blob: 1b07bd2e6254cef617e69ca710f4141f59067539 [file] [log] [blame]
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/layout/LayoutBlockFlow.h"
#include "core/dom/AXObjectCache.h"
#include "core/frame/FrameView.h"
#include "core/frame/LocalFrame.h"
#include "core/frame/Settings.h"
#include "core/html/HTMLDialogElement.h"
#include "core/layout/HitTestLocation.h"
#include "core/layout/LayoutAnalyzer.h"
#include "core/layout/LayoutFlowThread.h"
#include "core/layout/LayoutMultiColumnFlowThread.h"
#include "core/layout/LayoutMultiColumnSpannerPlaceholder.h"
#include "core/layout/LayoutPagedFlowThread.h"
#include "core/layout/LayoutText.h"
#include "core/layout/LayoutView.h"
#include "core/layout/TextAutosizer.h"
#include "core/layout/line/LineBreaker.h"
#include "core/layout/line/LineWidth.h"
#include "core/paint/BlockFlowPainter.h"
#include "core/paint/ClipScope.h"
#include "core/paint/DeprecatedPaintLayer.h"
#include "core/paint/LayoutObjectDrawingRecorder.h"
#include "core/paint/PaintInfo.h"
#include "platform/RuntimeEnabledFeatures.h"
#include "platform/geometry/TransformState.h"
#include "platform/text/BidiTextRun.h"
namespace blink {
bool LayoutBlockFlow::s_canPropagateFloatIntoSibling = false;
struct SameSizeAsMarginInfo {
uint16_t bitfields;
LayoutUnit margins[2];
};
static_assert(sizeof(LayoutBlockFlow::MarginValues) == sizeof(LayoutUnit[4]), "MarginValues should stay small");
class MarginInfo {
// Collapsing flags for whether we can collapse our margins with our children's margins.
bool m_canCollapseWithChildren : 1;
bool m_canCollapseMarginBeforeWithChildren : 1;
bool m_canCollapseMarginAfterWithChildren : 1;
bool m_canCollapseMarginAfterWithLastChild: 1;
// Whether or not we are a quirky container, i.e., do we collapse away top and bottom
// margins in our container. Table cells and the body are the common examples. We
// also have a custom style property for Safari RSS to deal with TypePad blog articles.
bool m_quirkContainer : 1;
// This flag tracks whether we are still looking at child margins that can all collapse together at the beginning of a block.
// They may or may not collapse with the top margin of the block (|m_canCollapseTopWithChildren| tells us that), but they will
// always be collapsing with one another. This variable can remain set to true through multiple iterations
// as long as we keep encountering self-collapsing blocks.
bool m_atBeforeSideOfBlock : 1;
// This flag is set when we know we're examining bottom margins and we know we're at the bottom of the block.
bool m_atAfterSideOfBlock : 1;
// These variables are used to detect quirky margins that we need to collapse away (in table cells
// and in the body element).
bool m_hasMarginBeforeQuirk : 1;
bool m_hasMarginAfterQuirk : 1;
bool m_determinedMarginBeforeQuirk : 1;
bool m_discardMargin : 1;
bool m_lastChildIsSelfCollapsingBlockWithClearance : 1;
// These flags track the previous maximal positive and negative margins.
LayoutUnit m_positiveMargin;
LayoutUnit m_negativeMargin;
public:
MarginInfo(LayoutBlockFlow*, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding);
void setAtBeforeSideOfBlock(bool b) { m_atBeforeSideOfBlock = b; }
void setAtAfterSideOfBlock(bool b) { m_atAfterSideOfBlock = b; }
void clearMargin()
{
m_positiveMargin = 0;
m_negativeMargin = 0;
}
void setHasMarginBeforeQuirk(bool b) { m_hasMarginBeforeQuirk = b; }
void setHasMarginAfterQuirk(bool b) { m_hasMarginAfterQuirk = b; }
void setDeterminedMarginBeforeQuirk(bool b) { m_determinedMarginBeforeQuirk = b; }
void setPositiveMargin(LayoutUnit p) { ASSERT(!m_discardMargin); m_positiveMargin = p; }
void setNegativeMargin(LayoutUnit n) { ASSERT(!m_discardMargin); m_negativeMargin = n; }
void setPositiveMarginIfLarger(LayoutUnit p)
{
ASSERT(!m_discardMargin);
if (p > m_positiveMargin)
m_positiveMargin = p;
}
void setNegativeMarginIfLarger(LayoutUnit n)
{
ASSERT(!m_discardMargin);
if (n > m_negativeMargin)
m_negativeMargin = n;
}
void setMargin(LayoutUnit p, LayoutUnit n) { ASSERT(!m_discardMargin); m_positiveMargin = p; m_negativeMargin = n; }
void setCanCollapseMarginAfterWithChildren(bool collapse) { m_canCollapseMarginAfterWithChildren = collapse; }
void setCanCollapseMarginAfterWithLastChild(bool collapse) { m_canCollapseMarginAfterWithLastChild = collapse; }
void setDiscardMargin(bool value) { m_discardMargin = value; }
bool atBeforeSideOfBlock() const { return m_atBeforeSideOfBlock; }
bool canCollapseWithMarginBefore() const { return m_atBeforeSideOfBlock && m_canCollapseMarginBeforeWithChildren; }
bool canCollapseWithMarginAfter() const { return m_atAfterSideOfBlock && m_canCollapseMarginAfterWithChildren; }
bool canCollapseMarginBeforeWithChildren() const { return m_canCollapseMarginBeforeWithChildren; }
bool canCollapseMarginAfterWithChildren() const { return m_canCollapseMarginAfterWithChildren; }
bool canCollapseMarginAfterWithLastChild() const { return m_canCollapseMarginAfterWithLastChild; }
bool quirkContainer() const { return m_quirkContainer; }
bool determinedMarginBeforeQuirk() const { return m_determinedMarginBeforeQuirk; }
bool hasMarginBeforeQuirk() const { return m_hasMarginBeforeQuirk; }
bool hasMarginAfterQuirk() const { return m_hasMarginAfterQuirk; }
LayoutUnit positiveMargin() const { return m_positiveMargin; }
LayoutUnit negativeMargin() const { return m_negativeMargin; }
bool discardMargin() const { return m_discardMargin; }
LayoutUnit margin() const { return m_positiveMargin - m_negativeMargin; }
void setLastChildIsSelfCollapsingBlockWithClearance(bool value) { m_lastChildIsSelfCollapsingBlockWithClearance = value; }
bool lastChildIsSelfCollapsingBlockWithClearance() const { return m_lastChildIsSelfCollapsingBlockWithClearance; }
};
static bool inNormalFlow(LayoutBox* child)
{
LayoutBlock* curr = child->containingBlock();
LayoutView* layoutView = child->view();
while (curr && curr != layoutView) {
if (curr->isLayoutFlowThread())
return true;
if (curr->isFloatingOrOutOfFlowPositioned())
return false;
curr = curr->containingBlock();
}
return true;
}
LayoutBlockFlow::LayoutBlockFlow(ContainerNode* node)
: LayoutBlock(node)
{
static_assert(sizeof(MarginInfo) == sizeof(SameSizeAsMarginInfo), "MarginInfo should stay small");
setChildrenInline(true);
}
LayoutBlockFlow::~LayoutBlockFlow()
{
}
LayoutBlockFlow* LayoutBlockFlow::createAnonymous(Document* document)
{
LayoutBlockFlow* layoutBlockFlow = new LayoutBlockFlow(nullptr);
layoutBlockFlow->setDocumentForAnonymous(document);
return layoutBlockFlow;
}
LayoutObject* LayoutBlockFlow::layoutSpecialExcludedChild(bool relayoutChildren, SubtreeLayoutScope& layoutScope)
{
LayoutMultiColumnFlowThread* flowThread = multiColumnFlowThread();
if (!flowThread)
return nullptr;
setLogicalTopForChild(*flowThread, borderBefore() + paddingBefore());
flowThread->layoutColumns(relayoutChildren, layoutScope);
determineLogicalLeftPositionForChild(*flowThread);
return flowThread;
}
bool LayoutBlockFlow::updateLogicalWidthAndColumnWidth()
{
bool relayoutChildren = LayoutBlock::updateLogicalWidthAndColumnWidth();
if (LayoutMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
if (flowThread->needsNewWidth())
return true;
}
return relayoutChildren;
}
void LayoutBlockFlow::checkForPaginationLogicalHeightChange(LayoutUnit& pageLogicalHeight, bool& pageLogicalHeightChanged, bool& hasSpecifiedPageLogicalHeight)
{
if (LayoutMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
LogicalExtentComputedValues computedValues;
computeLogicalHeight(LayoutUnit(), logicalTop(), computedValues);
LayoutUnit columnHeight = computedValues.m_extent - borderAndPaddingLogicalHeight() - scrollbarLogicalHeight();
pageLogicalHeightChanged = columnHeight != flowThread->columnHeightAvailable();
flowThread->setColumnHeightAvailable(std::max<LayoutUnit>(columnHeight, 0));
} else if (isLayoutFlowThread()) {
LayoutFlowThread* flowThread = toLayoutFlowThread(this);
// FIXME: This is a hack to always make sure we have a page logical height, if said height
// is known. The page logical height thing in LayoutState is meaningless for flow
// thread-based pagination (page height isn't necessarily uniform throughout the flow
// thread), but as long as it is used universally as a means to determine whether page
// height is known or not, we need this. Page height is unknown when column balancing is
// enabled and flow thread height is still unknown (i.e. during the first layout pass). When
// it's unknown, we need to prevent the pagination code from assuming page breaks everywhere
// and thereby eating every top margin. It should be trivial to clean up and get rid of this
// hack once the old multicol implementation is gone.
pageLogicalHeight = flowThread->isPageLogicalHeightKnown() ? LayoutUnit(1) : LayoutUnit();
pageLogicalHeightChanged = flowThread->pageLogicalSizeChanged();
}
}
void LayoutBlockFlow::setBreakAtLineToAvoidWidow(int lineToBreak)
{
ASSERT(lineToBreak >= 0);
ensureRareData();
ASSERT(!m_rareData->m_didBreakAtLineToAvoidWidow);
m_rareData->m_lineBreakToAvoidWidow = lineToBreak;
}
void LayoutBlockFlow::setDidBreakAtLineToAvoidWidow()
{
ASSERT(!shouldBreakAtLineToAvoidWidow());
// This function should be called only after a break was applied to avoid widows
// so assert |m_rareData| exists.
