 |           psp->errorcnt++; | 
 | 	}else if( psp->prevrule->code!=0 ){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 | "Code fragment beginning on this line is not the first \ | 
 | to follow the previous rule."); | 
 |           psp->errorcnt++; | 
 |         }else{ | 
 |           psp->prevrule->line = psp->tokenlineno; | 
 |           psp->prevrule->code = &x[1]; | 
 | 	} | 
 |       }else if( x[0]=='[' ){ | 
 |         psp->state = PRECEDENCE_MARK_1; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Token \"%s\" should be either \"%%\" or a nonterminal name.", | 
 |           x); | 
 |         psp->errorcnt++; | 
 |       } | 
 |       break; | 
 |     case PRECEDENCE_MARK_1: | 
 |       if( !isupper(x[0]) ){ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "The precedence symbol must be a terminal."); | 
 |         psp->errorcnt++; | 
 |       }else if( psp->prevrule==0 ){ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "There is no prior rule to assign precedence \"[%s]\".",x); | 
 |         psp->errorcnt++; | 
 |       }else if( psp->prevrule->precsym!=0 ){ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 | "Precedence mark on this line is not the first \ | 
 | to follow the previous rule."); | 
 |         psp->errorcnt++; | 
 |       }else{ | 
 |         psp->prevrule->precsym = Symbol_new(x); | 
 |       } | 
 |       psp->state = PRECEDENCE_MARK_2; | 
 |       break; | 
 |     case PRECEDENCE_MARK_2: | 
 |       if( x[0]!=']' ){ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Missing \"]\" on precedence mark."); | 
 |         psp->errorcnt++; | 
 |       } | 
 |       psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       break; | 
 |     case WAITING_FOR_ARROW: | 
 |       if( x[0]==':' && x[1]==':' && x[2]=='=' ){ | 
 |         psp->state = IN_RHS; | 
 |       }else if( x[0]=='(' ){ | 
 |         psp->state = LHS_ALIAS_1; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Expected to see a \":\" following the LHS symbol \"%s\".", | 
 |           psp->lhs->name); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case LHS_ALIAS_1: | 
 |       if( isalpha(x[0]) ){ | 
 |         psp->lhsalias = x; | 
 |         psp->state = LHS_ALIAS_2; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "\"%s\" is not a valid alias for the LHS \"%s\"\n", | 
 |           x,psp->lhs->name); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case LHS_ALIAS_2: | 
 |       if( x[0]==')' ){ | 
 |         psp->state = LHS_ALIAS_3; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case LHS_ALIAS_3: | 
 |       if( x[0]==':' && x[1]==':' && x[2]=='=' ){ | 
 |         psp->state = IN_RHS; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Missing \"->\" following: \"%s(%s)\".", | 
 |            psp->lhs->name,psp->lhsalias); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case IN_RHS: | 
 |       if( x[0]=='.' ){ | 
 |         struct rule *rp; | 
 |         rp = (struct rule *)calloc( sizeof(struct rule) +  | 
 |              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); | 
 |         if( rp==0 ){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 |             "Can't allocate enough memory for this rule."); | 
 |           psp->errorcnt++; | 
 |           psp->prevrule = 0; | 
 | 	}else{ | 
 |           int i; | 
 |           rp->ruleline = psp->tokenlineno; | 
 |           rp->rhs = (struct symbol**)&rp[1]; | 
 |           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); | 
 |           for(i=0; i<psp->nrhs; i++){ | 
 |             rp->rhs[i] = psp->rhs[i]; | 
 |             rp->rhsalias[i] = psp->alias[i]; | 
 | 	  } | 
 |           rp->lhs = psp->lhs; | 
 |           rp->lhsalias = psp->lhsalias; | 
 |           rp->nrhs = psp->nrhs; | 
 |           rp->code = 0; | 
 |           rp->precsym = 0; | 
 |           rp->index = psp->gp->nrule++; | 
 |           rp->nextlhs = rp->lhs->rule; | 
 |           rp->lhs->rule = rp; | 
 |           rp->next = 0; | 
 |           if( psp->firstrule==0 ){ | 
 |             psp->firstrule = psp->lastrule = rp; | 
 | 	  }else{ | 
 |             psp->lastrule->next = rp; | 
 |             psp->lastrule = rp; | 
 | 	  } | 
 |           psp->prevrule = rp; | 
 | 	} | 
 |         psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       }else if( isalpha(x[0]) ){ | 
 |         if( psp->nrhs>=MAXRHS ){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 |             "Too many symbols on RHS of rule beginning at \"%s\".", | 
 |             x); | 
 |           psp->errorcnt++; | 
 |           psp->state = RESYNC_AFTER_RULE_ERROR; | 
 | 	}else{ | 
 |           psp->rhs[psp->nrhs] = Symbol_new(x); | 
 |           psp->alias[psp->nrhs] = 0; | 
 |           psp->nrhs++; | 
 | 	} | 
 |       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ | 
 |         struct symbol *msp = psp->rhs[psp->nrhs-1]; | 
 |         if( msp->type!=MULTITERMINAL ){ | 
 |           struct symbol *origsp = msp; | 
 |           msp = (struct symbol *) calloc(1,sizeof(*msp)); | 
 |           memset(msp, 0, sizeof(*msp)); | 
 |           msp->type = MULTITERMINAL; | 
 |           msp->nsubsym = 1; | 
 |           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); | 
 |           msp->subsym[0] = origsp; | 
 |           msp->name = origsp->name; | 
 |           psp->rhs[psp->nrhs-1] = msp; | 
 |         } | 
 |         msp->nsubsym++; | 
 |         msp->subsym = (struct symbol **) realloc(msp->subsym, | 
 |           sizeof(struct symbol*)*msp->nsubsym); | 
 |         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); | 
 |         if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 |             "Cannot form a compound containing a non-terminal"); | 
 |           psp->errorcnt++; | 
 |         } | 
 |       }else if( x[0]=='(' && psp->nrhs>0 ){ | 
 |         psp->state = RHS_ALIAS_1; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Illegal character on RHS of rule: \"%s\".",x); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case RHS_ALIAS_1: | 
 |       if( isalpha(x[0]) ){ | 
 |         psp->alias[psp->nrhs-1] = x; | 
 |         psp->state = RHS_ALIAS_2; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", | 
 |           x,psp->rhs[psp->nrhs-1]->name); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case RHS_ALIAS_2: | 
 |       if( x[0]==')' ){ | 
 |         psp->state = IN_RHS; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_RULE_ERROR; | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_DECL_KEYWORD: | 
 |       if( isalpha(x[0]) ){ | 
 |         psp->declkeyword = x; | 
 |         psp->declargslot = 0; | 
 |         psp->decllinenoslot = 0; | 
 |         psp->insertLineMacro = 1; | 
 |         psp->state = WAITING_FOR_DECL_ARG; | 
 |         if( strcmp(x,"name")==0 ){ | 
 |           psp->declargslot = &(psp->gp->name); | 
 |           psp->insertLineMacro = 0; | 
 | 	}else if( strcmp(x,"include")==0 ){ | 
 |           psp->declargslot = &(psp->gp->include); | 
 | 	}else if( strcmp(x,"code")==0 ){ | 
 |           psp->declargslot = &(psp->gp->extracode); | 
 | 	}else if( strcmp(x,"token_destructor")==0 ){ | 
 |           psp->declargslot = &psp->gp->tokendest; | 
 | 	}else if( strcmp(x,"default_destructor")==0 ){ | 
 |           psp->declargslot = &psp->gp->vardest; | 
 | 	}else if( strcmp(x,"token_prefix")==0 ){ | 
 |           psp->declargslot = &psp->gp->tokenprefix; | 
 |           psp->insertLineMacro = 0; | 
 | 	}else if( strcmp(x,"syntax_error")==0 ){ | 
 |           psp->declargslot = &(psp->gp->error); | 
 | 	}else if( strcmp(x,"parse_accept")==0 ){ | 
 |           psp->declargslot = &(psp->gp->accept); | 
 | 	}else if( strcmp(x,"parse_failure")==0 ){ | 
 |           psp->declargslot = &(psp->gp->failure); | 
 | 	}else if( strcmp(x,"stack_overflow")==0 ){ | 
 |           psp->declargslot = &(psp->gp->overflow); | 
 |         }else if( strcmp(x,"extra_argument")==0 ){ | 
 |           psp->declargslot = &(psp->gp->arg); | 
 |           psp->insertLineMacro = 0; | 
 |         }else if( strcmp(x,"token_type")==0 ){ | 
 |           psp->declargslot = &(psp->gp->tokentype); | 
 |           psp->insertLineMacro = 0; | 
 |         }else if( strcmp(x,"default_type")==0 ){ | 
 |           psp->declargslot = &(psp->gp->vartype); | 
 |           psp->insertLineMacro = 0; | 
 |         }else if( strcmp(x,"stack_size")==0 ){ | 
 |           psp->declargslot = &(psp->gp->stacksize); | 
 |           psp->insertLineMacro = 0; | 
 |         }else if( strcmp(x,"start_symbol")==0 ){ | 
 |           psp->declargslot = &(psp->gp->start); | 
 |           psp->insertLineMacro = 0; | 
 |         }else if( strcmp(x,"left")==0 ){ | 
 |           psp->preccounter++; | 
 |           psp->declassoc = LEFT; | 
 |           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | 
 |         }else if( strcmp(x,"right")==0 ){ | 
 |           psp->preccounter++; | 
 |           psp->declassoc = RIGHT; | 
 |           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | 
 |         }else if( strcmp(x,"nonassoc")==0 ){ | 
 |           psp->preccounter++; | 
 |           psp->declassoc = NONE; | 
 |           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | 
 | 	}else if( strcmp(x,"destructor")==0 ){ | 
 |           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; | 
 | 	}else if( strcmp(x,"type")==0 ){ | 
 |           psp->state = WAITING_FOR_DATATYPE_SYMBOL; | 
 |         }else if( strcmp(x,"fallback")==0 ){ | 
 |           psp->fallback = 0; | 
 |           psp->state = WAITING_FOR_FALLBACK_ID; | 
 |         }else if( strcmp(x,"wildcard")==0 ){ | 
 |           psp->state = WAITING_FOR_WILDCARD_ID; | 
 |         }else{ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 |             "Unknown declaration keyword: \"%%%s\".",x); | 
 |           psp->errorcnt++; | 
 |           psp->state = RESYNC_AFTER_DECL_ERROR; | 
 | 	} | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Illegal declaration keyword: \"%s\".",x); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_DECL_ERROR; | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_DESTRUCTOR_SYMBOL: | 
 |       if( !isalpha(x[0]) ){ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Symbol name missing after %%destructor keyword"); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_DECL_ERROR; | 
 |       }else{ | 
 |         struct symbol *sp = Symbol_new(x); | 
 |         psp->declargslot = &sp->destructor; | 
 |         psp->decllinenoslot = &sp->destLineno; | 
 |         psp->insertLineMacro = 1; | 
 |         psp->state = WAITING_FOR_DECL_ARG; | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_DATATYPE_SYMBOL: | 
 |       if( !isalpha(x[0]) ){ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Symbol name missing after %%type keyword"); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_DECL_ERROR; | 
 |       }else{ | 
 |         struct symbol *sp = Symbol_find(x); | 
 |         if((sp) && (sp->datatype)){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 |             "Symbol %%type \"%s\" already defined", x); | 
 |           psp->errorcnt++; | 
 |           psp->state = RESYNC_AFTER_DECL_ERROR; | 
 |         }else{ | 
 |           if (!sp){ | 
 |             sp = Symbol_new(x); | 
 |           } | 
 |           psp->declargslot = &sp->datatype; | 
 |           psp->insertLineMacro = 0; | 
 |           psp->state = WAITING_FOR_DECL_ARG; | 
 |         } | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_PRECEDENCE_SYMBOL: | 
 |       if( x[0]=='.' ){ | 
 |         psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       }else if( isupper(x[0]) ){ | 
 |         struct symbol *sp; | 
 |         sp = Symbol_new(x); | 
 |         if( sp->prec>=0 ){ | 
 |           ErrorMsg(psp->filename,psp->tokenlineno, | 
 |             "Symbol \"%s\" has already be given a precedence.",x); | 
 |           psp->errorcnt++; | 
 | 	}else{ | 
 |           sp->prec = psp->preccounter; | 
 |           sp->assoc = psp->declassoc; | 
 | 	} | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Can't assign a precedence to \"%s\".",x); | 
 |         psp->errorcnt++; | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_DECL_ARG: | 
 |       if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ | 
 |         const char *zOld, *zNew; | 
 |         char *zBuf, *z; | 
 |         int nOld, n, nLine, nNew, nBack; | 
 |         int addLineMacro; | 
 |         char zLine[50]; | 
 |         zNew = x; | 
 |         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; | 