ASSERT(m_rareData);
m_rareData->m_didBreakAtLineToAvoidWidow = true;
}
void LayoutBlockFlow::clearDidBreakAtLineToAvoidWidow()
{
if (!m_rareData)
return;
m_rareData->m_didBreakAtLineToAvoidWidow = false;
}
void LayoutBlockFlow::clearShouldBreakAtLineToAvoidWidow() const
{
ASSERT(shouldBreakAtLineToAvoidWidow());
if (!m_rareData)
return;
m_rareData->m_lineBreakToAvoidWidow = -1;
}
bool LayoutBlockFlow::isSelfCollapsingBlock() const
{
m_hasOnlySelfCollapsingChildren = LayoutBlock::isSelfCollapsingBlock();
return m_hasOnlySelfCollapsingChildren;
}
void LayoutBlockFlow::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
ASSERT(isInlineBlockOrInlineTable() || !isInline());
// If we are self-collapsing with self-collapsing descendants this will get set to save us burrowing through our
// descendants every time in |isSelfCollapsingBlock|. We reset it here so that |isSelfCollapsingBlock| attempts to burrow
// at least once and so that it always gives a reliable result reflecting the latest layout.
m_hasOnlySelfCollapsingChildren = false;
if (!relayoutChildren && simplifiedLayout())
return;
LayoutAnalyzer::BlockScope analyzer(*this);
SubtreeLayoutScope layoutScope(*this);
// Multiple passes might be required for column based layout.
// The number of passes could be as high as the number of columns.
bool done = false;
LayoutUnit pageLogicalHeight = 0;
while (!done)
done = layoutBlockFlow(relayoutChildren, pageLogicalHeight, layoutScope);
LayoutView* layoutView = view();
if (layoutView->layoutState()->pageLogicalHeight())
setPageLogicalOffset(layoutView->layoutState()->pageLogicalOffset(*this, logicalTop()));
updateLayerTransformAfterLayout();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
if (m_paintInvalidationLogicalTop != m_paintInvalidationLogicalBottom) {
bool hasVisibleContent = style()->visibility() == VISIBLE;
if (!hasVisibleContent) {
DeprecatedPaintLayer* layer = enclosingLayer();
layer->updateDescendantDependentFlags();
hasVisibleContent = layer->hasVisibleContent();
}
if (hasVisibleContent)
setShouldInvalidateOverflowForPaint(true);
}
if (isHTMLDialogElement(node()) && isOutOfFlowPositioned())
positionDialog();
clearNeedsLayout();
}
inline bool LayoutBlockFlow::layoutBlockFlow(bool relayoutChildren, LayoutUnit &pageLogicalHeight, SubtreeLayoutScope& layoutScope)
{
LayoutUnit oldLeft = logicalLeft();
bool logicalWidthChanged = updateLogicalWidthAndColumnWidth();
relayoutChildren |= logicalWidthChanged;
rebuildFloatsFromIntruding();
bool pageLogicalHeightChanged = false;
bool hasSpecifiedPageLogicalHeight = false;
checkForPaginationLogicalHeightChange(pageLogicalHeight, pageLogicalHeightChanged, hasSpecifiedPageLogicalHeight);
if (pageLogicalHeightChanged)
relayoutChildren = true;
LayoutState state(*this, locationOffset(), pageLogicalHeight, pageLogicalHeightChanged, logicalWidthChanged);
// We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track
// our current maximal positive and negative margins. These values are used when we
// are collapsed with adjacent blocks, so for example, if you have block A and B
// collapsing together, then you'd take the maximal positive margin from both A and B
// and subtract it from the maximal negative margin from both A and B to get the
// true collapsed margin. This algorithm is recursive, so when we finish layout()
// our block knows its current maximal positive/negative values.
//
// Start out by setting our margin values to our current margins. Table cells have
// no margins, so we don't fill in the values for table cells.
if (!isTableCell()) {
initMaxMarginValues();
setHasMarginBeforeQuirk(style()->hasMarginBeforeQuirk());
setHasMarginAfterQuirk(style()->hasMarginAfterQuirk());
setPaginationStrut(0);
}
LayoutUnit beforeEdge = borderBefore() + paddingBefore();
LayoutUnit afterEdge = borderAfter() + paddingAfter() + scrollbarLogicalHeight();
LayoutUnit previousHeight = logicalHeight();
setLogicalHeight(beforeEdge);
m_paintInvalidationLogicalTop = 0;
m_paintInvalidationLogicalBottom = 0;
if (!firstChild() && !isAnonymousBlock())
setChildrenInline(true);
TextAutosizer::LayoutScope textAutosizerLayoutScope(this);
if (childrenInline())
layoutInlineChildren(relayoutChildren, m_paintInvalidationLogicalTop, m_paintInvalidationLogicalBottom, afterEdge);
else
layoutBlockChildren(relayoutChildren, layoutScope, beforeEdge, afterEdge);
// Expand our intrinsic height to encompass floats.
if (lowestFloatLogicalBottom() > (logicalHeight() - afterEdge) && createsNewFormattingContext())
setLogicalHeight(lowestFloatLogicalBottom() + afterEdge);
if (LayoutMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
if (flowThread->recalculateColumnHeights()) {
setChildNeedsLayout(MarkOnlyThis);
return false;
}
}
if (shouldBreakAtLineToAvoidWidow()) {
setEverHadLayout(true);
return false;
}
// Calculate our new height.
LayoutUnit oldHeight = logicalHeight();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
LayoutUnit newHeight = logicalHeight();
if (!childrenInline()) {
LayoutBlockFlow* lowestBlock = nullptr;
bool addedOverhangingFloats = false;
// One of our children's floats may have become an overhanging float for us.
for (LayoutObject* child = lastChild(); child; child = child->previousSibling()) {
// TODO(robhogan): We should exclude blocks that create formatting contexts, not just out of flow or floating blocks.
if (child->isLayoutBlockFlow() && !child->isFloatingOrOutOfFlowPositioned()) {
LayoutBlockFlow* block = toLayoutBlockFlow(child);
lowestBlock = block;
if (oldHeight <= newHeight || block->lowestFloatLogicalBottom() + block->logicalTop() <= newHeight)
break;
addOverhangingFloats(block, false);
addedOverhangingFloats = true;
}
}
if (!addedOverhangingFloats)
addLowestFloatFromChildren(lowestBlock);
}
bool heightChanged = (previousHeight != newHeight);
if (heightChanged)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElement(), oldLeft != logicalLeft() ? ForcedLayoutAfterContainingBlockMoved : DefaultLayout);
// Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway).
computeOverflow(oldClientAfterEdge);
m_descendantsWithFloatsMarkedForLayout = false;
return true;
}
void LayoutBlockFlow::addLowestFloatFromChildren(LayoutBlockFlow* block)
{
// TODO(robhogan): Make createsNewFormattingContext an ASSERT.
if (!block || !block->containsFloats() || block->createsNewFormattingContext())
return;
FloatingObject* floatingObject = block->m_floatingObjects->lowestFloatingObject();
if (!floatingObject || containsFloat(floatingObject->layoutObject()))
return;
LayoutSize offset(-block->logicalLeft(), -block->logicalTop());
if (!isHorizontalWritingMode())
offset = offset.transposedSize();
if (!m_floatingObjects)
createFloatingObjects();
FloatingObject* newFloatingObject = m_floatingObjects->add(floatingObject->copyToNewContainer(offset, false, true));
newFloatingObject->setIsLowestNonOverhangingFloatInChild(true);
}
void LayoutBlockFlow::determineLogicalLeftPositionForChild(LayoutBox& child)
{
LayoutUnit startPosition = borderStart() + paddingStart();
LayoutUnit initialStartPosition = startPosition;
if (style()->shouldPlaceBlockDirectionScrollbarOnLogicalLeft())
startPosition -= verticalScrollbarWidth();
LayoutUnit totalAvailableLogicalWidth = borderAndPaddingLogicalWidth() + availableLogicalWidth();
LayoutUnit childMarginStart = marginStartForChild(child);
LayoutUnit newPosition = startPosition + childMarginStart;
LayoutUnit positionToAvoidFloats;
if (child.avoidsFloats() && containsFloats() && !flowThreadContainingBlock())
positionToAvoidFloats = startOffsetForLine(logicalTopForChild(child), false, logicalHeightForChild(child));
// If the child has an offset from the content edge to avoid floats then use that, otherwise let any negative
// margin pull it back over the content edge or any positive margin push it out.
// If the child is being centred then the margin calculated to do that has factored in any offset required to
// avoid floats, so use it if necessary.
if (style()->textAlign() == WEBKIT_CENTER || child.style()->marginStartUsing(style()).isAuto())
newPosition = std::max(newPosition, positionToAvoidFloats + childMarginStart);
else if (positionToAvoidFloats > initialStartPosition)
newPosition = std::max(newPosition, positionToAvoidFloats);
setLogicalLeftForChild(child, style()->isLeftToRightDirection() ? newPosition : totalAvailableLogicalWidth - newPosition - logicalWidthForChild(child));
}
void LayoutBlockFlow::setLogicalLeftForChild(LayoutBox& child, LayoutUnit logicalLeft)
{
if (isHorizontalWritingMode()) {
child.setX(logicalLeft);
} else {
child.setY(logicalLeft);
}
}
void LayoutBlockFlow::setLogicalTopForChild(LayoutBox& child, LayoutUnit logicalTop)
{
if (isHorizontalWritingMode()) {
child.setY(logicalTop);
} else {
child.setX(logicalTop);
}
}
void LayoutBlockFlow::layoutBlockChild(LayoutBox& child, MarginInfo& marginInfo, LayoutUnit& previousFloatLogicalBottom)
{
LayoutUnit oldPosMarginBefore = maxPositiveMarginBefore();
LayoutUnit oldNegMarginBefore = maxNegativeMarginBefore();
// The child is a normal flow object. Compute the margins we will use for collapsing now.
child.computeAndSetBlockDirectionMargins(this);
// Try to guess our correct logical top position. In most cases this guess will
// be correct. Only if we're wrong (when we compute the real logical top position)
// will we have to potentially relayout.
LayoutUnit estimateWithoutPagination;
LayoutUnit logicalTopEstimate = estimateLogicalTopPosition(child, marginInfo, estimateWithoutPagination);
// Cache our old rect so that we can dirty the proper paint invalidation rects if the child moves.
LayoutRect oldRect = child.frameRect();
LayoutUnit oldLogicalTop = logicalTopForChild(child);
// Go ahead and position the child as though it didn't collapse with the top.
setLogicalTopForChild(child, logicalTopEstimate);
LayoutBlockFlow* childLayoutBlockFlow = child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child) : 0;
bool markDescendantsWithFloats = false;
if (logicalTopEstimate != oldLogicalTop && childLayoutBlockFlow && !childLayoutBlockFlow->avoidsFloats() && childLayoutBlockFlow->containsFloats()) {
markDescendantsWithFloats = true;
} else if (UNLIKELY(logicalTopEstimate.mightBeSaturated())) {
// logicalTopEstimate, returned by estimateLogicalTopPosition, might be saturated for
// very large elements. If it does the comparison with oldLogicalTop might yield a
// false negative as adding and removing margins, borders etc from a saturated number
// might yield incorrect results. If this is the case always mark for layout.
markDescendantsWithFloats = true;
} else if (!child.avoidsFloats() || child.shrinkToAvoidFloats()) {
// If an element might be affected by the presence of floats, then always mark it for
// layout.
LayoutUnit fb = std::max(previousFloatLogicalBottom, lowestFloatLogicalBottom());
if (fb > logicalTopEstimate)
markDescendantsWithFloats = true;
}
if (childLayoutBlockFlow) {
if (markDescendantsWithFloats)
childLayoutBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child.isWritingModeRoot())
previousFloatLogicalBottom = std::max(previousFloatLogicalBottom, oldLogicalTop + childLayoutBlockFlow->lowestFloatLogicalBottom());
}
SubtreeLayoutScope layoutScope(child);
if (!child.needsLayout())
child.markForPaginationRelayoutIfNeeded(layoutScope);
bool childNeededLayout = child.needsLayout();
if (childNeededLayout)
child.layout();
// Cache if we are at the top of the block right now.
bool atBeforeSideOfBlock = marginInfo.atBeforeSideOfBlock();
bool childIsSelfCollapsing = child.isSelfCollapsingBlock();
// Now determine the correct ypos based off examination of collapsing margin
// values.
LayoutUnit logicalTopBeforeClear = collapseMargins(child, marginInfo, childIsSelfCollapsing);
// Now check for clear.
LayoutUnit logicalTopAfterClear = clearFloatsIfNeeded(child, marginInfo, oldPosMarginBefore, oldNegMarginBefore, logicalTopBeforeClear, childIsSelfCollapsing);
bool paginated = view()->layoutState()->isPaginated();
if (paginated) {
logicalTopAfterClear = adjustBlockChildForPagination(logicalTopAfterClear, estimateWithoutPagination, child,
atBeforeSideOfBlock && logicalTopBeforeClear == logicalTopAfterClear);
}
setLogicalTopForChild(child, logicalTopAfterClear);
// Now we have a final top position. See if it really does end up being different from our estimate.
// clearFloatsIfNeeded can also mark the child as needing a layout even though we didn't move. This happens
// when collapseMargins dynamically adds overhanging floats because of a child with negative margins.
if (logicalTopAfterClear != logicalTopEstimate || child.needsLayout() || (paginated && childLayoutBlockFlow && childLayoutBlockFlow->shouldBreakAtLineToAvoidWidow())) {
SubtreeLayoutScope layoutScope(child);
if (child.shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
layoutScope.setChildNeedsLayout(&child);
}
if (childLayoutBlockFlow && !childLayoutBlockFlow->avoidsFloats() && childLayoutBlockFlow->containsFloats())
childLayoutBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child.needsLayout())
child.markForPaginationRelayoutIfNeeded(layoutScope);
// Our guess was wrong. Make the child lay itself out again.
child.layoutIfNeeded();
}
// If we previously encountered a self-collapsing sibling of this child that had clearance then
// we set this bit to ensure we would not collapse the child's margins, and those of any subsequent
// self-collapsing siblings, with our parent. If this child is not self-collapsing then it can
// collapse its margins with the parent so reset the bit.
if (!marginInfo.canCollapseMarginAfterWithLastChild() && !childIsSelfCollapsing)
marginInfo.setCanCollapseMarginAfterWithLastChild(true);
// We are no longer at the top of the block if we encounter a non-empty child.
// This has to be done after checking for clear, so that margins can be reset if a clear occurred.
if (marginInfo.atBeforeSideOfBlock() && !childIsSelfCollapsing)
marginInfo.setAtBeforeSideOfBlock(false);
// Now place the child in the correct left position
determineLogicalLeftPositionForChild(child);
LayoutSize childOffset = child.location() - oldRect.location();
// Update our height now that the child has been placed in the correct position.
setLogicalHeight(logicalHeight() + logicalHeightForChild(child));
if (mustSeparateMarginAfterForChild(child)) {
setLogicalHeight(logicalHeight() + marginAfterForChild(child));
marginInfo.clearMargin();
}
// If the child has overhanging floats that intrude into following siblings (or possibly out
// of this block), then the parent gets notified of the floats now.
if (childLayoutBlockFlow)
addOverhangingFloats(childLayoutBlockFlow, !childNeededLayout);
// If the child moved, we have to invalidate its paint as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// invalidate our paint (and the child) anyway.
if (!selfNeedsLayout() && (childOffset.width() || childOffset.height()))
child.invalidatePaintForOverhangingFloats(true);
if (paginated) {
// Check for an after page/column break.
LayoutUnit newHeight = applyAfterBreak(child, logicalHeight(), marginInfo);
if (newHeight != size().height())
setLogicalHeight(newHeight);
}
if (child.isLayoutMultiColumnSpannerPlaceholder()) {
// The actual column-span:all element is positioned by this placeholder child.
positionSpannerDescendant(toLayoutMultiColumnSpannerPlaceholder(child));
}
}
LayoutUnit LayoutBlockFlow::adjustBlockChildForPagination(LayoutUnit logicalTopAfterClear, LayoutUnit estimateWithoutPagination, LayoutBox& child, bool atBeforeSideOfBlock)
{
LayoutBlockFlow* childBlockFlow = child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child) : 0;
if (estimateWithoutPagination != logicalTopAfterClear) {
// Our guess prior to pagination movement was wrong. Before we attempt to paginate, let's try again at the new
// position.
setLogicalHeight(logicalTopAfterClear);
setLogicalTopForChild(child, logicalTopAfterClear);
if (child.shrinkToAvoidFloats()) {
// The child's width depends on the line width.
// When the child shifts to clear an item, its width can
// change (because it has more available line width).
// So go ahead and mark the item as dirty.
child.setChildNeedsLayout(MarkOnlyThis);
}
SubtreeLayoutScope layoutScope(child);
if (childBlockFlow) {
if (!childBlockFlow->avoidsFloats() && childBlockFlow->containsFloats())
childBlockFlow->markAllDescendantsWithFloatsForLayout();
if (!child.needsLayout())
child.markForPaginationRelayoutIfNeeded(layoutScope);
}
// Our guess was wrong. Make the child lay itself out again.
child.layoutIfNeeded();
}
LayoutUnit oldTop = logicalTopAfterClear;
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
LayoutUnit result = applyBeforeBreak(child, logicalTopAfterClear);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
LayoutUnit logicalTopBeforeUnsplittableAdjustment = result;
LayoutUnit logicalTopAfterUnsplittableAdjustment = adjustForUnsplittableChild(child, result);
LayoutUnit paginationStrut = 0;
LayoutUnit unsplittableAdjustmentDelta = logicalTopAfterUnsplittableAdjustment - logicalTopBeforeUnsplittableAdjustment;
LayoutUnit childLogicalHeight = child.logicalHeight();
if (unsplittableAdjustmentDelta) {
setPageBreak(result, childLogicalHeight - unsplittableAdjustmentDelta);
paginationStrut = unsplittableAdjustmentDelta;
} else if (childBlockFlow && childBlockFlow->paginationStrut()) {
paginationStrut = childBlockFlow->paginationStrut();
}
if (paginationStrut) {
// We are willing to propagate out to our parent block as long as we were at the top of the block prior
// to collapsing our margins, and as long as we didn't clear or move as a result of other pagination.
if (atBeforeSideOfBlock && oldTop == result && !isOutOfFlowPositioned() && !isTableCell()) {
// FIXME: Should really check if we're exceeding the page height before propagating the strut, but we don't
// have all the information to do so (the strut only has the remaining amount to push). Gecko gets this wrong too
// and pushes to the next page anyway, so not too concerned about it.
setPaginationStrut(result + paginationStrut);
if (childBlockFlow)
childBlockFlow->setPaginationStrut(0);
} else {
result += paginationStrut;
}
}
if (!unsplittableAdjustmentDelta) {
if (LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(result)) {
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(result, ExcludePageBoundary);
LayoutUnit spaceShortage = childLogicalHeight - remainingLogicalHeight;
if (spaceShortage > 0) {
// If the child crosses a column boundary, report a break, in case nothing inside it
// has already done so. The column balancer needs to know how much it has to stretch
// the columns to make more content fit. If no breaks are reported (but do occur),
// the balancer will have no clue. Only measure the space after the last column
// boundary, in case it crosses more than one.