 |         nNew = lemonStrlen(zNew); | 
 |         if( *psp->declargslot ){ | 
 |           zOld = *psp->declargslot; | 
 |         }else{ | 
 |           zOld = ""; | 
 |         } | 
 |         nOld = lemonStrlen(zOld); | 
 |         n = nOld + nNew + 20; | 
 |         addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && | 
 |                         (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); | 
 |         if( addLineMacro ){ | 
 |           for(z=psp->filename, nBack=0; *z; z++){ | 
 |             if( *z=='\\' ) nBack++; | 
 |           } | 
 |           sprintf(zLine, "#line %d ", psp->tokenlineno); | 
 |           nLine = lemonStrlen(zLine); | 
 |           n += nLine + lemonStrlen(psp->filename) + nBack; | 
 |         } | 
 |         *psp->declargslot = (char *) realloc(*psp->declargslot, n); | 
 |         zBuf = *psp->declargslot + nOld; | 
 |         if( addLineMacro ){ | 
 |           if( nOld && zBuf[-1]!='\n' ){ | 
 |             *(zBuf++) = '\n'; | 
 |           } | 
 |           memcpy(zBuf, zLine, nLine); | 
 |           zBuf += nLine; | 
 |           *(zBuf++) = '"'; | 
 |           for(z=psp->filename; *z; z++){ | 
 |             if( *z=='\\' ){ | 
 |               *(zBuf++) = '\\'; | 
 |             } | 
 |             *(zBuf++) = *z; | 
 |           } | 
 |           *(zBuf++) = '"'; | 
 |           *(zBuf++) = '\n'; | 
 |         } | 
 |         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ | 
 |           psp->decllinenoslot[0] = psp->tokenlineno; | 
 |         } | 
 |         memcpy(zBuf, zNew, nNew); | 
 |         zBuf += nNew; | 
 |         *zBuf = 0; | 
 |         psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       }else{ | 
 |         ErrorMsg(psp->filename,psp->tokenlineno, | 
 |           "Illegal argument to %%%s: %s",psp->declkeyword,x); | 
 |         psp->errorcnt++; | 
 |         psp->state = RESYNC_AFTER_DECL_ERROR; | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_FALLBACK_ID: | 
 |       if( x[0]=='.' ){ | 
 |         psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       }else if( !isupper(x[0]) ){ | 
 |         ErrorMsg(psp->filename, psp->tokenlineno, | 
 |           "%%fallback argument \"%s\" should be a token", x); | 
 |         psp->errorcnt++; | 
 |       }else{ | 
 |         struct symbol *sp = Symbol_new(x); | 
 |         if( psp->fallback==0 ){ | 
 |           psp->fallback = sp; | 
 |         }else if( sp->fallback ){ | 
 |           ErrorMsg(psp->filename, psp->tokenlineno, | 
 |             "More than one fallback assigned to token %s", x); | 
 |           psp->errorcnt++; | 
 |         }else{ | 
 |           sp->fallback = psp->fallback; | 
 |           psp->gp->has_fallback = 1; | 
 |         } | 
 |       } | 
 |       break; | 
 |     case WAITING_FOR_WILDCARD_ID: | 
 |       if( x[0]=='.' ){ | 
 |         psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       }else if( !isupper(x[0]) ){ | 
 |         ErrorMsg(psp->filename, psp->tokenlineno, | 
 |           "%%wildcard argument \"%s\" should be a token", x); | 
 |         psp->errorcnt++; | 
 |       }else{ | 
 |         struct symbol *sp = Symbol_new(x); | 
 |         if( psp->gp->wildcard==0 ){ | 
 |           psp->gp->wildcard = sp; | 
 |         }else{ | 
 |           ErrorMsg(psp->filename, psp->tokenlineno, | 
 |             "Extra wildcard to token: %s", x); | 
 |           psp->errorcnt++; | 
 |         } | 
 |       } | 
 |       break; | 
 |     case RESYNC_AFTER_RULE_ERROR: | 
 | /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; | 
 | **      break; */ | 
 |     case RESYNC_AFTER_DECL_ERROR: | 
 |       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; | 
 |       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | /* Run the preprocessor over the input file text.  The global variables | 
 | ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined | 
 | ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and | 
 | ** comments them out.  Text in between is also commented out as appropriate. | 
 | */ | 
 | static void preprocess_input(char *z){ | 
 |   int i, j, k, n; | 
 |   int exclude = 0; | 
 |   int start = 0; | 
 |   int lineno = 1; | 
 |   int start_lineno = 1; | 
 |   for(i=0; z[i]; i++){ | 
 |     if( z[i]=='\n' ) lineno++; | 
 |     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; | 
 |     if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ | 
 |       if( exclude ){ | 
 |         exclude--; | 
 |         if( exclude==0 ){ | 
 |           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; | 
 |         } | 
 |       } | 
 |       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; | 
 |     }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6])) | 
 |           || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){ | 
 |       if( exclude ){ | 
 |         exclude++; | 
 |       }else{ | 
 |         for(j=i+7; isspace(z[j]); j++){} | 
 |         for(n=0; z[j+n] && !isspace(z[j+n]); n++){} | 
 |         exclude = 1; | 
 |         for(k=0; k<nDefine; k++){ | 
 |           if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ | 
 |             exclude = 0; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if( z[i+3]=='n' ) exclude = !exclude; | 
 |         if( exclude ){ | 
 |           start = i; | 
 |           start_lineno = lineno; | 
 |         } | 
 |       } | 
 |       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; | 
 |     } | 
 |   } | 
 |   if( exclude ){ | 
 |     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); | 
 |     exit(1); | 
 |   } | 
 | } | 
 |  | 
 | /* In spite of its name, this function is really a scanner.  It read | 
 | ** in the entire input file (all at once) then tokenizes it.  Each | 
 | ** token is passed to the function "parseonetoken" which builds all | 
 | ** the appropriate data structures in the global state vector "gp". | 
 | */ | 
 | void Parse(struct lemon *gp) | 
 | { | 
 |   struct pstate ps; | 
 |   FILE *fp; | 
 |   char *filebuf; | 
 |   int filesize; | 
 |   int lineno; | 
 |   int c; | 
 |   char *cp, *nextcp; | 
 |   int startline = 0; | 
 |  | 
 |   memset(&ps, '\0', sizeof(ps)); | 
 |   ps.gp = gp; | 
 |   ps.filename = gp->filename; | 
 |   ps.errorcnt = 0; | 
 |   ps.state = INITIALIZE; | 
 |  | 
 |   /* Begin by reading the input file */ | 
 |   fp = fopen(ps.filename,"rb"); | 
 |   if( fp==0 ){ | 
 |     ErrorMsg(ps.filename,0,"Can't open this file for reading."); | 
 |     gp->errorcnt++; | 
 |     return; | 
 |   } | 
 |   fseek(fp,0,2); | 
 |   filesize = ftell(fp); | 
 |   rewind(fp); | 
 |   filebuf = (char *)malloc( filesize+1 ); | 
 |   if( filebuf==0 ){ | 
 |     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.", | 
 |       filesize+1); | 
 |     gp->errorcnt++; | 
 |     return; | 
 |   } | 
 |   if( fread(filebuf,1,filesize,fp)!=filesize ){ | 
 |     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", | 
 |       filesize); | 
 |     free(filebuf); | 
 |     gp->errorcnt++; | 
 |     return; | 
 |   } | 
 |   fclose(fp); | 
 |   filebuf[filesize] = 0; | 
 |  | 
 |   /* Make an initial pass through the file to handle %ifdef and %ifndef */ | 
 |   preprocess_input(filebuf); | 
 |  | 
 |   /* Now scan the text of the input file */ | 
 |   lineno = 1; | 
 |   for(cp=filebuf; (c= *cp)!=0; ){ | 
 |     if( c=='\n' ) lineno++;              /* Keep track of the line number */ | 
 |     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */ | 
 |     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */ | 
 |       cp+=2; | 
 |       while( (c= *cp)!=0 && c!='\n' ) cp++; | 
 |       continue; | 
 |     } | 
 |     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */ | 
 |       cp+=2; | 
 |       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ | 
 |         if( c=='\n' ) lineno++; | 
 |         cp++; | 
 |       } | 
 |       if( c ) cp++; | 
 |       continue; | 
 |     } | 
 |     ps.tokenstart = cp;                /* Mark the beginning of the token */ | 
 |     ps.tokenlineno = lineno;           /* Linenumber on which token begins */ | 
 |     if( c=='\"' ){                     /* String literals */ | 
 |       cp++; | 
 |       while( (c= *cp)!=0 && c!='\"' ){ | 
 |         if( c=='\n' ) lineno++; | 
 |         cp++; | 
 |       } | 
 |       if( c==0 ){ | 
 |         ErrorMsg(ps.filename,startline, | 
 | "String starting on this line is not terminated before the end of the file."); | 
 |         ps.errorcnt++; | 
 |         nextcp = cp; | 
 |       }else{ | 
 |         nextcp = cp+1; | 
 |       } | 
 |     }else if( c=='{' ){               /* A block of C code */ | 
 |       int level; | 
 |       cp++; | 
 |       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ | 
 |         if( c=='\n' ) lineno++; | 
 |         else if( c=='{' ) level++; | 
 |         else if( c=='}' ) level--; | 
 |         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */ | 
 |           int prevc; | 
 |           cp = &cp[2]; | 
 |           prevc = 0; | 
 |           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ | 
 |             if( c=='\n' ) lineno++; | 
 |             prevc = c; | 
 |             cp++; | 
 | 	  } | 
 | 	}else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */ | 
 |           cp = &cp[2]; | 
 |           while( (c= *cp)!=0 && c!='\n' ) cp++; | 
 |           if( c ) lineno++; | 
 | 	}else if( c=='\'' || c=='\"' ){    /* String a character literals */ | 
 |           int startchar, prevc; | 
 |           startchar = c; | 
 |           prevc = 0; | 
 |           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ | 
 |             if( c=='\n' ) lineno++; | 
 |             if( prevc=='\\' ) prevc = 0; | 
 |             else              prevc = c; | 
 | 	  } | 
 | 	} | 
 |       } | 
 |       if( c==0 ){ | 
 |         ErrorMsg(ps.filename,ps.tokenlineno, | 
 | "C code starting on this line is not terminated before the end of the file."); | 
 |         ps.errorcnt++; | 
 |         nextcp = cp; | 
 |       }else{ | 
 |         nextcp = cp+1; | 
 |       } | 
 |     }else if( isalnum(c) ){          /* Identifiers */ | 
 |       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; | 
 |       nextcp = cp; | 
 |     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ | 
 |       cp += 3; | 
 |       nextcp = cp; | 
 |     }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ | 
 |       cp += 2; | 
 |       while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; | 
 |       nextcp = cp; | 
 |     }else{                          /* All other (one character) operators */ | 
 |       cp++; | 
 |       nextcp = cp; | 
 |     } | 
 |     c = *cp; | 
 |     *cp = 0;                        /* Null terminate the token */ | 
 |     parseonetoken(&ps);             /* Parse the token */ | 
 |     *cp = c;                        /* Restore the buffer */ | 
 |     cp = nextcp; | 
 |   } | 
 |   free(filebuf);                    /* Release the buffer after parsing */ | 
 |   gp->rule = ps.firstrule; | 
 |   gp->errorcnt = ps.errorcnt; | 
 | } | 
 | /*************************** From the file "plink.c" *********************/ | 
 | /* | 
 | ** Routines processing configuration follow-set propagation links | 
 | ** in the LEMON parser generator. | 
 | */ | 
 | static struct plink *plink_freelist = 0; | 
 |  | 
 | /* Allocate a new plink */ | 
 | struct plink *Plink_new(){ | 
 |   struct plink *newlink; | 
 |  | 
 |   if( plink_freelist==0 ){ | 
 |     int i; | 
 |     int amt = 100; | 
 |     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); | 
 |     if( plink_freelist==0 ){ | 
 |       fprintf(stderr, | 
 |       "Unable to allocate memory for a new follow-set propagation link.\n"); | 
 |       exit(1); | 
 |     } | 
 |     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; | 
 |     plink_freelist[amt-1].next = 0; | 
 |   } | 
 |   newlink = plink_freelist; | 
 |   plink_freelist = plink_freelist->next; | 
 |   return newlink; | 
 | } | 
 |  | 
 | /* Add a plink to a plink list */ | 
 | void Plink_add(struct plink **plpp, struct config *cfp) | 
 | { | 
 |   struct plink *newlink; | 
 |   newlink = Plink_new(); | 
 |   newlink->next = *plpp; | 
 |   *plpp = newlink; | 
 |   newlink->cfp = cfp; | 
 | } | 
 |  | 
 | /* Transfer every plink on the list "from" to the list "to" */ | 
 | void Plink_copy(struct plink **to, struct plink *from) | 
 | { | 
 |   struct plink *nextpl; | 
 |   while( from ){ | 
 |     nextpl = from->next; | 
 |     from->next = *to; | 