LayoutUnit spaceShortageInLastColumn = intMod(spaceShortage, pageLogicalHeight);
setPageBreak(result, spaceShortageInLastColumn ? spaceShortageInLastColumn : spaceShortage);
} else if (remainingLogicalHeight == pageLogicalHeight && offsetFromLogicalTopOfFirstPage() + child.logicalTop()) {
// We're at the very top of a page or column, and it's not the first one. This child
// may turn out to be the smallest piece of content that causes a page break, so we
// need to report it.
setPageBreak(result, childLogicalHeight);
}
}
}
// Similar to how we apply clearance. Go ahead and boost height() to be the place where we're going to position the child.
setLogicalHeight(logicalHeight() + (result - oldTop));
// Return the final adjusted logical top.
return result;
}
static inline LayoutUnit calculateMinimumPageHeight(const ComputedStyle& style, RootInlineBox* lastLine, LayoutUnit lineTop, LayoutUnit lineBottom)
{
// We may require a certain minimum number of lines per page in order to satisfy
// orphans and widows, and that may affect the minimum page height.
unsigned lineCount = std::max<unsigned>(style.hasAutoOrphans() ? 1 : style.orphans(), style.widows());
if (lineCount > 1) {
RootInlineBox* line = lastLine;
for (unsigned i = 1; i < lineCount && line->prevRootBox(); i++)
line = line->prevRootBox();
// FIXME: Paginating using line overflow isn't all fine. See FIXME in
// adjustLinePositionForPagination() for more details.
LayoutRect overflow = line->logicalVisualOverflowRect(line->lineTop(), line->lineBottom());
lineTop = std::min(line->lineTopWithLeading(), overflow.y());
}
return lineBottom - lineTop;
}
void LayoutBlockFlow::adjustLinePositionForPagination(RootInlineBox& lineBox, LayoutUnit& delta)
{
// FIXME: For now we paginate using line overflow. This ensures that lines don't overlap at all when we
// put a strut between them for pagination purposes. However, this really isn't the desired layout, since
// the line on the top of the next page will appear too far down relative to the same kind of line at the top
// of the first column.
//
// The layout we would like to see is one where the lineTopWithLeading is at the top of the column, and any line overflow
// simply spills out above the top of the column. This effect would match what happens at the top of the first column.
// We can't achieve this layout, however, until we stop columns from clipping to the column bounds (thus allowing
// for overflow to occur), and then cache visible overflow for each column rect.
//
// Furthermore, the paint we have to do when a column has overflow has to be special. We need to exclude
// content that paints in a previous column (and content that paints in the following column).
//
// For now we'll at least honor the lineTopWithLeading when paginating if it is above the logical top overflow. This will
// at least make positive leading work in typical cases.
//
// FIXME: Another problem with simply moving lines is that the available line width may change (because of floats).
// Technically if the location we move the line to has a different line width than our old position, then we need to dirty the
// line and all following lines.
LayoutRect logicalVisualOverflow = lineBox.logicalVisualOverflowRect(lineBox.lineTop(), lineBox.lineBottom());
LayoutUnit logicalOffset = std::min(lineBox.lineTopWithLeading(), logicalVisualOverflow.y());
LayoutUnit logicalBottom = std::max(lineBox.lineBottomWithLeading(), logicalVisualOverflow.maxY());
LayoutUnit lineHeight = logicalBottom - logicalOffset;
updateMinimumPageHeight(logicalOffset, calculateMinimumPageHeight(styleRef(), &lineBox, logicalOffset, logicalBottom));
logicalOffset += delta;
lineBox.setPaginationStrut(0);
lineBox.setIsFirstAfterPageBreak(false);
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
if (!pageLogicalHeight)
return;
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary);
int lineIndex = lineCount(&lineBox);
if (remainingLogicalHeight < lineHeight || (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex)) {
if (shouldBreakAtLineToAvoidWidow() && lineBreakToAvoidWidow() == lineIndex) {
clearShouldBreakAtLineToAvoidWidow();
setDidBreakAtLineToAvoidWidow();
}
if (lineHeight > pageLogicalHeight) {
// Split the top margin in order to avoid splitting the visible part of the line.
remainingLogicalHeight -= std::min(lineHeight - pageLogicalHeight, std::max<LayoutUnit>(0, logicalVisualOverflow.y() - lineBox.lineTopWithLeading()));
}
LayoutUnit totalLogicalHeight = lineHeight + std::max<LayoutUnit>(0, logicalOffset);
LayoutUnit pageLogicalHeightAtNewOffset = pageLogicalHeightForOffset(logicalOffset + remainingLogicalHeight);
setPageBreak(logicalOffset, lineHeight - remainingLogicalHeight);
if (((lineBox == firstRootBox() && totalLogicalHeight < pageLogicalHeightAtNewOffset) || (!style()->hasAutoOrphans() && style()->orphans() >= lineIndex))
&& !isOutOfFlowPositioned() && !isTableCell()) {
setPaginationStrut(remainingLogicalHeight + std::max<LayoutUnit>(0, logicalOffset));
} else {
delta += remainingLogicalHeight;
lineBox.setPaginationStrut(remainingLogicalHeight);
lineBox.setIsFirstAfterPageBreak(true);
}
} else if (remainingLogicalHeight == pageLogicalHeight) {
// We're at the very top of a page or column.
if (lineBox != firstRootBox())
lineBox.setIsFirstAfterPageBreak(true);
if (lineBox != firstRootBox() || offsetFromLogicalTopOfFirstPage())
setPageBreak(logicalOffset, lineHeight);
}
}
LayoutUnit LayoutBlockFlow::adjustForUnsplittableChild(LayoutBox& child, LayoutUnit logicalOffset, bool includeMargins)
{
bool checkColumnBreaks = flowThreadContainingBlock();
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight();
bool isUnsplittable = child.isUnsplittableForPagination() || (checkColumnBreaks && child.style()->columnBreakInside() == PBAVOID)
|| (checkPageBreaks && child.style()->pageBreakInside() == PBAVOID);
if (!isUnsplittable)
return logicalOffset;
LayoutUnit childLogicalHeight = logicalHeightForChild(child) + (includeMargins ? marginBeforeForChild(child) + marginAfterForChild(child) : LayoutUnit());
LayoutUnit pageLogicalHeight = pageLogicalHeightForOffset(logicalOffset);
updateMinimumPageHeight(logicalOffset, childLogicalHeight);
if (!pageLogicalHeight)
return logicalOffset;
LayoutUnit remainingLogicalHeight = pageRemainingLogicalHeightForOffset(logicalOffset, ExcludePageBoundary);
if (remainingLogicalHeight < childLogicalHeight)
return logicalOffset + remainingLogicalHeight;
return logicalOffset;
}
void LayoutBlockFlow::rebuildFloatsFromIntruding()
{
if (m_floatingObjects)
m_floatingObjects->setHorizontalWritingMode(isHorizontalWritingMode());
HashSet<LayoutBox*> oldIntrudingFloatSet;
if (!childrenInline() && m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
if (!floatingObject.isDescendant())
oldIntrudingFloatSet.add(floatingObject.layoutObject());
}
}
// Inline blocks are covered by the isReplaced() check in the avoidFloats method.
if (avoidsFloats() || isDocumentElement() || isLayoutView() || isFloatingOrOutOfFlowPositioned() || isTableCell()) {
if (m_floatingObjects) {
m_floatingObjects->clear();
}
if (!oldIntrudingFloatSet.isEmpty())
markAllDescendantsWithFloatsForLayout();
return;
}
LayoutBoxToFloatInfoMap floatMap;
if (m_floatingObjects) {
if (childrenInline())
m_floatingObjects->moveAllToFloatInfoMap(floatMap);
else
m_floatingObjects->clear();
}
// We should not process floats if the parent node is not a LayoutBlockFlow. Otherwise, we will add
// floats in an invalid context. This will cause a crash arising from a bad cast on the parent.
// See <rdar://problem/8049753>, where float property is applied on a text node in a SVG.
if (!parent() || !parent()->isLayoutBlockFlow())
return;
// Attempt to locate a previous sibling with overhanging floats. We skip any elements that
// may have shifted to avoid floats, and any objects whose floats cannot interact with objects
// outside it (i.e. objects that create a new block formatting context).
LayoutBlockFlow* parentBlockFlow = toLayoutBlockFlow(parent());
bool parentHasFloats = false;
LayoutObject* prev = previousSibling();
while (prev && (!prev->isBox() || !prev->isLayoutBlock() || toLayoutBlock(prev)->avoidsFloats() || toLayoutBlock(prev)->createsNewFormattingContext())) {
if (prev->isFloating())
parentHasFloats = true;
prev = prev->previousSibling();
}
// First add in floats from the parent. Self-collapsing blocks let their parent track any floats that intrude into
// them (as opposed to floats they contain themselves) so check for those here too.