 |     *to = from; | 
 |     from = nextpl; | 
 |   } | 
 | } | 
 |  | 
 | /* Delete every plink on the list */ | 
 | void Plink_delete(struct plink *plp) | 
 | { | 
 |   struct plink *nextpl; | 
 |  | 
 |   while( plp ){ | 
 |     nextpl = plp->next; | 
 |     plp->next = plink_freelist; | 
 |     plink_freelist = plp; | 
 |     plp = nextpl; | 
 |   } | 
 | } | 
 | /*********************** From the file "report.c" **************************/ | 
 | /* | 
 | ** Procedures for generating reports and tables in the LEMON parser generator. | 
 | */ | 
 |  | 
 | /* Generate a filename with the given suffix.  Space to hold the | 
 | ** name comes from malloc() and must be freed by the calling | 
 | ** function. | 
 | */ | 
 | PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) | 
 | { | 
 |   char *name; | 
 |   char *cp; | 
 |  | 
 |   name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); | 
 |   if( name==0 ){ | 
 |     fprintf(stderr,"Can't allocate space for a filename.\n"); | 
 |     exit(1); | 
 |   } | 
 |   strcpy(name,lemp->filename); | 
 |   cp = strrchr(name,'.'); | 
 |   if( cp ) *cp = 0; | 
 |   strcat(name,suffix); | 
 |   return name; | 
 | } | 
 |  | 
 | /* Open a file with a name based on the name of the input file, | 
 | ** but with a different (specified) suffix, and return a pointer | 
 | ** to the stream */ | 
 | PRIVATE FILE *file_open( | 
 |   struct lemon *lemp, | 
 |   const char *suffix, | 
 |   const char *mode | 
 | ){ | 
 |   FILE *fp; | 
 |  | 
 |   if( lemp->outname ) free(lemp->outname); | 
 |   lemp->outname = file_makename(lemp, suffix); | 
 |   fp = fopen(lemp->outname,mode); | 
 |   if( fp==0 && *mode=='w' ){ | 
 |     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); | 
 |     lemp->errorcnt++; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /* Add files we create to a list, so we can delete them if we fail. This | 
 |   ** is to keep makefiles from getting confused. We don't include .out files, | 
 |   ** though: this is debug information, and you don't want it deleted if there | 
 |   ** was an error you need to track down. | 
 |   */ | 
 |   if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){ | 
 |     const char **ptr = (const char **) | 
 |         realloc(made_files, sizeof (const char **) * (made_files_count + 1)); | 
 |     const char *fname = Strsafe(lemp->outname); | 
 |     if ((ptr == NULL) || (fname == NULL)) { | 
 |         free(ptr); | 
 |         memory_error(); | 
 |     } | 
 |     made_files = ptr; | 
 |     made_files[made_files_count++] = fname; | 
 |   } | 
 |   return fp; | 
 | } | 
 |  | 
 | /* Duplicate the input file without comments and without actions  | 
 | ** on rules */ | 
 | void Reprint(struct lemon *lemp) | 
 | { | 
 |   struct rule *rp; | 
 |   struct symbol *sp; | 
 |   int i, j, maxlen, len, ncolumns, skip; | 
 |   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); | 
 |   maxlen = 10; | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     sp = lemp->symbols[i]; | 
 |     len = lemonStrlen(sp->name); | 
 |     if( len>maxlen ) maxlen = len; | 
 |   } | 
 |   ncolumns = 76/(maxlen+5); | 
 |   if( ncolumns<1 ) ncolumns = 1; | 
 |   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; | 
 |   for(i=0; i<skip; i++){ | 
 |     printf("//"); | 
 |     for(j=i; j<lemp->nsymbol; j+=skip){ | 
 |       sp = lemp->symbols[j]; | 
 |       assert( sp->index==j ); | 
 |       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); | 
 |     } | 
 |     printf("\n"); | 
 |   } | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     printf("%s",rp->lhs->name); | 
 |     /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ | 
 |     printf(" ::="); | 
 |     for(i=0; i<rp->nrhs; i++){ | 
 |       sp = rp->rhs[i]; | 
 |       printf(" %s", sp->name); | 
 |       if( sp->type==MULTITERMINAL ){ | 
 |         for(j=1; j<sp->nsubsym; j++){ | 
 |           printf("|%s", sp->subsym[j]->name); | 
 |         } | 
 |       } | 
 |       /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ | 
 |     } | 
 |     printf("."); | 
 |     if( rp->precsym ) printf(" [%s]",rp->precsym->name); | 
 |     /* if( rp->code ) printf("\n    %s",rp->code); */ | 
 |     printf("\n"); | 
 |   } | 
 | } | 
 |  | 
 | void ConfigPrint(FILE *fp, struct config *cfp) | 
 | { | 
 |   struct rule *rp; | 
 |   struct symbol *sp; | 
 |   int i, j; | 
 |   rp = cfp->rp; | 
 |   fprintf(fp,"%s ::=",rp->lhs->name); | 
 |   for(i=0; i<=rp->nrhs; i++){ | 
 |     if( i==cfp->dot ) fprintf(fp," *"); | 
 |     if( i==rp->nrhs ) break; | 
 |     sp = rp->rhs[i]; | 
 |     fprintf(fp," %s", sp->name); | 
 |     if( sp->type==MULTITERMINAL ){ | 
 |       for(j=1; j<sp->nsubsym; j++){ | 
 |         fprintf(fp,"|%s",sp->subsym[j]->name); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /* #define TEST */ | 
 | #if 0 | 
 | /* Print a set */ | 
 | PRIVATE void SetPrint(out,set,lemp) | 
 | FILE *out; | 
 | char *set; | 
 | struct lemon *lemp; | 
 | { | 
 |   int i; | 
 |   char *spacer; | 
 |   spacer = ""; | 
 |   fprintf(out,"%12s[",""); | 
 |   for(i=0; i<lemp->nterminal; i++){ | 
 |     if( SetFind(set,i) ){ | 
 |       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); | 
 |       spacer = " "; | 
 |     } | 
 |   } | 
 |   fprintf(out,"]\n"); | 
 | } | 
 |  | 
 | /* Print a plink chain */ | 
 | PRIVATE void PlinkPrint(out,plp,tag) | 
 | FILE *out; | 
 | struct plink *plp; | 
 | char *tag; | 
 | { | 
 |   while( plp ){ | 
 |     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); | 
 |     ConfigPrint(out,plp->cfp); | 
 |     fprintf(out,"\n"); | 
 |     plp = plp->next; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | /* Print an action to the given file descriptor.  Return FALSE if | 
 | ** nothing was actually printed. | 
 | */ | 
 | int PrintAction(struct action *ap, FILE *fp, int indent){ | 
 |   int result = 1; | 
 |   switch( ap->type ){ | 
 |     case SHIFT: | 
 |       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->statenum); | 
 |       break; | 
 |     case REDUCE: | 
 |       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); | 
 |       break; | 
 |     case ACCEPT: | 
 |       fprintf(fp,"%*s accept",indent,ap->sp->name); | 
 |       break; | 
 |     case ERROR: | 
 |       fprintf(fp,"%*s error",indent,ap->sp->name); | 
 |       break; | 
 |     case SRCONFLICT: | 
 |     case RRCONFLICT: | 
 |       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", | 
 |         indent,ap->sp->name,ap->x.rp->index); | 
 |       break; | 
 |     case SSCONFLICT: | 
 |       fprintf(fp,"%*s shift  %-3d ** Parsing conflict **",  | 
 |         indent,ap->sp->name,ap->x.stp->statenum); | 
 |       break; | 
 |     case SH_RESOLVED: | 
 |       if( showPrecedenceConflict ){ | 
 |         fprintf(fp,"%*s shift  %-3d -- dropped by precedence", | 
 |                 indent,ap->sp->name,ap->x.stp->statenum); | 
 |       }else{ | 
 |         result = 0; | 
 |       } | 
 |       break; | 
 |     case RD_RESOLVED: | 
 |       if( showPrecedenceConflict ){ | 
 |         fprintf(fp,"%*s reduce %-3d -- dropped by precedence", | 
 |                 indent,ap->sp->name,ap->x.rp->index); | 
 |       }else{ | 
 |         result = 0; | 
 |       } | 
 |       break; | 
 |     case NOT_USED: | 
 |       result = 0; | 
 |       break; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | /* Generate the "y.output" log file */ | 
 | void ReportOutput(struct lemon *lemp) | 
 | { | 
 |   int i; | 
 |   struct state *stp; | 
 |   struct config *cfp; | 
 |   struct action *ap; | 
 |   FILE *fp; | 
 |  | 
 |   fp = file_open(lemp,".out","wb"); | 
 |   if( fp==0 ) return; | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     fprintf(fp,"State %d:\n",stp->statenum); | 
 |     if( lemp->basisflag ) cfp=stp->bp; | 
 |     else                  cfp=stp->cfp; | 
 |     while( cfp ){ | 
 |       char buf[20]; | 
 |       if( cfp->dot==cfp->rp->nrhs ){ | 
 |         sprintf(buf,"(%d)",cfp->rp->index); | 
 |         fprintf(fp,"    %5s ",buf); | 
 |       }else{ | 
 |         fprintf(fp,"          "); | 
 |       } | 
 |       ConfigPrint(fp,cfp); | 
 |       fprintf(fp,"\n"); | 
 | #if 0 | 
 |       SetPrint(fp,cfp->fws,lemp); | 
 |       PlinkPrint(fp,cfp->fplp,"To  "); | 
 |       PlinkPrint(fp,cfp->bplp,"From"); | 
 | #endif | 
 |       if( lemp->basisflag ) cfp=cfp->bp; | 
 |       else                  cfp=cfp->next; | 
 |     } | 
 |     fprintf(fp,"\n"); | 
 |     for(ap=stp->ap; ap; ap=ap->next){ | 
 |       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); | 
 |     } | 
 |     fprintf(fp,"\n"); | 
 |   } | 
 |   fprintf(fp, "----------------------------------------------------\n"); | 
 |   fprintf(fp, "Symbols:\n"); | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     int j; | 
 |     struct symbol *sp; | 
 |  | 
 |     sp = lemp->symbols[i]; | 
 |     fprintf(fp, "  %3d: %s", i, sp->name); | 
 |     if( sp->type==NONTERMINAL ){ | 
 |       fprintf(fp, ":"); | 
 |       if( sp->lambda ){ | 
 |         fprintf(fp, " <lambda>"); | 
 |       } | 
 |       for(j=0; j<lemp->nterminal; j++){ | 
 |         if( sp->firstset && SetFind(sp->firstset, j) ){ | 
 |           fprintf(fp, " %s", lemp->symbols[j]->name); | 
 |         } | 
 |       } | 
 |     } | 
 |     fprintf(fp, "\n"); | 
 |   } | 
 |   fclose(fp); | 
 |   return; | 
 | } | 
 |  | 
 | /* Search for the file "name" which is in the same directory as | 
 | ** the exacutable */ | 
 | PRIVATE char *pathsearch(char *argv0, char *name, int modemask) | 
 | { | 
 |   const char *pathlist; | 
 |   char *pathbufptr; | 
 |   char *pathbuf; | 
 |   char *path,*cp; | 
 |   char c; | 
 |  | 
 | #ifdef __WIN32__ | 
 |   cp = strrchr(argv0,'\\'); | 
 | #else | 
 |   cp = strrchr(argv0,'/'); | 
 | #endif | 
 |   if( cp ){ | 
 |     c = *cp; | 
 |     *cp = 0; | 
 |     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); | 
 |     if( path ) sprintf(path,"%s/%s",argv0,name); | 
 |     *cp = c; | 
 |   }else{ | 
 |     pathlist = getenv("PATH"); | 
 |     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; | 
 |     pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); | 
 |     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); | 
 |     if( (pathbuf != 0) && (path!=0) ){ | 
 |       pathbufptr = pathbuf; | 
 |       strcpy(pathbuf, pathlist); | 
 |       while( *pathbuf ){ | 
 |         cp = strchr(pathbuf,':'); | 
 |         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; | 
 |         c = *cp; | 
 |         *cp = 0; | 
 |         sprintf(path,"%s/%s",pathbuf,name); | 
 |         *cp = c; | 
 |         if( c==0 ) pathbuf[0] = 0; | 
 |         else pathbuf = &cp[1]; | 
 |         if( access(path,modemask)==0 ) break; | 
 |       } | 
 |       free(pathbufptr); | 
 |     } | 
 |   } | 
 |   return path; | 
 | } | 
 |  | 
 | /* Given an action, compute the integer value for that action | 
 | ** which is to be put in the action table of the generated machine. | 
 | ** Return negative if no action should be generated. | 
 | */ | 
 | PRIVATE int compute_action(struct lemon *lemp, struct action *ap) | 
 | { | 
 |   int act; | 
 |   switch( ap->type ){ | 
 |     case SHIFT:  act = ap->x.stp->statenum;            break; | 
 |     case REDUCE: act = ap->x.rp->index + lemp->nstate; break; | 
 |     case ERROR:  act = lemp->nstate + lemp->nrule;     break; | 
 |     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; | 
 |     default:     act = -1; break; | 
 |   } | 
 |   return act; | 
 | } | 
 |  | 
 | #define LINESIZE 1000 | 
 | /* The next cluster of routines are for reading the template file | 
 | ** and writing the results to the generated parser */ | 
 | /* The first function transfers data from "in" to "out" until | 
 | ** a line is seen which begins with "%%".  The line number is | 
 | ** tracked. | 
 | ** | 
 | ** if name!=0, then any word that begin with "Parse" is changed to | 
 | ** begin with *name instead. | 
 | */ | 
 | PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) | 
 | { | 
 |   int i, iStart; | 
 |   char line[LINESIZE]; | 
 |   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ | 
 |     (*lineno)++; | 
 |     iStart = 0; | 
 |     if( name ){ | 
 |       for(i=0; line[i]; i++){ | 
 |         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 | 
 |           && (i==0 || !isalpha(line[i-1])) | 
 |         ){ | 
 |           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); | 
 |           fprintf(out,"%s",name); | 