LayoutUnit logicalTopOffset = logicalTop();
bool parentHasIntrudingFloats = !parentHasFloats && (!prev || toLayoutBlockFlow(prev)->isSelfCollapsingBlock()) && parentBlockFlow->lowestFloatLogicalBottom() > logicalTopOffset;
if (parentHasFloats || parentHasIntrudingFloats)
addIntrudingFloats(parentBlockFlow, parentBlockFlow->logicalLeftOffsetForContent(), logicalTopOffset);
// Add overhanging floats from the previous LayoutBlockFlow, but only if it has a float that intrudes into our space.
if (prev) {
LayoutBlockFlow* blockFlow = toLayoutBlockFlow(prev);
logicalTopOffset -= blockFlow->logicalTop();
if (blockFlow->lowestFloatLogicalBottom() > logicalTopOffset)
addIntrudingFloats(blockFlow, 0, logicalTopOffset);
}
if (childrenInline()) {
LayoutUnit changeLogicalTop = LayoutUnit::max();
LayoutUnit changeLogicalBottom = LayoutUnit::min();
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
FloatingObject* oldFloatingObject = floatMap.get(floatingObject.layoutObject());
LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
if (oldFloatingObject) {
LayoutUnit oldLogicalBottom = logicalBottomForFloat(*oldFloatingObject);
if (logicalWidthForFloat(floatingObject) != logicalWidthForFloat(*oldFloatingObject) || logicalLeftForFloat(floatingObject) != logicalLeftForFloat(*oldFloatingObject)) {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom));
} else {
if (logicalBottom != oldLogicalBottom) {
changeLogicalTop = std::min(changeLogicalTop, std::min(logicalBottom, oldLogicalBottom));
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalBottom, oldLogicalBottom));
}
LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
LayoutUnit oldLogicalTop = logicalTopForFloat(*oldFloatingObject);
if (logicalTop != oldLogicalTop) {
changeLogicalTop = std::min(changeLogicalTop, std::min(logicalTop, oldLogicalTop));
changeLogicalBottom = std::max(changeLogicalBottom, std::max(logicalTop, oldLogicalTop));
}
}
if (oldFloatingObject->originatingLine() && !selfNeedsLayout()) {
ASSERT(oldFloatingObject->originatingLine()->layoutObject() == this);
oldFloatingObject->originatingLine()->markDirty();
}
floatMap.remove(floatingObject.layoutObject());
} else {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, logicalBottom);
}
}
}
LayoutBoxToFloatInfoMap::iterator end = floatMap.end();
for (LayoutBoxToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) {
OwnPtr<FloatingObject>& floatingObject = it->value;
if (!floatingObject->isDescendant()) {
changeLogicalTop = 0;
changeLogicalBottom = std::max(changeLogicalBottom, logicalBottomForFloat(*floatingObject));
}
}
markLinesDirtyInBlockRange(changeLogicalTop, changeLogicalBottom);
} else if (!oldIntrudingFloatSet.isEmpty()) {
// If there are previously intruding floats that no longer intrude, then children with floats
// should also get layout because they might need their floating object lists cleared.
if (m_floatingObjects->set().size() < oldIntrudingFloatSet.size()) {
markAllDescendantsWithFloatsForLayout();
} else {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end && !oldIntrudingFloatSet.isEmpty(); ++it)
oldIntrudingFloatSet.remove((*it)->layoutObject());
if (!oldIntrudingFloatSet.isEmpty())
markAllDescendantsWithFloatsForLayout();
}
}
}
void LayoutBlockFlow::layoutBlockChildren(bool relayoutChildren, SubtreeLayoutScope& layoutScope, LayoutUnit beforeEdge, LayoutUnit afterEdge)
{
dirtyForLayoutFromPercentageHeightDescendants(layoutScope);
// The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts,
MarginInfo marginInfo(this, beforeEdge, afterEdge);
// Fieldsets need to find their legend and position it inside the border of the object.
// The legend then gets skipped during normal layout. The same is true for ruby text.
// It doesn't get included in the normal layout process but is instead skipped.
LayoutObject* childToExclude = layoutSpecialExcludedChild(relayoutChildren, layoutScope);
LayoutUnit previousFloatLogicalBottom = 0;
LayoutBox* next = firstChildBox();
LayoutBox* lastNormalFlowChild = nullptr;
while (next) {
LayoutBox* child = next;
next = child->nextSiblingBox();
child->setMayNeedPaintInvalidation();
if (childToExclude == child)
continue; // Skip this child, since it will be positioned by the specialized subclass (fieldsets and ruby runs).
updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, *child);
if (child->isOutOfFlowPositioned()) {
child->containingBlock()->insertPositionedObject(child);
adjustPositionedBlock(*child, marginInfo);
continue;
}
if (child->isFloating()) {
insertFloatingObject(*child);
adjustFloatingBlock(marginInfo);
continue;
}
if (child->isColumnSpanAll()) {
// This is not the containing block of the spanner. The spanner's placeholder will lay
// it out in due course. For now we just need to consult our flow thread, so that the
// columns (if any) preceding and following the spanner are laid out correctly. But
// first we apply the pending margin, so that it's taken into consideration and doesn't
// end up on the other side of the spanner.
setLogicalHeight(logicalHeight() + marginInfo.margin());
marginInfo.clearMargin();
flowThreadContainingBlock()->skipColumnSpanner(child, offsetFromLogicalTopOfFirstPage() + logicalHeight());
continue;
}
// Lay out the child.
layoutBlockChild(*child, marginInfo, previousFloatLogicalBottom);
lastNormalFlowChild = child;
}
// Now do the handling of the bottom of the block, adding in our bottom border/padding and
// determining the correct collapsed bottom margin information.
handleAfterSideOfBlock(lastNormalFlowChild, beforeEdge, afterEdge, marginInfo);
}
// Our MarginInfo state used when laying out block children.
MarginInfo::MarginInfo(LayoutBlockFlow* blockFlow, LayoutUnit beforeBorderPadding, LayoutUnit afterBorderPadding)
: m_canCollapseMarginAfterWithLastChild(true)
, m_atBeforeSideOfBlock(true)
, m_atAfterSideOfBlock(false)
, m_hasMarginBeforeQuirk(false)
, m_hasMarginAfterQuirk(false)
, m_determinedMarginBeforeQuirk(false)
, m_discardMargin(false)
, m_lastChildIsSelfCollapsingBlockWithClearance(false)
{
const ComputedStyle& blockStyle = blockFlow->styleRef();
ASSERT(blockFlow->isLayoutView() || blockFlow->parent());
m_canCollapseWithChildren = !blockFlow->createsNewFormattingContext() && !blockFlow->isLayoutFlowThread() && !blockFlow->isLayoutView();
m_canCollapseMarginBeforeWithChildren = m_canCollapseWithChildren && !beforeBorderPadding && blockStyle.marginBeforeCollapse() != MSEPARATE;
// If any height other than auto is specified in CSS, then we don't collapse our bottom
// margins with our children's margins. To do otherwise would be to risk odd visual
// effects when the children overflow out of the parent block and yet still collapse
// with it. We also don't collapse if we have any bottom border/padding.
m_canCollapseMarginAfterWithChildren = m_canCollapseWithChildren && !afterBorderPadding
&& (blockStyle.logicalHeight().isAuto() && !blockStyle.logicalHeight().value()) && blockStyle.marginAfterCollapse() != MSEPARATE;
m_quirkContainer = blockFlow->isTableCell() || blockFlow->isBody();
m_discardMargin = m_canCollapseMarginBeforeWithChildren && blockFlow->mustDiscardMarginBefore();
m_positiveMargin = (m_canCollapseMarginBeforeWithChildren && !blockFlow->mustDiscardMarginBefore()) ? blockFlow->maxPositiveMarginBefore() : LayoutUnit();
m_negativeMargin = (m_canCollapseMarginBeforeWithChildren && !blockFlow->mustDiscardMarginBefore()) ? blockFlow->maxNegativeMarginBefore() : LayoutUnit();
}
LayoutBlockFlow::MarginValues LayoutBlockFlow::marginValuesForChild(LayoutBox& child) const
{
LayoutUnit childBeforePositive = 0;
LayoutUnit childBeforeNegative = 0;
LayoutUnit childAfterPositive = 0;
LayoutUnit childAfterNegative = 0;
LayoutUnit beforeMargin = 0;
LayoutUnit afterMargin = 0;
LayoutBlockFlow* childLayoutBlockFlow = child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child) : 0;
// If the child has the same directionality as we do, then we can just return its
// margins in the same direction.
if (!child.isWritingModeRoot()) {
if (childLayoutBlockFlow) {
childBeforePositive = childLayoutBlockFlow->maxPositiveMarginBefore();
childBeforeNegative = childLayoutBlockFlow->maxNegativeMarginBefore();
childAfterPositive = childLayoutBlockFlow->maxPositiveMarginAfter();
childAfterNegative = childLayoutBlockFlow->maxNegativeMarginAfter();
} else {
beforeMargin = child.marginBefore();
afterMargin = child.marginAfter();
}
} else if (child.isHorizontalWritingMode() == isHorizontalWritingMode()) {
// The child has a different directionality. If the child is parallel, then it's just
// flipped relative to us. We can use the margins for the opposite edges.
if (childLayoutBlockFlow) {
childBeforePositive = childLayoutBlockFlow->maxPositiveMarginAfter();
childBeforeNegative = childLayoutBlockFlow->maxNegativeMarginAfter();
childAfterPositive = childLayoutBlockFlow->maxPositiveMarginBefore();
childAfterNegative = childLayoutBlockFlow->maxNegativeMarginBefore();
} else {
beforeMargin = child.marginAfter();
afterMargin = child.marginBefore();
}
} else {
// The child is perpendicular to us, which means its margins don't collapse but are on the
// "logical left/right" sides of the child box. We can just return the raw margin in this case.
beforeMargin = marginBeforeForChild(child);
afterMargin = marginAfterForChild(child);
}
// Resolve uncollapsing margins into their positive/negative buckets.
if (beforeMargin) {
if (beforeMargin > 0)
childBeforePositive = beforeMargin;
else
childBeforeNegative = -beforeMargin;
}
if (afterMargin) {
if (afterMargin > 0)
childAfterPositive = afterMargin;
else
childAfterNegative = -afterMargin;
}
return LayoutBlockFlow::MarginValues(childBeforePositive, childBeforeNegative, childAfterPositive, childAfterNegative);
}
LayoutUnit LayoutBlockFlow::collapseMargins(LayoutBox& child, MarginInfo& marginInfo, bool childIsSelfCollapsing)
{
bool childDiscardMarginBefore = mustDiscardMarginBeforeForChild(child);
bool childDiscardMarginAfter = mustDiscardMarginAfterForChild(child);
// The child discards the before margin when the the after margin has discard in the case of a self collapsing block.
childDiscardMarginBefore = childDiscardMarginBefore || (childDiscardMarginAfter && childIsSelfCollapsing);
// Get the four margin values for the child and cache them.
const LayoutBlockFlow::MarginValues childMargins = marginValuesForChild(child);
// Get our max pos and neg top margins.
LayoutUnit posTop = childMargins.positiveMarginBefore();
LayoutUnit negTop = childMargins.negativeMarginBefore();
// For self-collapsing blocks, collapse our bottom margins into our
// top to get new posTop and negTop values.
if (childIsSelfCollapsing) {
posTop = std::max(posTop, childMargins.positiveMarginAfter());
negTop = std::max(negTop, childMargins.negativeMarginAfter());
}
// See if the top margin is quirky. We only care if this child has
// margins that will collapse with us.
bool topQuirk = hasMarginBeforeQuirk(&child);
if (marginInfo.canCollapseWithMarginBefore()) {
if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
// This child is collapsing with the top of the
// block. If it has larger margin values, then we need to update
// our own maximal values.
if (!document().inQuirksMode() || !marginInfo.quirkContainer() || !topQuirk)
setMaxMarginBeforeValues(std::max(posTop, maxPositiveMarginBefore()), std::max(negTop, maxNegativeMarginBefore()));
// The minute any of the margins involved isn't a quirk, don't
// collapse it away, even if the margin is smaller (www.webreference.com
// has an example of this, a <dt> with 0.8em author-specified inside
// a <dl> inside a <td>.
if (!marginInfo.determinedMarginBeforeQuirk() && !topQuirk && (posTop - negTop)) {
setHasMarginBeforeQuirk(false);
marginInfo.setDeterminedMarginBeforeQuirk(true);
}
if (!marginInfo.determinedMarginBeforeQuirk() && topQuirk && !marginBefore()) {
// We have no top margin and our top child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
// Don't do this for a block that split two inlines though. You do
// still apply margins in this case.
setHasMarginBeforeQuirk(true);
}
} else {
// The before margin of the container will also discard all the margins it is collapsing with.
setMustDiscardMarginBefore();
}
}
// Once we find a child with discardMarginBefore all the margins collapsing with us must also discard.
if (childDiscardMarginBefore) {
marginInfo.setDiscardMargin(true);
marginInfo.clearMargin();
}
if (marginInfo.quirkContainer() && marginInfo.atBeforeSideOfBlock() && (posTop - negTop))
marginInfo.setHasMarginBeforeQuirk(topQuirk);
LayoutUnit beforeCollapseLogicalTop = logicalHeight();
LayoutUnit logicalTop = beforeCollapseLogicalTop;
LayoutUnit clearanceForSelfCollapsingBlock;
LayoutObject* prev = child.previousSibling();
LayoutBlockFlow* previousBlockFlow = prev && prev->isLayoutBlockFlow() && !prev->isFloatingOrOutOfFlowPositioned() ? toLayoutBlockFlow(prev) : 0;
// If the child's previous sibling is a self-collapsing block that cleared a float then its top border edge has been set at the bottom border edge
// of the float. Since we want to collapse the child's top margin with the self-collapsing block's top and bottom margins we need to adjust our parent's height to match the
// margin top of the self-collapsing block. If the resulting collapsed margin leaves the child still intruding into the float then we will want to clear it.
if (!marginInfo.canCollapseWithMarginBefore() && previousBlockFlow && marginInfo.lastChildIsSelfCollapsingBlockWithClearance()) {
clearanceForSelfCollapsingBlock = marginValuesForChild(*previousBlockFlow).positiveMarginBefore();
setLogicalHeight(logicalHeight() - clearanceForSelfCollapsingBlock);
}
if (childIsSelfCollapsing) {
// For a self collapsing block both the before and after margins get discarded. The block doesn't contribute anything to the height of the block.
// Also, the child's top position equals the logical height of the container.
if (!childDiscardMarginBefore && !marginInfo.discardMargin()) {
// This child has no height. We need to compute our
// position before we collapse the child's margins together,
// so that we can get an accurate position for the zero-height block.
LayoutUnit collapsedBeforePos = std::max(marginInfo.positiveMargin(), childMargins.positiveMarginBefore());
LayoutUnit collapsedBeforeNeg = std::max(marginInfo.negativeMargin(), childMargins.negativeMarginBefore());
marginInfo.setMargin(collapsedBeforePos, collapsedBeforeNeg);
// Now collapse the child's margins together, which means examining our
// bottom margin values as well.
marginInfo.setPositiveMarginIfLarger(childMargins.positiveMarginAfter());
marginInfo.setNegativeMarginIfLarger(childMargins.negativeMarginAfter());
if (!marginInfo.canCollapseWithMarginBefore()) {
// We need to make sure that the position of the self-collapsing block
// is correct, since it could have overflowing content
// that needs to be positioned correctly (e.g., a block that
// had a specified height of 0 but that actually had subcontent).
logicalTop = logicalHeight() + collapsedBeforePos - collapsedBeforeNeg;
}
}
} else {
if (mustSeparateMarginBeforeForChild(child)) {
ASSERT(!marginInfo.discardMargin() || (marginInfo.discardMargin() && !marginInfo.margin()));
// If we are at the before side of the block and we collapse, ignore the computed margin
// and just add the child margin to the container height. This will correctly position
// the child inside the container.
LayoutUnit separateMargin = !marginInfo.canCollapseWithMarginBefore() ? marginInfo.margin() : LayoutUnit();
setLogicalHeight(logicalHeight() + separateMargin + marginBeforeForChild(child));
logicalTop = logicalHeight();
} else if (!marginInfo.discardMargin() && (!marginInfo.atBeforeSideOfBlock()
|| (!marginInfo.canCollapseMarginBeforeWithChildren()
&& (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginBeforeQuirk())))) {
// We're collapsing with a previous sibling's margins and not
// with the top of the block.
setLogicalHeight(logicalHeight() + std::max(marginInfo.positiveMargin(), posTop) - std::max(marginInfo.negativeMargin(), negTop));
logicalTop = logicalHeight();
}
marginInfo.setDiscardMargin(childDiscardMarginAfter);
if (!marginInfo.discardMargin()) {
marginInfo.setPositiveMargin(childMargins.positiveMarginAfter());
marginInfo.setNegativeMargin(childMargins.negativeMarginAfter());
} else {
marginInfo.clearMargin();
}
if (marginInfo.margin())
marginInfo.setHasMarginAfterQuirk(hasMarginAfterQuirk(&child));
}
// If margins would pull us past the top of the next page, then we need to pull back and pretend like the margins
// collapsed into the page edge.
LayoutState* layoutState = view()->layoutState();
if (layoutState->isPaginated() && isPageLogicalHeightKnown(beforeCollapseLogicalTop) && logicalTop > beforeCollapseLogicalTop) {
LayoutUnit oldLogicalTop = logicalTop;
logicalTop = std::min(logicalTop, nextPageLogicalTop(beforeCollapseLogicalTop));
setLogicalHeight(logicalHeight() + (logicalTop - oldLogicalTop));
}
if (previousBlockFlow) {
// If |child| is a self-collapsing block it may have collapsed into a previous sibling and although it hasn't reduced the height of the parent yet
// any floats from the parent will now overhang.
LayoutUnit oldLogicalHeight = logicalHeight();
setLogicalHeight(logicalTop);
if (!previousBlockFlow->avoidsFloats() && (previousBlockFlow->logicalTop() + previousBlockFlow->lowestFloatLogicalBottom()) > logicalTop)
addOverhangingFloats(previousBlockFlow, false);
setLogicalHeight(oldLogicalHeight);
// If |child|'s previous sibling is a self-collapsing block that cleared a float and margin collapsing resulted in |child| moving up
// into the margin area of the self-collapsing block then the float it clears is now intruding into |child|. Layout again so that we can look for
// floats in the parent that overhang |child|'s new logical top.
bool logicalTopIntrudesIntoFloat = clearanceForSelfCollapsingBlock > 0 && logicalTop < beforeCollapseLogicalTop;
if (logicalTopIntrudesIntoFloat && containsFloats() && !child.avoidsFloats() && lowestFloatLogicalBottom() > logicalTop)
child.setNeedsLayoutAndFullPaintInvalidation(LayoutInvalidationReason::AncestorMarginCollapsing);
}
return logicalTop;
}
void LayoutBlockFlow::adjustPositionedBlock(LayoutBox& child, const MarginInfo& marginInfo)
{
LayoutUnit logicalTop = logicalHeight();
updateStaticInlinePositionForChild(child, logicalTop);
if (!marginInfo.canCollapseWithMarginBefore()) {
// Positioned blocks don't collapse margins, so add the margin provided by
// the container now. The child's own margin is added later when calculating its logical top.