 |           i += 4; | 
 |           iStart = i+1; | 
 |         } | 
 |       } | 
 |     } | 
 |     fprintf(out,"%s",&line[iStart]); | 
 |   } | 
 | } | 
 |  | 
 | /* The next function finds the template file and opens it, returning | 
 | ** a pointer to the opened file. */ | 
 | PRIVATE FILE *tplt_open(struct lemon *lemp) | 
 | { | 
 |   static char templatename[] = "lempar.c"; | 
 |   char buf[1000]; | 
 |   FILE *in; | 
 |   char *tpltname; | 
 |   char *cp; | 
 |  | 
 |   /* first, see if user specified a template filename on the command line. */ | 
 |   if (user_templatename != 0) { | 
 |     if( access(user_templatename,004)==-1 ){ | 
 |       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", | 
 |         user_templatename); | 
 |       lemp->errorcnt++; | 
 |       return 0; | 
 |     } | 
 |     in = fopen(user_templatename,"rb"); | 
 |     if( in==0 ){ | 
 |       fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename); | 
 |       lemp->errorcnt++; | 
 |       return 0; | 
 |     } | 
 |     return in; | 
 |   } | 
 |  | 
 |   cp = strrchr(lemp->filename,'.'); | 
 |   if( cp ){ | 
 |     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); | 
 |   }else{ | 
 |     sprintf(buf,"%s.lt",lemp->filename); | 
 |   } | 
 |   if( access(buf,004)==0 ){ | 
 |     tpltname = buf; | 
 |   }else if( access(templatename,004)==0 ){ | 
 |     tpltname = templatename; | 
 |   }else{ | 
 |     tpltname = pathsearch(lemp->argv0,templatename,0); | 
 |   } | 
 |   if( tpltname==0 ){ | 
 |     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", | 
 |     templatename); | 
 |     lemp->errorcnt++; | 
 |     return 0; | 
 |   } | 
 |   in = fopen(tpltname,"rb"); | 
 |   if( in==0 ){ | 
 |     fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); | 
 |     lemp->errorcnt++; | 
 |     return 0; | 
 |   } | 
 |   return in; | 
 | } | 
 |  | 
 | /* Print a #line directive line to the output file. */ | 
 | PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) | 
 | { | 
 |   fprintf(out,"#line %d \"",lineno); | 
 |   while( *filename ){ | 
 |     if( *filename == '\\' ) putc('\\',out); | 
 |     putc(*filename,out); | 
 |     filename++; | 
 |   } | 
 |   fprintf(out,"\"\n"); | 
 | } | 
 |  | 
 | /* Print a string to the file and keep the linenumber up to date */ | 
 | PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) | 
 | { | 
 |   if( str==0 ) return; | 
 |   while( *str ){ | 
 |     putc(*str,out); | 
 |     if( *str=='\n' ) (*lineno)++; | 
 |     str++; | 
 |   } | 
 |   if( str[-1]!='\n' ){ | 
 |     putc('\n',out); | 
 |     (*lineno)++; | 
 |   } | 
 |   if (!lemp->nolinenosflag) { | 
 |     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);  | 
 |   } | 
 |   return; | 
 | } | 
 |  | 
 | /* | 
 | ** The following routine emits code for the destructor for the | 
 | ** symbol sp | 
 | */ | 
 | void emit_destructor_code( | 
 |   FILE *out, | 
 |   struct symbol *sp, | 
 |   struct lemon *lemp, | 
 |   int *lineno | 
 | ){ | 
 |  char *cp = 0; | 
 |  | 
 |  if( sp->type==TERMINAL ){ | 
 |    cp = lemp->tokendest; | 
 |    if( cp==0 ) return; | 
 |    fprintf(out,"{\n"); (*lineno)++; | 
 |  }else if( sp->destructor ){ | 
 |    cp = sp->destructor; | 
 |    fprintf(out,"{\n"); (*lineno)++; | 
 |    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); } | 
 |  }else if( lemp->vardest ){ | 
 |    cp = lemp->vardest; | 
 |    if( cp==0 ) return; | 
 |    fprintf(out,"{\n"); (*lineno)++; | 
 |  }else{ | 
 |    assert( 0 );  /* Cannot happen */ | 
 |  } | 
 |  for(; *cp; cp++){ | 
 |    if( *cp=='$' && cp[1]=='$' ){ | 
 |      fprintf(out,"(yypminor->yy%d)",sp->dtnum); | 
 |      cp++; | 
 |      continue; | 
 |    } | 
 |    if( *cp=='\n' ) (*lineno)++; | 
 |    fputc(*cp,out); | 
 |  } | 
 |  fprintf(out,"\n"); (*lineno)++; | 
 |  if (!lemp->nolinenosflag) {  | 
 |    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);  | 
 |  } | 
 |  fprintf(out,"}\n"); (*lineno)++; | 
 |  return; | 
 | } | 
 |  | 
 | /* | 
 | ** Return TRUE (non-zero) if the given symbol has a destructor. | 
 | */ | 
 | int has_destructor(struct symbol *sp, struct lemon *lemp) | 
 | { | 
 |   int ret; | 
 |   if( sp->type==TERMINAL ){ | 
 |     ret = lemp->tokendest!=0; | 
 |   }else{ | 
 |     ret = lemp->vardest!=0 || sp->destructor!=0; | 
 |   } | 
 |   return ret; | 
 | } | 
 |  | 
 | /* | 
 | ** Append text to a dynamically allocated string.  If zText is 0 then | 
 | ** reset the string to be empty again.  Always return the complete text | 
 | ** of the string (which is overwritten with each call). | 
 | ** | 
 | ** n bytes of zText are stored.  If n==0 then all of zText up to the first | 
 | ** \000 terminator is stored.  zText can contain up to two instances of | 
 | ** %d.  The values of p1 and p2 are written into the first and second | 
 | ** %d. | 
 | ** | 
 | ** If n==-1, then the previous character is overwritten. | 
 | */ | 
 | PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ | 
 |   static char empty[1] = { 0 }; | 
 |   static char *z = 0; | 
 |   static int alloced = 0; | 
 |   static int used = 0; | 
 |   int c; | 
 |   char zInt[40]; | 
 |   if( zText==0 ){ | 
 |     used = 0; | 
 |     return z; | 
 |   } | 
 |   if( n<=0 ){ | 
 |     if( n<0 ){ | 
 |       used += n; | 
 |       assert( used>=0 ); | 
 |     } | 
 |     n = lemonStrlen(zText); | 
 |   } | 
 |   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ | 
 |     alloced = n + sizeof(zInt)*2 + used + 200; | 
 |     z = (char *) realloc(z,  alloced); | 
 |   } | 
 |   if( z==0 ) return empty; | 
 |   while( n-- > 0 ){ | 
 |     c = *(zText++); | 
 |     if( c=='%' && n>0 && zText[0]=='d' ){ | 
 |       sprintf(zInt, "%d", p1); | 
 |       p1 = p2; | 
 |       strcpy(&z[used], zInt); | 
 |       used += lemonStrlen(&z[used]); | 
 |       zText++; | 
 |       n--; | 
 |     }else{ | 
 |       z[used++] = c; | 
 |     } | 
 |   } | 
 |   z[used] = 0; | 
 |   return z; | 
 | } | 
 |  | 
 | /* | 
 | ** zCode is a string that is the action associated with a rule.  Expand | 
 | ** the symbols in this string so that the refer to elements of the parser | 
 | ** stack. | 
 | */ | 
 | PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ | 
 |   char *cp, *xp; | 
 |   int i; | 
 |   char lhsused = 0;    /* True if the LHS element has been used */ | 
 |   char used[MAXRHS];   /* True for each RHS element which is used */ | 
 |  | 
 |   for(i=0; i<rp->nrhs; i++) used[i] = 0; | 
 |   lhsused = 0; | 
 |  | 
 |   if( rp->code==0 ){ | 
 |     static char newlinestr[2] = { '\n', '\0' }; | 
 |     rp->code = newlinestr; | 
 |     rp->line = rp->ruleline; | 
 |   } | 
 |  | 
 |   append_str(0,0,0,0); | 
 |  | 
 |   /* This const cast is wrong but harmless, if we're careful. */ | 
 |   for(cp=(char *)rp->code; *cp; cp++){ | 
 |     if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ | 
 |       char saved; | 
 |       for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); | 
 |       saved = *xp; | 
 |       *xp = 0; | 
 |       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ | 
 |         append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); | 
 |         cp = xp; | 
 |         lhsused = 1; | 
 |       }else{ | 
 |         for(i=0; i<rp->nrhs; i++){ | 
 |           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ | 
 |             if( cp!=rp->code && cp[-1]=='@' ){ | 
 |               /* If the argument is of the form @X then substituted | 
 |               ** the token number of X, not the value of X */ | 
 |               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); | 
 |             }else{ | 
 |               struct symbol *sp = rp->rhs[i]; | 
 |               int dtnum; | 
 |               if( sp->type==MULTITERMINAL ){ | 
 |                 dtnum = sp->subsym[0]->dtnum; | 
 |               }else{ | 
 |                 dtnum = sp->dtnum; | 
 |               } | 
 |               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); | 
 |             } | 
 |             cp = xp; | 
 |             used[i] = 1; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |       *xp = saved; | 
 |     } | 
 |     append_str(cp, 1, 0, 0); | 
 |   } /* End loop */ | 
 |  | 
 |   /* Check to make sure the LHS has been used */ | 
 |   if( rp->lhsalias && !lhsused ){ | 
 |     ErrorMsg(lemp->filename,rp->ruleline, | 
 |       "Label \"%s\" for \"%s(%s)\" is never used.", | 
 |         rp->lhsalias,rp->lhs->name,rp->lhsalias); | 
 |     lemp->errorcnt++; | 
 |   } | 
 |  | 
 |   /* Generate destructor code for RHS symbols which are not used in the | 
 |   ** reduce code */ | 
 |   for(i=0; i<rp->nrhs; i++){ | 
 |     if( rp->rhsalias[i] && !used[i] ){ | 
 |       ErrorMsg(lemp->filename,rp->ruleline, | 
 |         "Label %s for \"%s(%s)\" is never used.", | 
 |         rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); | 
 |       lemp->errorcnt++; | 
 |     }else if( rp->rhsalias[i]==0 ){ | 
 |       if( has_destructor(rp->rhs[i],lemp) ){ | 
 |         append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, | 
 |            rp->rhs[i]->index,i-rp->nrhs+1); | 
 |       }else{ | 
 |         /* No destructor defined for this term */ | 
 |       } | 
 |     } | 
 |   } | 
 |   if( rp->code ){ | 
 |     cp = append_str(0,0,0,0); | 
 |     rp->code = Strsafe(cp?cp:""); | 
 |   } | 
 | } | 
 |  | 
 | /*  | 
 | ** Generate code which executes when the rule "rp" is reduced.  Write | 
 | ** the code to "out".  Make sure lineno stays up-to-date. | 
 | */ | 
 | PRIVATE void emit_code( | 
 |   FILE *out, | 
 |   struct rule *rp, | 
 |   struct lemon *lemp, | 
 |   int *lineno | 
 | ){ | 
 |  const char *cp; | 
 |  | 
 |  /* Generate code to do the reduce action */ | 
 |  if( rp->code ){ | 
 |    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); } | 
 |    fprintf(out,"{%s",rp->code); | 
 |    for(cp=rp->code; *cp; cp++){ | 
 |      if( *cp=='\n' ) (*lineno)++; | 
 |    } /* End loop */ | 
 |    fprintf(out,"}\n"); (*lineno)++; | 
 |    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); } | 
 |  } /* End if( rp->code ) */ | 
 |  | 
 |  return; | 
 | } | 
 |  | 
 | /* | 
 | ** Print the definition of the union used for the parser's data stack. | 
 | ** This union contains fields for every possible data type for tokens | 
 | ** and nonterminals.  In the process of computing and printing this | 
 | ** union, also set the ".dtnum" field of every terminal and nonterminal | 
 | ** symbol. | 
 | */ | 
 | void print_stack_union( | 
 |   FILE *out,                  /* The output stream */ | 
 |   struct lemon *lemp,         /* The main info structure for this parser */ | 
 |   int *plineno,               /* Pointer to the line number */ | 
 |   int mhflag                  /* True if generating makeheaders output */ | 
 | ){ | 
 |   int lineno = *plineno;    /* The line number of the output */ | 
 |   char **types;             /* A hash table of datatypes */ | 
 |   int arraysize;            /* Size of the "types" array */ | 
 |   int maxdtlength;          /* Maximum length of any ".datatype" field. */ | 
 |   char *stddt;              /* Standardized name for a datatype */ | 
 |   int i,j;                  /* Loop counters */ | 
 |   int hash;                 /* For hashing the name of a type */ | 
 |   const char *name;         /* Name of the parser */ | 
 |  | 
 |   /* Allocate and initialize types[] and allocate stddt[] */ | 
 |   arraysize = lemp->nsymbol * 2; | 
 |   types = (char**)calloc( arraysize, sizeof(char*) ); | 
 |   for(i=0; i<arraysize; i++) types[i] = 0; | 
 |   maxdtlength = 0; | 
 |   if( lemp->vartype ){ | 
 |     maxdtlength = lemonStrlen(lemp->vartype); | 
 |   } | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     int len; | 
 |     struct symbol *sp = lemp->symbols[i]; | 
 |     if( sp->datatype==0 ) continue; | 
 |     len = lemonStrlen(sp->datatype); | 
 |     if( len>maxdtlength ) maxdtlength = len; | 
 |   } | 
 |   stddt = (char*)malloc( maxdtlength*2 + 1 ); | 
 |   if( types==0 || stddt==0 ){ | 
 |     fprintf(stderr,"Out of memory.\n"); | 
 |     exit(1); | 
 |   } | 
 |  | 
 |   /* Build a hash table of datatypes. The ".dtnum" field of each symbol | 
 |   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is | 
 |   ** used for terminal symbols.  If there is no %default_type defined then | 
 |   ** 0 is also used as the .dtnum value for nonterminals which do not specify | 
 |   ** a datatype using the %type directive. | 
 |   */ | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     struct symbol *sp = lemp->symbols[i]; | 
 |     char *cp; | 
 |     if( sp==lemp->errsym ){ | 
 |       sp->dtnum = arraysize+1; | 
 |       continue; | 
 |     } | 
 |     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ | 
 |       sp->dtnum = 0; | 
 |       continue; | 
 |     } | 
 |     cp = sp->datatype; | 
 |     if( cp==0 ) cp = lemp->vartype; | 
 |     j = 0; | 
 |     while( isspace(*cp) ) cp++; | 
 |     while( *cp ) stddt[j++] = *cp++; | 
 |     while( j>0 && isspace(stddt[j-1]) ) j--; | 
 |     stddt[j] = 0; | 
 |     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ | 
 |       sp->dtnum = 0; | 
 |       continue; | 
 |     } | 
 |     hash = 0; | 
 |     for(j=0; stddt[j]; j++){ | 
 |       hash = hash*53 + stddt[j]; | 
 |     } | 
 |     hash = (hash & 0x7fffffff)%arraysize; | 
 |     while( types[hash] ){ | 
 |       if( strcmp(types[hash],stddt)==0 ){ | 
 |         sp->dtnum = hash + 1; | 
 |         break; | 
 |       } | 
 |       hash++; | 
 |       if( hash>=arraysize ) hash = 0; | 
 |     } | 
 |     if( types[hash]==0 ){ | 
 |       sp->dtnum = hash + 1; | 
 |       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); | 
 |       if( types[hash]==0 ){ | 
 |         fprintf(stderr,"Out of memory.\n"); | 
 |         exit(1); | 
 |       } | 
 |       strcpy(types[hash],stddt); | 
 |     } | 
 |   } | 
 |  | 
 |   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ | 
 |   name = lemp->name ? lemp->name : "Parse"; | 
 |   lineno = *plineno; | 
 |   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } | 
 |   fprintf(out,"#define %sTOKENTYPE %s\n",name, | 
 |     lemp->tokentype?lemp->tokentype:"void*");  lineno++; | 
 |   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } | 
 |   fprintf(out,"typedef union {\n"); lineno++; | 
 |   fprintf(out,"  int yyinit;\n"); lineno++; | 
 |   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++; | 
 |   for(i=0; i<arraysize; i++){ | 
 |     if( types[i]==0 ) continue; | 
 |     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++; | 
 |     free(types[i]); | 
 |   } | 
 |   if( lemp->errsym->useCnt ){ | 
 |     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++; | 
 |   } | 
 |   free(stddt); | 
 |   free(types); | 
 |   fprintf(out,"} YYMINORTYPE;\n"); lineno++; | 
 |   *plineno = lineno; | 
 | } | 
 |  | 
 | /* | 
 | ** Return the name of a C datatype able to represent values between | 
 | ** lwr and upr, inclusive. | 
 | */ | 
 | static const char *minimum_size_type(int lwr, int upr){ | 
 |   if( lwr>=0 ){ | 
 |     if( upr<=255 ){ | 
 |       return "unsigned char"; | 
 |     }else if( upr<65535 ){ | 
 |       return "unsigned short int"; | 
 |     }else{ | 
 |       return "unsigned int"; | 
 |     } | 
 |   }else if( lwr>=-127 && upr<=127 ){ | 
 |     return "signed char"; | 
 |   }else if( lwr>=-32767 && upr<32767 ){ | 
 |     return "short"; | 
 |   }else{ | 
 |     return "int"; | 
 |   } | 
 | } | 
 |  | 
 | /* | 
 | ** Each state contains a set of token transaction and a set of | 
 | ** nonterminal transactions.  Each of these sets makes an instance | 
 | ** of the following structure.  An array of these structures is used | 
 | ** to order the creation of entries in the yy_action[] table. | 
 | */ | 
 | struct axset { | 
 |   struct state *stp;   /* A pointer to a state */ | 
 |   int isTkn;           /* True to use tokens.  False for non-terminals */ | 
 |   int nAction;         /* Number of actions */ | 
 |   int iOrder;          /* Original order of action sets */ | 
 | }; | 
 |  | 
 | /* | 
 | ** Compare to axset structures for sorting purposes | 
 | */ | 
 | static int axset_compare(const void *a, const void *b){ | 
 |   struct axset *p1 = (struct axset*)a; | 
 |   struct axset *p2 = (struct axset*)b; | 
 |   int c; | 
 |   c = p2->nAction - p1->nAction; | 
 |   if( c==0 ){ | 
 |     c = p2->iOrder - p1->iOrder; | 
 |   } | 
 |   assert( c!=0 || p1==p2 ); | 
 |   return c; | 
 | } | 
 |  | 
 | /* | 
 | ** Write text on "out" that describes the rule "rp". | 
 | */ | 
 | static void writeRuleText(FILE *out, struct rule *rp){ | 
 |   int j; | 
 |   fprintf(out,"%s ::=", rp->lhs->name); | 
 |   for(j=0; j<rp->nrhs; j++){ | 
 |     struct symbol *sp = rp->rhs[j]; | 
 |     fprintf(out," %s", sp->name); | 
 |     if( sp->type==MULTITERMINAL ){ | 
 |       int k; | 
 |       for(k=1; k<sp->nsubsym; k++){ | 
 |         fprintf(out,"|%s",sp->subsym[k]->name); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* Generate C source code for the parser */ | 
 | void ReportTable( | 
 |   struct lemon *lemp, | 
 |   int mhflag     /* Output in makeheaders format if true */ | 
 | ){ | 
 |   FILE *out, *in; | 
 |   char line[LINESIZE]; | 
 |   int  lineno; | 
 |   struct state *stp; | 
 |   struct action *ap; | 
 |   struct rule *rp; | 
 |   struct acttab *pActtab; | 
 |   int i, j, n; | 
 |   const char *name; | 
 |   int mnTknOfst, mxTknOfst; | 
 |   int mnNtOfst, mxNtOfst; | 
 |   struct axset *ax; | 
 |  | 
 |   in = tplt_open(lemp); | 
 |   if( in==0 ) return; | 
 |   out = file_open(lemp,".c","wb"); | 
 |   if( out==0 ){ | 
 |     fclose(in); | 
 |     return; | 
 |   } | 
 |   lineno = 1; | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate the include code, if any */ | 
 |   tplt_print(out,lemp,lemp->include,&lineno); | 
 |   if( mhflag ){ | 
 |     char *name = file_makename(lemp, ".h"); | 
 |     fprintf(out,"#include \"%s\"\n", name); lineno++; | 
 |     free(name); | 
 |   } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate #defines for all tokens */ | 
 |   if( mhflag ){ | 
 |     const char *prefix; | 
 |     fprintf(out,"#if INTERFACE\n"); lineno++; | 
 |     if( lemp->tokenprefix ) prefix = lemp->tokenprefix; | 
 |     else                    prefix = ""; | 
 |     for(i=1; i<lemp->nterminal; i++){ | 
 |       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); | 
 |       lineno++; | 
 |     } | 
 |     fprintf(out,"#endif\n"); lineno++; | 
 |   } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate the defines */ | 
 |   fprintf(out,"#define YYCODETYPE %s\n", | 
 |     minimum_size_type(0, lemp->nsymbol+1)); lineno++; | 
 |   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++; | 
 |   fprintf(out,"#define YYACTIONTYPE %s\n", | 
 |     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++; | 
 |   if( lemp->wildcard ){ | 
 |     fprintf(out,"#define YYWILDCARD %d\n", | 
 |        lemp->wildcard->index); lineno++; | 
 |   } | 
 |   print_stack_union(out,lemp,&lineno,mhflag); | 
 |   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; | 
 |   if( lemp->stacksize ){ | 
 |     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++; | 
 |   }else{ | 
 |     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++; | 
 |   } | 
 |   fprintf(out, "#endif\n"); lineno++; | 
 |   if( mhflag ){ | 
 |     fprintf(out,"#if INTERFACE\n"); lineno++; | 
 |   } | 
 |   name = lemp->name ? lemp->name : "Parse"; | 
 |   if( lemp->arg && lemp->arg[0] ){ | 
 |     int i; | 
 |     i = lemonStrlen(lemp->arg); | 
 |     while( i>=1 && isspace(lemp->arg[i-1]) ) i--; | 
 |     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; | 
 |     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++; | 
 |     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++; | 
 |     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", | 
 |                  name,lemp->arg,&lemp->arg[i]);  lineno++; | 
 |     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", | 
 |                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++; | 
 |   }else{ | 
 |     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++; | 
 |     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++; | 
 |     fprintf(out,"#define %sARG_FETCH\n",name); lineno++; | 
 |     fprintf(out,"#define %sARG_STORE\n",name); lineno++; | 
 |   } | 
 |   if( mhflag ){ | 
 |     fprintf(out,"#endif\n"); lineno++; | 
 |   } | 
 |   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++; | 
 |   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++; | 
 |   if( lemp->errsym->useCnt ){ | 
 |     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++; | 
 |     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++; | 
 |   } | 
 |   if( lemp->has_fallback ){ | 
 |     fprintf(out,"#define YYFALLBACK 1\n");  lineno++; | 
 |   } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate the action table and its associates: | 
 |   ** | 
 |   **  yy_action[]        A single table containing all actions. | 
 |   **  yy_lookahead[]     A table containing the lookahead for each entry in | 
 |   **                     yy_action.  Used to detect hash collisions. | 
 |   **  yy_shift_ofst[]    For each state, the offset into yy_action for | 
 |   **                     shifting terminals. | 
 |   **  yy_reduce_ofst[]   For each state, the offset into yy_action for | 
 |   **                     shifting non-terminals after a reduce. | 
 |   **  yy_default[]       Default action for each state. | 
 |   */ | 
 |  | 
 |   /* Compute the actions on all states and count them up */ | 
 |   ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); | 
 |   if( ax==0 ){ | 
 |     fprintf(stderr,"malloc failed\n"); | 
 |     exit(1); | 
 |   } | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     ax[i*2].stp = stp; | 
 |     ax[i*2].isTkn = 1; | 
 |     ax[i*2].nAction = stp->nTknAct; | 
 |     ax[i*2+1].stp = stp; | 
 |     ax[i*2+1].isTkn = 0; | 
 |     ax[i*2+1].nAction = stp->nNtAct; | 
 |   } | 
 |   mxTknOfst = mnTknOfst = 0; | 
 |   mxNtOfst = mnNtOfst = 0; | 
 |  | 
 |   /* Compute the action table.  In order to try to keep the size of the | 
 |   ** action table to a minimum, the heuristic of placing the largest action | 
 |   ** sets first is used. | 
 |   */ | 
 |   for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i; | 
 |   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); | 
 |   pActtab = acttab_alloc(); | 
 |   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){ | 
 |     stp = ax[i].stp; | 
 |     if( ax[i].isTkn ){ | 
 |       for(ap=stp->ap; ap; ap=ap->next){ | 
 |         int action; | 
 |         if( ap->sp->index>=lemp->nterminal ) continue; | 
 |         action = compute_action(lemp, ap); | 
 |         if( action<0 ) continue; | 
 |         acttab_action(pActtab, ap->sp->index, action); | 
 |       } | 
 |       stp->iTknOfst = acttab_insert(pActtab); | 
 |       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; | 
 |       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; | 
 |     }else{ | 
 |       for(ap=stp->ap; ap; ap=ap->next){ | 
 |         int action; | 
 |         if( ap->sp->index<lemp->nterminal ) continue; | 
 |         if( ap->sp->index==lemp->nsymbol ) continue; | 
 |         action = compute_action(lemp, ap); | 
 |         if( action<0 ) continue; | 
 |         acttab_action(pActtab, ap->sp->index, action); | 
 |       } | 
 |       stp->iNtOfst = acttab_insert(pActtab); | 
 |       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; | 
 |       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; | 
 |     } | 
 |   } | 
 |   free(ax); | 
 |  | 
 |   /* Output the yy_action table */ | 
 |   n = acttab_size(pActtab); | 
 |   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; | 
 |   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; | 
 |   for(i=j=0; i<n; i++){ | 
 |     int action = acttab_yyaction(pActtab, i); | 
 |     if( action<0 ) action = lemp->nstate + lemp->nrule + 2; | 
 |     if( j==0 ) fprintf(out," /* %5d */ ", i); | 
 |     fprintf(out, " %4d,", action); | 
 |     if( j==9 || i==n-1 ){ | 
 |       fprintf(out, "\n"); lineno++; | 
 |       j = 0; | 
 |     }else{ | 
 |       j++; | 
 |     } | 
 |   } | 
 |   fprintf(out, "};\n"); lineno++; | 
 |  | 
 |   /* Output the yy_lookahead table */ | 
 |   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; | 
 |   for(i=j=0; i<n; i++){ | 
 |     int la = acttab_yylookahead(pActtab, i); | 
 |     if( la<0 ) la = lemp->nsymbol; | 
 |     if( j==0 ) fprintf(out," /* %5d */ ", i); | 
 |     fprintf(out, " %4d,", la); | 
 |     if( j==9 || i==n-1 ){ | 
 |       fprintf(out, "\n"); lineno++; | 
 |       j = 0; | 
 |     }else{ | 
 |       j++; | 
 |     } | 
 |   } | 
 |   fprintf(out, "};\n"); lineno++; | 
 |  | 
 |   /* Output the yy_shift_ofst[] table */ | 
 |   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; | 
 |   n = lemp->nstate; | 