LayoutUnit collapsedBeforePos = marginInfo.positiveMargin();
LayoutUnit collapsedBeforeNeg = marginInfo.negativeMargin();
logicalTop += collapsedBeforePos - collapsedBeforeNeg;
}
DeprecatedPaintLayer* childLayer = child.layer();
if (childLayer->staticBlockPosition() != logicalTop)
childLayer->setStaticBlockPosition(logicalTop);
}
LayoutUnit LayoutBlockFlow::clearFloatsIfNeeded(LayoutBox& child, MarginInfo& marginInfo, LayoutUnit oldTopPosMargin, LayoutUnit oldTopNegMargin, LayoutUnit yPos, bool childIsSelfCollapsing)
{
LayoutUnit heightIncrease = getClearDelta(&child, yPos);
marginInfo.setLastChildIsSelfCollapsingBlockWithClearance(false);
if (!heightIncrease)
return yPos;
if (childIsSelfCollapsing) {
marginInfo.setLastChildIsSelfCollapsingBlockWithClearance(true);
bool childDiscardMargin = mustDiscardMarginBeforeForChild(child) || mustDiscardMarginAfterForChild(child);
marginInfo.setDiscardMargin(childDiscardMargin);
// For self-collapsing blocks that clear, they can still collapse their
// margins with following siblings. Reset the current margins to represent
// the self-collapsing block's margins only.
// If DISCARD is specified for -webkit-margin-collapse, reset the margin values.
LayoutBlockFlow::MarginValues childMargins = marginValuesForChild(child);
if (!childDiscardMargin) {
marginInfo.setPositiveMargin(std::max(childMargins.positiveMarginBefore(), childMargins.positiveMarginAfter()));
marginInfo.setNegativeMargin(std::max(childMargins.negativeMarginBefore(), childMargins.negativeMarginAfter()));
} else {
marginInfo.clearMargin();
}
// CSS2.1 states:
// "If the top and bottom margins of an element with clearance are adjoining, its margins collapse with
// the adjoining margins of following siblings but that resulting margin does not collapse with the bottom margin of the parent block."
// So the parent's bottom margin cannot collapse through this block or any subsequent self-collapsing blocks. Set a bit to ensure
// this happens; it will get reset if we encounter an in-flow sibling that is not self-collapsing.
marginInfo.setCanCollapseMarginAfterWithLastChild(false);
// For now set the border-top of |child| flush with the bottom border-edge of the float so it can layout any floating or positioned children of
// its own at the correct vertical position. If subsequent siblings attempt to collapse with |child|'s margins in |collapseMargins| we will
// adjust the height of the parent to |child|'s margin top (which if it is positive sits up 'inside' the float it's clearing) so that all three
// margins can collapse at the correct vertical position.
// Per CSS2.1 we need to ensure that any negative margin-top clears |child| beyond the bottom border-edge of the float so that the top border edge of the child
// (i.e. its clearance) is at a position that satisfies the equation: "the amount of clearance is set so that clearance + margin-top = [height of float],
// i.e., clearance = [height of float] - margin-top".
setLogicalHeight(child.logicalTop() + childMargins.negativeMarginBefore());
} else {
// Increase our height by the amount we had to clear.
setLogicalHeight(logicalHeight() + heightIncrease);
}
if (marginInfo.canCollapseWithMarginBefore()) {
// We can no longer collapse with the top of the block since a clear
// occurred. The empty blocks collapse into the cleared block.
setMaxMarginBeforeValues(oldTopPosMargin, oldTopNegMargin);
marginInfo.setAtBeforeSideOfBlock(false);
// In case the child discarded the before margin of the block we need to reset the mustDiscardMarginBefore flag to the initial value.
setMustDiscardMarginBefore(style()->marginBeforeCollapse() == MDISCARD);
}
return yPos + heightIncrease;
}
void LayoutBlockFlow::setCollapsedBottomMargin(const MarginInfo& marginInfo)
{
if (marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()) {
// Update the after side margin of the container to discard if the after margin of the last child also discards and we collapse with it.
// Don't update the max margin values because we won't need them anyway.
if (marginInfo.discardMargin()) {
setMustDiscardMarginAfter();
return;
}
// Update our max pos/neg bottom margins, since we collapsed our bottom margins
// with our children.
setMaxMarginAfterValues(std::max(maxPositiveMarginAfter(), marginInfo.positiveMargin()), std::max(maxNegativeMarginAfter(), marginInfo.negativeMargin()));
if (!marginInfo.hasMarginAfterQuirk())
setHasMarginAfterQuirk(false);
if (marginInfo.hasMarginAfterQuirk() && !marginAfter()) {
// We have no bottom margin and our last child has a quirky margin.
// We will pick up this quirky margin and pass it through.
// This deals with the <td><div><p> case.
setHasMarginAfterQuirk(true);
}
}
}
void LayoutBlockFlow::marginBeforeEstimateForChild(LayoutBox& child, LayoutUnit& positiveMarginBefore, LayoutUnit& negativeMarginBefore, bool& discardMarginBefore) const
{
// Give up if in quirks mode and we're a body/table cell and the top margin of the child box is quirky.
// Give up if the child specified -webkit-margin-collapse: separate that prevents collapsing.
// FIXME: Use writing mode independent accessor for marginBeforeCollapse.
if ((document().inQuirksMode() && hasMarginBeforeQuirk(&child) && (isTableCell() || isBody())) || child.style()->marginBeforeCollapse() == MSEPARATE)
return;
// The margins are discarded by a child that specified -webkit-margin-collapse: discard.
// FIXME: Use writing mode independent accessor for marginBeforeCollapse.
if (child.style()->marginBeforeCollapse() == MDISCARD) {
positiveMarginBefore = 0;
negativeMarginBefore = 0;
discardMarginBefore = true;
return;
}
LayoutUnit beforeChildMargin = marginBeforeForChild(child);
positiveMarginBefore = std::max(positiveMarginBefore, beforeChildMargin);
negativeMarginBefore = std::max(negativeMarginBefore, -beforeChildMargin);
if (!child.isLayoutBlockFlow())
return;
LayoutBlockFlow* childBlockFlow = toLayoutBlockFlow(&child);
if (childBlockFlow->childrenInline() || childBlockFlow->isWritingModeRoot())
return;
MarginInfo childMarginInfo(childBlockFlow, childBlockFlow->borderBefore() + childBlockFlow->paddingBefore(), childBlockFlow->borderAfter() + childBlockFlow->paddingAfter());
if (!childMarginInfo.canCollapseMarginBeforeWithChildren())
return;
LayoutBox* grandchildBox = childBlockFlow->firstChildBox();
for ( ; grandchildBox; grandchildBox = grandchildBox->nextSiblingBox()) {
if (!grandchildBox->isFloatingOrOutOfFlowPositioned() && !grandchildBox->isColumnSpanAll())
break;
}
if (!grandchildBox)
return;
// Make sure to update the block margins now for the grandchild box so that we're looking at current values.
if (grandchildBox->needsLayout()) {
grandchildBox->computeAndSetBlockDirectionMargins(this);
if (grandchildBox->isLayoutBlock()) {
LayoutBlock* grandchildBlock = toLayoutBlock(grandchildBox);
grandchildBlock->setHasMarginBeforeQuirk(grandchildBox->style()->hasMarginBeforeQuirk());
grandchildBlock->setHasMarginAfterQuirk(grandchildBox->style()->hasMarginAfterQuirk());
}
}
// If we have a 'clear' value but also have a margin we may not actually require clearance to move past any floats.
// If that's the case we want to be sure we estimate the correct position including margins after any floats rather
// than use 'clearance' later which could give us the wrong position.
if (grandchildBox->style()->clear() != CNONE && childBlockFlow->marginBeforeForChild(*grandchildBox) == 0)
return;
// Collapse the margin of the grandchild box with our own to produce an estimate.
childBlockFlow->marginBeforeEstimateForChild(*grandchildBox, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
}
LayoutUnit LayoutBlockFlow::estimateLogicalTopPosition(LayoutBox& child, const MarginInfo& marginInfo, LayoutUnit& estimateWithoutPagination)
{
// FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological
// relayout if there are intruding floats.
LayoutUnit logicalTopEstimate = logicalHeight();
if (!marginInfo.canCollapseWithMarginBefore()) {
LayoutUnit positiveMarginBefore = 0;
LayoutUnit negativeMarginBefore = 0;
bool discardMarginBefore = false;
if (child.selfNeedsLayout()) {
// Try to do a basic estimation of how the collapse is going to go.
marginBeforeEstimateForChild(child, positiveMarginBefore, negativeMarginBefore, discardMarginBefore);
} else {
// Use the cached collapsed margin values from a previous layout. Most of the time they
// will be right.
LayoutBlockFlow::MarginValues marginValues = marginValuesForChild(child);
positiveMarginBefore = std::max(positiveMarginBefore, marginValues.positiveMarginBefore());
negativeMarginBefore = std::max(negativeMarginBefore, marginValues.negativeMarginBefore());
discardMarginBefore = mustDiscardMarginBeforeForChild(child);
}
// Collapse the result with our current margins.
if (!discardMarginBefore)
logicalTopEstimate += std::max(marginInfo.positiveMargin(), positiveMarginBefore) - std::max(marginInfo.negativeMargin(), negativeMarginBefore);
}
// Adjust logicalTopEstimate down to the next page if the margins are so large that we don't fit on the current
// page.