 |   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; | 
 |   fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; | 
 |   fprintf(out, "#define YY_SHIFT_MIN   (%d)\n", mnTknOfst); lineno++; | 
 |   fprintf(out, "#define YY_SHIFT_MAX   (%d)\n", mxTknOfst); lineno++; | 
 |   fprintf(out, "static const %s yy_shift_ofst[] = {\n",  | 
 |           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; | 
 |   for(i=j=0; i<n; i++){ | 
 |     int ofst; | 
 |     stp = lemp->sorted[i]; | 
 |     ofst = stp->iTknOfst; | 
 |     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; | 
 |     if( j==0 ) fprintf(out," /* %5d */ ", i); | 
 |     fprintf(out, " %4d,", ofst); | 
 |     if( j==9 || i==n-1 ){ | 
 |       fprintf(out, "\n"); lineno++; | 
 |       j = 0; | 
 |     }else{ | 
 |       j++; | 
 |     } | 
 |   } | 
 |   fprintf(out, "};\n"); lineno++; | 
 |  | 
 |   /* Output the yy_reduce_ofst[] table */ | 
 |   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; | 
 |   n = lemp->nstate; | 
 |   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; | 
 |   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; | 
 |   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++; | 
 |   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++; | 
 |   fprintf(out, "static const %s yy_reduce_ofst[] = {\n",  | 
 |           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; | 
 |   for(i=j=0; i<n; i++){ | 
 |     int ofst; | 
 |     stp = lemp->sorted[i]; | 
 |     ofst = stp->iNtOfst; | 
 |     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; | 
 |     if( j==0 ) fprintf(out," /* %5d */ ", i); | 
 |     fprintf(out, " %4d,", ofst); | 
 |     if( j==9 || i==n-1 ){ | 
 |       fprintf(out, "\n"); lineno++; | 
 |       j = 0; | 
 |     }else{ | 
 |       j++; | 
 |     } | 
 |   } | 
 |   fprintf(out, "};\n"); lineno++; | 
 |  | 
 |   /* Output the default action table */ | 
 |   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; | 
 |   n = lemp->nstate; | 
 |   for(i=j=0; i<n; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     if( j==0 ) fprintf(out," /* %5d */ ", i); | 
 |     fprintf(out, " %4d,", stp->iDflt); | 
 |     if( j==9 || i==n-1 ){ | 
 |       fprintf(out, "\n"); lineno++; | 
 |       j = 0; | 
 |     }else{ | 
 |       j++; | 
 |     } | 
 |   } | 
 |   fprintf(out, "};\n"); lineno++; | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate the table of fallback tokens. | 
 |   */ | 
 |   if( lemp->has_fallback ){ | 
 |     int mx = lemp->nterminal - 1; | 
 |     while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } | 
 |     for(i=0; i<=mx; i++){ | 
 |       struct symbol *p = lemp->symbols[i]; | 
 |       if( p->fallback==0 ){ | 
 |         fprintf(out, "    0,  /* %10s => nothing */\n", p->name); | 
 |       }else{ | 
 |         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index, | 
 |           p->name, p->fallback->name); | 
 |       } | 
 |       lineno++; | 
 |     } | 
 |   } | 
 |   tplt_xfer(lemp->name, in, out, &lineno); | 
 |  | 
 |   /* Generate a table containing the symbolic name of every symbol | 
 |   */ | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     sprintf(line,"\"%s\",",lemp->symbols[i]->name); | 
 |     fprintf(out,"  %-15s",line); | 
 |     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } | 
 |   } | 
 |   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate a table containing a text string that describes every | 
 |   ** rule in the rule set of the grammar.  This information is used | 
 |   ** when tracing REDUCE actions. | 
 |   */ | 
 |   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ | 
 |     assert( rp->index==i ); | 
 |     fprintf(out," /* %3d */ \"", i); | 
 |     writeRuleText(out, rp); | 
 |     fprintf(out,"\",\n"); lineno++; | 
 |   } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate code which executes every time a symbol is popped from | 
 |   ** the stack while processing errors or while destroying the parser.  | 
 |   ** (In other words, generate the %destructor actions) | 
 |   */ | 
 |   if( lemp->tokendest ){ | 
 |     int once = 1; | 
 |     for(i=0; i<lemp->nsymbol; i++){ | 
 |       struct symbol *sp = lemp->symbols[i]; | 
 |       if( sp==0 || sp->type!=TERMINAL ) continue; | 
 |       if( once ){ | 
 |         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++; | 
 |         once = 0; | 
 |       } | 
 |       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++; | 
 |     } | 
 |     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); | 
 |     if( i<lemp->nsymbol ){ | 
 |       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); | 
 |       fprintf(out,"      break;\n"); lineno++; | 
 |     } | 
 |   } | 
 |   if( lemp->vardest ){ | 
 |     struct symbol *dflt_sp = 0; | 
 |     int once = 1; | 
 |     for(i=0; i<lemp->nsymbol; i++){ | 
 |       struct symbol *sp = lemp->symbols[i]; | 
 |       if( sp==0 || sp->type==TERMINAL || | 
 |           sp->index<=0 || sp->destructor!=0 ) continue; | 
 |       if( once ){ | 
 |         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n"); lineno++; | 
 |         once = 0; | 
 |       } | 
 |       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++; | 
 |       dflt_sp = sp; | 
 |     } | 
 |     if( dflt_sp!=0 ){ | 
 |       emit_destructor_code(out,dflt_sp,lemp,&lineno); | 
 |     } | 
 |     fprintf(out,"      break;\n"); lineno++; | 
 |   } | 
 |   for(i=0; i<lemp->nsymbol; i++){ | 
 |     struct symbol *sp = lemp->symbols[i]; | 
 |     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; | 
 |     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++; | 
 |  | 
 |     /* Combine duplicate destructors into a single case */ | 
 |     for(j=i+1; j<lemp->nsymbol; j++){ | 
 |       struct symbol *sp2 = lemp->symbols[j]; | 
 |       if( sp2 && sp2->type!=TERMINAL && sp2->destructor | 
 |           && sp2->dtnum==sp->dtnum | 
 |           && strcmp(sp->destructor,sp2->destructor)==0 ){ | 
 |          fprintf(out,"    case %d: /* %s */\n", | 
 |                  sp2->index, sp2->name); lineno++; | 
 |          sp2->destructor = 0; | 
 |       } | 
 |     } | 
 |  | 
 |     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); | 
 |     fprintf(out,"      break;\n"); lineno++; | 
 |   } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate code which executes whenever the parser stack overflows */ | 
 |   tplt_print(out,lemp,lemp->overflow,&lineno); | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate the table of rule information  | 
 |   ** | 
 |   ** Note: This code depends on the fact that rules are number | 
 |   ** sequentually beginning with 0. | 
 |   */ | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; | 
 |   } | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate code which execution during each REDUCE action */ | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     translate_code(lemp, rp); | 
 |   } | 
 |   /* First output rules other than the default: rule */ | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     struct rule *rp2;               /* Other rules with the same action */ | 
 |     if( rp->code==0 ) continue; | 
 |     if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ | 
 |     fprintf(out,"      case %d: /* ", rp->index); | 
 |     writeRuleText(out, rp); | 
 |     fprintf(out, " */\n"); lineno++; | 
 |     for(rp2=rp->next; rp2; rp2=rp2->next){ | 
 |       if( rp2->code==rp->code ){ | 
 |         fprintf(out,"      case %d: /* ", rp2->index); | 
 |         writeRuleText(out, rp2); | 
 |         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; | 
 |         rp2->code = 0; | 
 |       } | 
 |     } | 
 |     emit_code(out,rp,lemp,&lineno); | 
 |     fprintf(out,"        break;\n"); lineno++; | 
 |     rp->code = 0; | 
 |   } | 
 |   /* Finally, output the default: rule.  We choose as the default: all | 
 |   ** empty actions. */ | 
 |   fprintf(out,"      default:\n"); lineno++; | 
 |   for(rp=lemp->rule; rp; rp=rp->next){ | 
 |     if( rp->code==0 ) continue; | 
 |     assert( rp->code[0]=='\n' && rp->code[1]==0 ); | 
 |     fprintf(out,"      /* (%d) ", rp->index); | 
 |     writeRuleText(out, rp); | 
 |     fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; | 
 |   } | 
 |   fprintf(out,"        break;\n"); lineno++; | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate code which executes if a parse fails */ | 
 |   tplt_print(out,lemp,lemp->failure,&lineno); | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate code which executes when a syntax error occurs */ | 
 |   tplt_print(out,lemp,lemp->error,&lineno); | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Generate code which executes when the parser accepts its input */ | 
 |   tplt_print(out,lemp,lemp->accept,&lineno); | 
 |   tplt_xfer(lemp->name,in,out,&lineno); | 
 |  | 
 |   /* Append any addition code the user desires */ | 
 |   tplt_print(out,lemp,lemp->extracode,&lineno); | 
 |  | 
 |   fclose(in); | 
 |   fclose(out); | 
 |   return; | 
 | } | 
 |  | 
 | /* Generate a header file for the parser */ | 
 | void ReportHeader(struct lemon *lemp) | 
 | { | 
 |   FILE *out, *in; | 
 |   const char *prefix; | 
 |   char line[LINESIZE]; | 
 |   char pattern[LINESIZE]; | 
 |   int i; | 
 |  | 
 |   if( lemp->tokenprefix ) prefix = lemp->tokenprefix; | 
 |   else                    prefix = ""; | 
 |   in = file_open(lemp,".h","rb"); | 
 |   if( in ){ | 
 |     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ | 
 |       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); | 
 |       if( strcmp(line,pattern) ) break; | 
 |     } | 
 |     fclose(in); | 
 |     if( i==lemp->nterminal ){ | 
 |       /* No change in the file.  Don't rewrite it. */ | 
 |       return; | 
 |     } | 
 |   } | 
 |   out = file_open(lemp,".h","wb"); | 
 |   if( out ){ | 
 |     for(i=1; i<lemp->nterminal; i++){ | 
 |       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); | 
 |     } | 
 |     fclose(out);   | 
 |   } | 
 |   return; | 
 | } | 
 |  | 
 | /* Reduce the size of the action tables, if possible, by making use | 
 | ** of defaults. | 
 | ** | 
 | ** In this version, we take the most frequent REDUCE action and make | 
 | ** it the default.  Except, there is no default if the wildcard token | 
 | ** is a possible look-ahead. | 
 | */ | 
 | void CompressTables(struct lemon *lemp) | 
 | { | 
 |   struct state *stp; | 
 |   struct action *ap, *ap2; | 
 |   struct rule *rp, *rp2, *rbest; | 
 |   int nbest, n; | 
 |   int i; | 
 |   int usesWildcard; | 
 |  | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     nbest = 0; | 
 |     rbest = 0; | 
 |     usesWildcard = 0; | 
 |  | 
 |     for(ap=stp->ap; ap; ap=ap->next){ | 
 |       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ | 
 |         usesWildcard = 1; | 
 |       } | 
 |       if( ap->type!=REDUCE ) continue; | 
 |       rp = ap->x.rp; | 
 |       if( rp->lhsStart ) continue; | 
 |       if( rp==rbest ) continue; | 
 |       n = 1; | 
 |       for(ap2=ap->next; ap2; ap2=ap2->next){ | 
 |         if( ap2->type!=REDUCE ) continue; | 
 |         rp2 = ap2->x.rp; | 
 |         if( rp2==rbest ) continue; | 
 |         if( rp2==rp ) n++; | 
 |       } | 
 |       if( n>nbest ){ | 
 |         nbest = n; | 
 |         rbest = rp; | 
 |       } | 
 |     } | 
 |   | 
 |     /* Do not make a default if the number of rules to default | 
 |     ** is not at least 1 or if the wildcard token is a possible | 
 |     ** lookahead. | 
 |     */ | 
 |     if( nbest<1 || usesWildcard ) continue; | 
 |  | 
 |  | 
 |     /* Combine matching REDUCE actions into a single default */ | 
 |     for(ap=stp->ap; ap; ap=ap->next){ | 
 |       if( ap->type==REDUCE && ap->x.rp==rbest ) break; | 
 |     } | 
 |     assert( ap ); | 
 |     ap->sp = Symbol_new("{default}"); | 
 |     for(ap=ap->next; ap; ap=ap->next){ | 
 |       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; | 
 |     } | 
 |     stp->ap = Action_sort(stp->ap); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 | ** Compare two states for sorting purposes.  The smaller state is the | 
 | ** one with the most non-terminal actions.  If they have the same number | 
 | ** of non-terminal actions, then the smaller is the one with the most | 
 | ** token actions. | 
 | */ | 
 | static int stateResortCompare(const void *a, const void *b){ | 
 |   const struct state *pA = *(const struct state**)a; | 
 |   const struct state *pB = *(const struct state**)b; | 
 |   int n; | 
 |  | 
 |   n = pB->nNtAct - pA->nNtAct; | 
 |   if( n==0 ){ | 
 |     n = pB->nTknAct - pA->nTknAct; | 
 |     if( n==0 ){ | 
 |       n = pB->statenum - pA->statenum; | 
 |     } | 
 |   } | 
 |   assert( n!=0 ); | 
 |   return n; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 | ** Renumber and resort states so that states with fewer choices | 
 | ** occur at the end.  Except, keep state 0 as the first state. | 
 | */ | 
 | void ResortStates(struct lemon *lemp) | 
 | { | 
 |   int i; | 
 |   struct state *stp; | 
 |   struct action *ap; | 
 |  | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     stp = lemp->sorted[i]; | 
 |     stp->nTknAct = stp->nNtAct = 0; | 
 |     stp->iDflt = lemp->nstate + lemp->nrule; | 
 |     stp->iTknOfst = NO_OFFSET; | 
 |     stp->iNtOfst = NO_OFFSET; | 
 |     for(ap=stp->ap; ap; ap=ap->next){ | 
 |       if( compute_action(lemp,ap)>=0 ){ | 
 |         if( ap->sp->index<lemp->nterminal ){ | 
 |           stp->nTknAct++; | 
 |         }else if( ap->sp->index<lemp->nsymbol ){ | 
 |           stp->nNtAct++; | 
 |         }else{ | 
 |           stp->iDflt = compute_action(lemp, ap); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), | 
 |         stateResortCompare); | 
 |   for(i=0; i<lemp->nstate; i++){ | 
 |     lemp->sorted[i]->statenum = i; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /***************** From the file "set.c" ************************************/ | 
 | /* | 
 | ** Set manipulation routines for the LEMON parser generator. | 
 | */ | 
 |  | 
 | static int size = 0; | 
 |  | 
 | /* Set the set size */ | 
 | void SetSize(int n) | 
 | { | 
 |   size = n+1; | 
 | } | 
 |  | 
 | /* Allocate a new set */ | 
 | char *SetNew(){ | 
 |   char *s; | 
 |   s = (char*)calloc( size, 1); | 
 |   if( s==0 ){ | 
 |     extern void memory_error(); | 
 |     memory_error(); | 
 |   } | 
 |   return s; | 
 | } | 
 |  | 
 | /* Deallocate a set */ | 
 | void SetFree(char *s) | 
 | { | 
 |   free(s); | 
 | } | 
 |  | 
 | /* Add a new element to the set.  Return TRUE if the element was added | 
 | ** and FALSE if it was already there. */ | 
 | int SetAdd(char *s, int e) | 
 | { | 
 |   int rv; | 
 |   assert( e>=0 && e<size ); | 
 |   rv = s[e]; | 
 |   s[e] = 1; | 
 |   return !rv; | 
 | } | 
 |  | 
 | /* Add every element of s2 to s1.  Return TRUE if s1 changes. */ | 
 | int SetUnion(char *s1, char *s2) | 
 | { | 
 |   int i, progress; | 
 |   progress = 0; | 
 |   for(i=0; i<size; i++){ | 
 |     if( s2[i]==0 ) continue; | 
 |     if( s1[i]==0 ){ | 
 |       progress = 1; | 
 |       s1[i] = 1; | 
 |     } | 
 |   } | 
 |   return progress; | 
 | } | 
 | /********************** From the file "table.c" ****************************/ | 
 | /* | 
 | ** All code in this file has been automatically generated | 
 | ** from a specification in the file | 
 | **              "table.q" | 
 | ** by the associative array code building program "aagen". | 
 | ** Do not edit this file!  Instead, edit the specification | 
 | ** file, then rerun aagen. | 
 | */ | 
 | /* | 
 | ** Code for processing tables in the LEMON parser generator. | 
 | */ | 
 |  | 
 | PRIVATE int strhash(const char *x) | 
 | { | 
 |   int h = 0; | 
 |   while( *x) h = h*13 + *(x++); | 
 |   return h; | 
 | } | 
 |  | 
 | /* Works like strdup, sort of.  Save a string in malloced memory, but | 
 | ** keep strings in a table so that the same string is not in more | 
 | ** than one place. | 
 | */ | 
 | const char *Strsafe(const char *y) | 
 | { | 
 |   const char *z; | 
 |   char *cpy; | 
 |  | 
 |   if( y==0 ) return 0; | 
 |   z = Strsafe_find(y); | 
 |   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ | 
 |     strcpy(cpy,y); | 
 |     z = cpy; | 
 |     Strsafe_insert(z); | 
 |   } | 
 |   MemoryCheck(z); | 
 |   return z; | 
 | } | 
 |  | 
 | /* There is one instance of the following structure for each | 
 | ** associative array of type "x1". | 
 | */ | 
 | struct s_x1 { | 
 |   int size;               /* The number of available slots. */ | 
 |                           /*   Must be a power of 2 greater than or */ | 
 |                           /*   equal to 1 */ | 
 |   int count;              /* Number of currently slots filled */ | 
 |   struct s_x1node *tbl;  /* The data stored here */ | 
 |   struct s_x1node **ht;  /* Hash table for lookups */ | 
 | }; | 
 |  | 
 | /* There is one instance of this structure for every data element | 
 | ** in an associative array of type "x1". | 
 | */ | 
 | typedef struct s_x1node { | 
 |   const char *data;        /* The data */ | 
 |   struct s_x1node *next;   /* Next entry with the same hash */ | 
 |   struct s_x1node **from;  /* Previous link */ | 
 | } x1node; | 
 |  | 
 | /* There is only one instance of the array, which is the following */ | 
 | static struct s_x1 *x1a; | 
 |  | 
 | /* Allocate a new associative array */ | 
 | void Strsafe_init(){ | 
 |   if( x1a ) return; | 
 |   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); | 
 |   if( x1a ){ | 
 |     x1a->size = 1024; | 
 |     x1a->count = 0; | 
 |     x1a->tbl = (x1node*)malloc(  | 
 |       (sizeof(x1node) + sizeof(x1node*))*1024 ); | 
 |     if( x1a->tbl==0 ){ | 
 |       free(x1a); | 
 |       x1a = 0; | 
 |     }else{ | 
 |       int i; | 
 |       x1a->ht = (x1node**)&(x1a->tbl[1024]); | 
 |       for(i=0; i<1024; i++) x1a->ht[i] = 0; | 
 |     } | 
 |   } | 
 | } | 
 | /* Insert a new record into the array.  Return TRUE if successful. | 
 | ** Prior data with the same key is NOT overwritten */ | 
 | int Strsafe_insert(const char *data) | 
 | { | 
 |   x1node *np; | 
 |   int h; | 
 |   int ph; | 
 |  | 
 |   if( x1a==0 ) return 0; | 
 |   ph = strhash(data); | 
 |   h = ph & (x1a->size-1); | 
 |   np = x1a->ht[h]; | 
 |   while( np ){ | 
 |     if( strcmp(np->data,data)==0 ){ | 
 |       /* An existing entry with the same key is found. */ | 
 |       /* Fail because overwrite is not allows. */ | 
 |       return 0; | 
 |     } | 
 |     np = np->next; | 
 |   } | 
 |   if( x1a->count>=x1a->size ){ | 
 |     /* Need to make the hash table bigger */ | 
 |     int i,size; | 
 |     struct s_x1 array; | 
 |     array.size = size = x1a->size*2; | 
 |     array.count = x1a->count; | 
 |     array.tbl = (x1node*)malloc( | 
 |       (sizeof(x1node) + sizeof(x1node*))*size ); | 
 |     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */ | 
 |     array.ht = (x1node**)&(array.tbl[size]); | 
 |     for(i=0; i<size; i++) array.ht[i] = 0; | 
 |     for(i=0; i<x1a->count; i++){ | 
 |       x1node *oldnp, *newnp; | 
 |       oldnp = &(x1a->tbl[i]); | 
 |       h = strhash(oldnp->data) & (size-1); | 
 |       newnp = &(array.tbl[i]); | 
 |       if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | 
 |       newnp->next = array.ht[h]; | 
 |       newnp->data = oldnp->data; | 
 |       newnp->from = &(array.ht[h]); | 
 |       array.ht[h] = newnp; | 
 |     } | 
 |     free(x1a->tbl); | 
 |     *x1a = array; | 
 |   } | 
 |   /* Insert the new data */ | 
 |   h = ph & (x1a->size-1); | 
 |   np = &(x1a->tbl[x1a->count++]); | 
 |   np->data = data; | 
 |   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); | 
 |   np->next = x1a->ht[h]; | 
 |   x1a->ht[h] = np; | 
 |   np->from = &(x1a->ht[h]); | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Return a pointer to data assigned to the given key.  Return NULL | 
 | ** if no such key. */ | 
 | const char *Strsafe_find(const char *key) | 
 | { | 
 |   int h; | 
 |   x1node *np; | 
 |  | 
 |   if( x1a==0 ) return 0; | 
 |   h = strhash(key) & (x1a->size-1); | 
 |   np = x1a->ht[h]; | 
 |   while( np ){ | 
 |     if( strcmp(np->data,key)==0 ) break; | 
 |     np = np->next; | 
 |   } | 
 |   return np ? np->data : 0; | 
 | } | 
 |  | 
 | /* Return a pointer to the (terminal or nonterminal) symbol "x". | 
 | ** Create a new symbol if this is the first time "x" has been seen. | 
 | */ | 
 | struct symbol *Symbol_new(const char *x) | 
 | { | 
 |   struct symbol *sp; | 
 |  | 
 |   sp = Symbol_find(x); | 
 |   if( sp==0 ){ | 
 |     sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); | 
 |     MemoryCheck(sp); | 
 |     sp->name = Strsafe(x); | 
 |     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; | 
 |     sp->rule = 0; | 
 |     sp->fallback = 0; | 
 |     sp->prec = -1; | 
 |     sp->assoc = UNK; | 
 |     sp->firstset = 0; | 
 |     sp->lambda = LEMON_FALSE; | 
 |     sp->destructor = 0; | 
 |     sp->destLineno = 0; | 
 |     sp->datatype = 0; | 
 |     sp->useCnt = 0; | 
 |     Symbol_insert(sp,sp->name); | 
 |   } | 
 |   sp->useCnt++; | 
 |   return sp; | 
 | } | 
 |  | 
 | /* Compare two symbols for working purposes | 
 | ** | 
 | ** Symbols that begin with upper case letters (terminals or tokens) | 
 | ** must sort before symbols that begin with lower case letters | 
 | ** (non-terminals).  Other than that, the order does not matter. | 
 | ** | 
 | ** We find experimentally that leaving the symbols in their original | 
 | ** order (the order they appeared in the grammar file) gives the | 
 | ** smallest parser tables in SQLite. | 
 | */ | 
 | int Symbolcmpp(const void *_a, const void *_b) | 
 | { | 
 |   const struct symbol **a = (const struct symbol **) _a; | 
 |   const struct symbol **b = (const struct symbol **) _b; | 
 |   int i1 = (**a).index + 10000000*((**a).name[0]>'Z'); | 
 |   int i2 = (**b).index + 10000000*((**b).name[0]>'Z'); | 
 |   assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 ); | 
 |   return i1-i2; | 
 | } | 
 |  | 
 | /* There is one instance of the following structure for each | 
 | ** associative array of type "x2". | 
 | */ | 
 | struct s_x2 { | 
 |   int size;               /* The number of available slots. */ | 
 |                           /*   Must be a power of 2 greater than or */ | 
 |                           /*   equal to 1 */ | 
 |   int count;              /* Number of currently slots filled */ | 
 |   struct s_x2node *tbl;  /* The data stored here */ | 
 |   struct s_x2node **ht;  /* Hash table for lookups */ | 
 | }; | 
 |  | 
 | /* There is one instance of this structure for every data element | 
 | ** in an associative array of type "x2". | 
 | */ | 
 | typedef struct s_x2node { | 
 |   struct symbol *data;     /* The data */ | 
 |   const char *key;         /* The key */ | 
 |   struct s_x2node *next;   /* Next entry with the same hash */ | 
 |   struct s_x2node **from;  /* Previous link */ | 
 | } x2node; | 
 |  | 
 | /* There is only one instance of the array, which is the following */ | 
 | static struct s_x2 *x2a; | 
 |  | 
 | /* Allocate a new associative array */ | 
 | void Symbol_init(){ | 
 |   if( x2a ) return; | 
 |   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); | 
 |   if( x2a ){ | 
 |     x2a->size = 128; | 
 |     x2a->count = 0; | 
 |     x2a->tbl = (x2node*)malloc(  | 
 |       (sizeof(x2node) + sizeof(x2node*))*128 ); | 
 |     if( x2a->tbl==0 ){ | 
 |       free(x2a); | 
 |       x2a = 0; | 
 |     }else{ | 
 |       int i; | 
 |       x2a->ht = (x2node**)&(x2a->tbl[128]); | 
 |       for(i=0; i<128; i++) x2a->ht[i] = 0; | 
 |     } | 
 |   } | 
 | } | 
 | /* Insert a new record into the array.  Return TRUE if successful. | 
 | ** Prior data with the same key is NOT overwritten */ | 
 | int Symbol_insert(struct symbol *data, const char *key) | 
 | { | 
 |   x2node *np; | 
 |   int h; | 
 |   int ph; | 
 |  | 
 |   if( x2a==0 ) return 0; | 
 |   ph = strhash(key); | 
 |   h = ph & (x2a->size-1); | 
 |   np = x2a->ht[h]; | 
 |   while( np ){ | 
 |     if( strcmp(np->key,key)==0 ){ | 
 |       /* An existing entry with the same key is found. */ | 
 |       /* Fail because overwrite is not allows. */ | 
 |       return 0; | 
 |     } | 
 |     np = np->next; | 
 |   } | 
 |   if( x2a->count>=x2a->size ){ | 
 |     /* Need to make the hash table bigger */ | 
 |     int i,size; | 
 |     struct s_x2 array; | 
 |     array.size = size = x2a->size*2; | 
 |     array.count = x2a->count; | 
 |     array.tbl = (x2node*)malloc( | 
 |       (sizeof(x2node) + sizeof(x2node*))*size ); | 
 |     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */ | 
 |     array.ht = (x2node**)&(array.tbl[size]); | 
 |     for(i=0; i<size; i++) array.ht[i] = 0; | 
 |     for(i=0; i<x2a->count; i++){ | 
 |       x2node *oldnp, *newnp; | 
 |       oldnp = &(x2a->tbl[i]); | 
 |       h = strhash(oldnp->key) & (size-1); | 
 |       newnp = &(array.tbl[i]); | 
 |       if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | 
 |       newnp->next = array.ht[h]; | 
 |       newnp->key = oldnp->key; | 
 |       newnp->data = oldnp->data; | 
 |       newnp->from = &(array.ht[h]); | 
 |       array.ht[h] = newnp; | 
 |     } | 
 |     free(x2a->tbl); | 
 |     *x2a = array; | 
 |   } | 
 |   /* Insert the new data */ | 
 |   h = ph & (x2a->size-1); | 
 |   np = &(x2a->tbl[x2a->count++]); | 
 |   np->key = key; | 
 |   np->data = data; | 
 |   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); | 
 |   np->next = x2a->ht[h]; | 
 |   x2a->ht[h] = np; | 
 |   np->from = &(x2a->ht[h]); | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Return a pointer to data assigned to the given key.  Return NULL | 
 | ** if no such key. */ | 
 | struct symbol *Symbol_find(const char *key) | 
 | { | 
 |   int h; | 
 |   x2node *np; | 
 |  | 
 |   if( x2a==0 ) return 0; | 
 |   h = strhash(key) & (x2a->size-1); | 
 |   np = x2a->ht[h]; | 
 |   while( np ){ | 
 |     if( strcmp(np->key,key)==0 ) break; | 
 |     np = np->next; | 
 |   } | 
 |   return np ? np->data : 0; | 
 | } | 
 |  | 
 | /* Return the n-th data.  Return NULL if n is out of range. */ | 
 | struct symbol *Symbol_Nth(int n) | 
 | { | 
 |   struct symbol *data; | 
 |   if( x2a && n>0 && n<=x2a->count ){ | 
 |     data = x2a->tbl[n-1].data; | 
 |   }else{ | 
 |     data = 0; | 
 |   } | 
 |   return data; | 
 | } | 
 |  | 
 | /* Return the size of the array */ | 
 | int Symbol_count() | 
 | { | 
 |   return x2a ? x2a->count : 0; | 
 | } | 
 |  | 
 | /* Return an array of pointers to all data in the table. | 
 | ** The array is obtained from malloc.  Return NULL if memory allocation | 
 | ** problems, or if the array is empty. */ | 
 | struct symbol **Symbol_arrayof() | 
 | { | 
 |   struct symbol **array; | 
 |   int i,size; | 
 |   if( x2a==0 ) return 0; | 
 |   size = x2a->count; | 
 |   array = (struct symbol **)calloc(size, sizeof(struct symbol *)); | 
 |   if( array ){ | 
 |     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data; | 
 |   } | 
 |   return array; | 
 | } | 
 |  | 
 | /* Compare two configurations */ | 
 | int Configcmp(const char *_a,const char *_b) | 
 | { | 
 |   const struct config *a = (struct config *) _a; | 
 |   const struct config *b = (struct config *) _b; | 
 |   int x; | 
 |   x = a->rp->index - b->rp->index; | 
 |   if( x==0 ) x = a->dot - b->dot; | 
 |   return x; | 
 | } | 
 |  | 
 | /* Compare two states */ | 
 | PRIVATE int statecmp(struct config *a, struct config *b) | 
 | { | 
 |   int rc; | 
 |   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){ | 
 |     rc = a->rp->index - b->rp->index; | 
 |     if( rc==0 ) rc = a->dot - b->dot; | 
 |   } | 
 |   if( rc==0 ){ | 
 |     if( a ) rc = 1; | 
 |     if( b ) rc = -1; | 
 |   } | 
 |   return rc; | 
 | } | 
 |  | 
 | /* Hash a state */ | 
 | PRIVATE int statehash(struct config *a) | 
 | { | 
 |   int h=0; | 
 |   while( a ){ | 
 |     h = h*571 + a->rp->index*37 + a->dot; | 
 |     a = a->bp; | 
 |   } | 
 |   return h; | 
 | } | 
 |  | 
 | /* Allocate a new state structure */ | 
 | struct state *State_new() | 
 | { | 
 |   struct state *newstate; | 
 |   newstate = (struct state *)calloc(1, sizeof(struct state) ); | 
 |   MemoryCheck(newstate); | 
 |   return newstate; | 
 | } | 
 |  | 
 | /* There is one instance of the following structure for each | 
 | ** associative array of type "x3". | 
 | */ | 
 | struct s_x3 { | 
 |   int size;               /* The number of available slots. */ | 
 |                           /*   Must be a power of 2 greater than or */ | 
 |                           /*   equal to 1 */ | 
 |   int count;              /* Number of currently slots filled */ | 
 |   struct s_x3node *tbl;  /* The data stored here */ | 
 |   struct s_x3node **ht;  /* Hash table for lookups */ | 
 | }; | 
 |  | 
 | /* There is one instance of this structure for every data element | 
 | ** in an associative array of type "x3". | 
 | */ | 
 | typedef struct s_x3node { | 
 |   struct state *data;                  /* The data */ | 
 |   struct config *key;                   /* The key */ | 
 |   struct s_x3node *next;   /* Next entry with the same hash */ | 
 |   struct s_x3node **from;  /* Previous link */ | 
 | } x3node; | 
 |  | 
 | /* There is only one instance of the array, which is the following */ | 
 | static struct s_x3 *x3a; | 
 |  | 
 | /* Allocate a new associative array */ | 
 | void State_init(){ | 
 |   if( x3a ) return; | 
 |   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); | 
 |   if( x3a ){ | 
 |     x3a->size = 128; | 
 |     x3a->count = 0; | 
 |     x3a->tbl = (x3node*)malloc(  | 
 |       (sizeof(x3node) + sizeof(x3node*))*128 ); | 
 |     if( x3a->tbl==0 ){ | 
 |       free(x3a); | 
 |       x3a = 0; | 
 |     }else{ | 
 |       int i; | 
 |       x3a->ht = (x3node**)&(x3a->tbl[128]); | 
 |       for(i=0; i<128; i++) x3a->ht[i] = 0; | 
 |     } | 
 |   } | 
 | } | 
 | /* Insert a new record into the array.  Return TRUE if successful. | 
 | ** Prior data with the same key is NOT overwritten */ | 
 | int State_insert(struct state *data, struct config *key) | 
 | { | 
 |   x3node *np; | 
 |   int h; | 
 |   int ph; | 
 |  | 
 |   if( x3a==0 ) return 0; | 
 |   ph = statehash(key); | 
 |   h = ph & (x3a->size-1); | 
 |   np = x3a->ht[h]; | 
 |   while( np ){ | 
 |     if( statecmp(np->key,key)==0 ){ | 
 |       /* An existing entry with the same key is found. */ | 
 |       /* Fail because overwrite is not allows. */ | 
 |       return 0; | 
 |     } | 
 |     np = np->next; | 
 |   } | 
 |   if( x3a->count>=x3a->size ){ | 
 |     /* Need to make the hash table bigger */ | 
 |     int i,size; | 
 |     struct s_x3 array; | 
 |     array.size = size = x3a->size*2; | 
 |     array.count = x3a->count; | 
 |     array.tbl = (x3node*)malloc( | 
 |       (sizeof(x3node) + sizeof(x3node*))*size ); | 
 |     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */ | 
 |     array.ht = (x3node**)&(array.tbl[size]); | 
 |     for(i=0; i<size; i++) array.ht[i] = 0; | 
 |     for(i=0; i<x3a->count; i++){ | 
 |       x3node *oldnp, *newnp; | 
 |       oldnp = &(x3a->tbl[i]); | 
 |       h = statehash(oldnp->key) & (size-1); | 
 |       newnp = &(array.tbl[i]); | 
 |       if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | 
 |       newnp->next = array.ht[h]; | 
 |       newnp->key = oldnp->key; | 
 |       newnp->data = oldnp->data; | 
 |       newnp->from = &(array.ht[h]); | 
 |       array.ht[h] = newnp; | 
 |     } | 
 |     free(x3a->tbl); | 
 |     *x3a = array; | 
 |   } | 
 |   /* Insert the new data */ | 
 |   h = ph & (x3a->size-1); | 
 |   np = &(x3a->tbl[x3a->count++]); | 
 |   np->key = key; | 
 |   np->data = data; | 
 |   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); | 
 |   np->next = x3a->ht[h]; | 
 |   x3a->ht[h] = np; | 
 |   np->from = &(x3a->ht[h]); | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Return a pointer to data assigned to the given key.  Return NULL | 
 | ** if no such key. */ | 
 | struct state *State_find(struct config *key) | 
 | { | 
 |   int h; | 
 |   x3node *np; | 
 |  | 
 |   if( x3a==0 ) return 0; | 
 |   h = statehash(key) & (x3a->size-1); | 
 |   np = x3a->ht[h]; | 
 |   while( np ){ | 
 |     if( statecmp(np->key,key)==0 ) break; | 
 |     np = np->next; | 
 |   } | 
 |   return np ? np->data : 0; | 
 | } | 
 |  | 
 | /* Return an array of pointers to all data in the table. | 
 | ** The array is obtained from malloc.  Return NULL if memory allocation | 
 | ** problems, or if the array is empty. */ | 
 | struct state **State_arrayof() | 
 | { | 
 |   struct state **array; | 
 |   int i,size; | 
 |   if( x3a==0 ) return 0; | 
 |   size = x3a->count; | 
 |   array = (struct state **)malloc( sizeof(struct state *)*size ); | 
 |   if( array ){ | 
 |     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data; | 
 |   } | 
 |   return array; | 
 | } | 
 |  | 
 | /* Hash a configuration */ | 
 | PRIVATE int confighash(struct config *a) | 
 | { | 
 |   int h=0; | 
 |   h = h*571 + a->rp->index*37 + a->dot; | 
 |   return h; | 
 | } | 
 |  | 
 | /* There is one instance of the following structure for each | 
 | ** associative array of type "x4". | 
 | */ | 
 | struct s_x4 { | 
 |   int size;               /* The number of available slots. */ | 
 |                           /*   Must be a power of 2 greater than or */ | 
 |                           /*   equal to 1 */ | 
 |   int count;              /* Number of currently slots filled */ | 
 |   struct s_x4node *tbl;  /* The data stored here */ | 
 |   struct s_x4node **ht;  /* Hash table for lookups */ | 
 | }; | 
 |  | 
 | /* There is one instance of this structure for every data element | 
 | ** in an associative array of type "x4". | 
 | */ | 
 | typedef struct s_x4node { | 
 |   struct config *data;                  /* The data */ | 
 |   struct s_x4node *next;   /* Next entry with the same hash */ | 
 |   struct s_x4node **from;  /* Previous link */ | 
 | } x4node; | 
 |  | 
 | /* There is only one instance of the array, which is the following */ | 
 | static struct s_x4 *x4a; | 
 |  | 
 | /* Allocate a new associative array */ | 
 | void Configtable_init(){ | 
 |   if( x4a ) return; | 
 |   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); | 
 |   if( x4a ){ | 
 |     x4a->size = 64; | 
 |     x4a->count = 0; | 
 |     x4a->tbl = (x4node*)malloc(  | 
 |       (sizeof(x4node) + sizeof(x4node*))*64 ); | 
 |     if( x4a->tbl==0 ){ | 
 |       free(x4a); | 
 |       x4a = 0; | 
 |     }else{ | 
 |       int i; | 
 |       x4a->ht = (x4node**)&(x4a->tbl[64]); | 
 |       for(i=0; i<64; i++) x4a->ht[i] = 0; | 
 |     } | 
 |   } | 
 | } | 
 | /* Insert a new record into the array.  Return TRUE if successful. | 
 | ** Prior data with the same key is NOT overwritten */ | 
 | int Configtable_insert(struct config *data) | 
 | { | 
 |   x4node *np; | 
 |   int h; | 
 |   int ph; | 
 |  | 
 |   if( x4a==0 ) return 0; | 
 |   ph = confighash(data); | 
 |   h = ph & (x4a->size-1); | 
 |   np = x4a->ht[h]; | 
 |   while( np ){ | 
 |     if( Configcmp((const char *) np->data,(const char *) data)==0 ){ | 
 |       /* An existing entry with the same key is found. */ | 
 |       /* Fail because overwrite is not allows. */ | 
 |       return 0; | 
 |     } | 
 |     np = np->next; | 
 |   } | 
 |   if( x4a->count>=x4a->size ){ | 
 |     /* Need to make the hash table bigger */ | 
 |     int i,size; | 
 |     struct s_x4 array; | 
 |     array.size = size = x4a->size*2; | 
 |     array.count = x4a->count; | 
 |     array.tbl = (x4node*)malloc( | 
 |       (sizeof(x4node) + sizeof(x4node*))*size ); | 
 |     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */ | 
 |     array.ht = (x4node**)&(array.tbl[size]); | 
 |     for(i=0; i<size; i++) array.ht[i] = 0; | 
 |     for(i=0; i<x4a->count; i++){ | 
 |       x4node *oldnp, *newnp; | 
 |       oldnp = &(x4a->tbl[i]); | 
 |       h = confighash(oldnp->data) & (size-1); | 
 |       newnp = &(array.tbl[i]); | 
 |       if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | 
 |       newnp->next = array.ht[h]; | 
 |       newnp->data = oldnp->data; | 
 |       newnp->from = &(array.ht[h]); | 
 |       array.ht[h] = newnp; | 
 |     } | 
 |     free(x4a->tbl); | 
 |     *x4a = array; | 
 |   } | 
 |   /* Insert the new data */ | 
 |   h = ph & (x4a->size-1); | 
 |   np = &(x4a->tbl[x4a->count++]); | 
 |   np->data = data; | 
 |   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); | 
 |   np->next = x4a->ht[h]; | 
 |   x4a->ht[h] = np; | 
 |   np->from = &(x4a->ht[h]); | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Return a pointer to data assigned to the given key.  Return NULL | 
 | ** if no such key. */ | 
 | struct config *Configtable_find(struct config *key) | 
 | { | 
 |   int h; | 
 |   x4node *np; | 
 |  | 
 |   if( x4a==0 ) return 0; | 
 |   h = confighash(key) & (x4a->size-1); | 
 |   np = x4a->ht[h]; | 
 |   while( np ){ | 
 |     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; | 
 |     np = np->next; | 
 |   } | 
 |   return np ? np->data : 0; | 
 | } | 
 |  | 
 | /* Remove all data from the table.  Pass each data to the function "f" | 
 | ** as it is removed.  ("f" may be null to avoid this step.) */ | 
 | void Configtable_clear(int(*f)(struct config *)) | 
 | { | 
 |   int i; | 
 |   if( x4a==0 || x4a->count==0 ) return; | 
 |   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); | 
 |   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; | 
 |   x4a->count = 0; | 
 |   return; | 
 | } |