LayoutState* layoutState = view()->layoutState();
if (layoutState->isPaginated() && isPageLogicalHeightKnown(logicalHeight()) && logicalTopEstimate > logicalHeight())
logicalTopEstimate = std::min(logicalTopEstimate, nextPageLogicalTop(logicalHeight()));
logicalTopEstimate += getClearDelta(&child, logicalTopEstimate);
estimateWithoutPagination = logicalTopEstimate;
if (layoutState->isPaginated()) {
// If the object has a page or column break value of "before", then we should shift to the top of the next page.
logicalTopEstimate = applyBeforeBreak(child, logicalTopEstimate);
// For replaced elements and scrolled elements, we want to shift them to the next page if they don't fit on the current one.
logicalTopEstimate = adjustForUnsplittableChild(child, logicalTopEstimate);
if (!child.selfNeedsLayout() && child.isLayoutBlockFlow())
logicalTopEstimate += toLayoutBlockFlow(&child)->paginationStrut();
}
return logicalTopEstimate;
}
void LayoutBlockFlow::adjustFloatingBlock(const MarginInfo& marginInfo)
{
// The float should be positioned taking into account the bottom margin
// of the previous flow. We add that margin into the height, get the
// float positioned properly, and then subtract the margin out of the
// height again. In the case of self-collapsing blocks, we always just
// use the top margins, since the self-collapsing block collapsed its
// own bottom margin into its top margin.
//
// Note also that the previous flow may collapse its margin into the top of
// our block. If this is the case, then we do not add the margin in to our
// height when computing the position of the float. This condition can be tested
// for by simply calling canCollapseWithMarginBefore. See
// http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for
// an example of this scenario.
LayoutUnit marginOffset = marginInfo.canCollapseWithMarginBefore() ? LayoutUnit() : marginInfo.margin();
setLogicalHeight(logicalHeight() + marginOffset);
positionNewFloats();
setLogicalHeight(logicalHeight() - marginOffset);
}
void LayoutBlockFlow::handleAfterSideOfBlock(LayoutBox* lastChild, LayoutUnit beforeSide, LayoutUnit afterSide, MarginInfo& marginInfo)
{
marginInfo.setAtAfterSideOfBlock(true);
// If our last child was a self-collapsing block with clearance then our logical height is flush with the
// bottom edge of the float that the child clears. The correct vertical position for the margin-collapsing we want
// to perform now is at the child's margin-top - so adjust our height to that position.
if (marginInfo.lastChildIsSelfCollapsingBlockWithClearance()) {
ASSERT(lastChild);
setLogicalHeight(logicalHeight() - marginValuesForChild(*lastChild).positiveMarginBefore());
}
if (marginInfo.canCollapseMarginAfterWithChildren() && !marginInfo.canCollapseMarginAfterWithLastChild())
marginInfo.setCanCollapseMarginAfterWithChildren(false);
// If we can't collapse with children then go ahead and add in the bottom margin.
if (!marginInfo.discardMargin() && (!marginInfo.canCollapseWithMarginAfter() && !marginInfo.canCollapseWithMarginBefore()
&& (!document().inQuirksMode() || !marginInfo.quirkContainer() || !marginInfo.hasMarginAfterQuirk())))
setLogicalHeight(logicalHeight() + marginInfo.margin());
// Now add in our bottom border/padding.
setLogicalHeight(logicalHeight() + afterSide);
// Negative margins can cause our height to shrink below our minimal height (border/padding).
// If this happens, ensure that the computed height is increased to the minimal height.
setLogicalHeight(std::max(logicalHeight(), beforeSide + afterSide));
// Update our bottom collapsed margin info.
setCollapsedBottomMargin(marginInfo);
}
void LayoutBlockFlow::setMustDiscardMarginBefore(bool value)
{
if (style()->marginBeforeCollapse() == MDISCARD) {
ASSERT(value);
return;
}
if (!m_rareData && !value)
return;
if (!m_rareData)
m_rareData = adoptPtr(new LayoutBlockFlowRareData(this));
m_rareData->m_discardMarginBefore = value;
}
void LayoutBlockFlow::setMustDiscardMarginAfter(bool value)
{
if (style()->marginAfterCollapse() == MDISCARD) {
ASSERT(value);
return;
}
if (!m_rareData && !value)
return;
if (!m_rareData)
m_rareData = adoptPtr(new LayoutBlockFlowRareData(this));
m_rareData->m_discardMarginAfter = value;
}
bool LayoutBlockFlow::mustDiscardMarginBefore() const
{
return style()->marginBeforeCollapse() == MDISCARD || (m_rareData && m_rareData->m_discardMarginBefore);
}
bool LayoutBlockFlow::mustDiscardMarginAfter() const
{
return style()->marginAfterCollapse() == MDISCARD || (m_rareData && m_rareData->m_discardMarginAfter);
}
bool LayoutBlockFlow::mustDiscardMarginBeforeForChild(const LayoutBox& child) const
{
ASSERT(!child.selfNeedsLayout());
if (!child.isWritingModeRoot())
return child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child)->mustDiscardMarginBefore() : (child.style()->marginBeforeCollapse() == MDISCARD);
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child)->mustDiscardMarginAfter() : (child.style()->marginAfterCollapse() == MDISCARD);
// FIXME: We return false here because the implementation is not geometrically complete. We have values only for before/after, not start/end.
// In case the boxes are perpendicular we assume the property is not specified.
return false;
}
bool LayoutBlockFlow::mustDiscardMarginAfterForChild(const LayoutBox& child) const
{
ASSERT(!child.selfNeedsLayout());
if (!child.isWritingModeRoot())
return child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child)->mustDiscardMarginAfter() : (child.style()->marginAfterCollapse() == MDISCARD);
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return child.isLayoutBlockFlow() ? toLayoutBlockFlow(&child)->mustDiscardMarginBefore() : (child.style()->marginBeforeCollapse() == MDISCARD);
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
void LayoutBlockFlow::setMaxMarginBeforeValues(LayoutUnit pos, LayoutUnit neg)
{
if (!m_rareData) {
if (pos == LayoutBlockFlowRareData::positiveMarginBeforeDefault(this) && neg == LayoutBlockFlowRareData::negativeMarginBeforeDefault(this))
return;
m_rareData = adoptPtr(new LayoutBlockFlowRareData(this));
}
m_rareData->m_margins.setPositiveMarginBefore(pos);
m_rareData->m_margins.setNegativeMarginBefore(neg);
}
void LayoutBlockFlow::setMaxMarginAfterValues(LayoutUnit pos, LayoutUnit neg)
{
if (!m_rareData) {
if (pos == LayoutBlockFlowRareData::positiveMarginAfterDefault(this) && neg == LayoutBlockFlowRareData::negativeMarginAfterDefault(this))
return;
m_rareData = adoptPtr(new LayoutBlockFlowRareData(this));
}
m_rareData->m_margins.setPositiveMarginAfter(pos);
m_rareData->m_margins.setNegativeMarginAfter(neg);
}
bool LayoutBlockFlow::mustSeparateMarginBeforeForChild(const LayoutBox& child) const
{
ASSERT(!child.selfNeedsLayout());
const ComputedStyle& childStyle = child.styleRef();
if (!child.isWritingModeRoot())
return childStyle.marginBeforeCollapse() == MSEPARATE;
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return childStyle.marginAfterCollapse() == MSEPARATE;
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
bool LayoutBlockFlow::mustSeparateMarginAfterForChild(const LayoutBox& child) const
{
ASSERT(!child.selfNeedsLayout());
const ComputedStyle& childStyle = child.styleRef();
if (!child.isWritingModeRoot())
return childStyle.marginAfterCollapse() == MSEPARATE;
if (child.isHorizontalWritingMode() == isHorizontalWritingMode())
return childStyle.marginBeforeCollapse() == MSEPARATE;
// FIXME: See |mustDiscardMarginBeforeForChild| above.
return false;
}
LayoutUnit LayoutBlockFlow::applyBeforeBreak(LayoutBox& child, LayoutUnit logicalOffset)
{
// FIXME: Add page break checking here when we support printing.
LayoutFlowThread* flowThread = flowThreadContainingBlock();
bool checkColumnBreaks = flowThread;
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this.
bool checkBeforeAlways = (checkColumnBreaks && child.style()->columnBreakBefore() == PBALWAYS)
|| (checkPageBreaks && child.style()->pageBreakBefore() == PBALWAYS);
if (checkBeforeAlways && inNormalFlow(&child)) {
if (checkColumnBreaks) {
LayoutUnit offsetBreakAdjustment = 0;
if (flowThread->addForcedColumnBreak(offsetFromLogicalTopOfFirstPage() + logicalOffset, &child, true, &offsetBreakAdjustment))
return logicalOffset + offsetBreakAdjustment;
}
return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
}
return logicalOffset;
}
LayoutUnit LayoutBlockFlow::applyAfterBreak(LayoutBox& child, LayoutUnit logicalOffset, MarginInfo& marginInfo)
{
// FIXME: Add page break checking here when we support printing.
LayoutFlowThread* flowThread = flowThreadContainingBlock();
bool checkColumnBreaks = flowThread;
bool checkPageBreaks = !checkColumnBreaks && view()->layoutState()->pageLogicalHeight(); // FIXME: Once columns can print we have to check this.
bool checkAfterAlways = (checkColumnBreaks && child.style()->columnBreakAfter() == PBALWAYS)
|| (checkPageBreaks && child.style()->pageBreakAfter() == PBALWAYS);
if (checkAfterAlways && inNormalFlow(&child)) {
// So our margin doesn't participate in the next collapsing steps.
marginInfo.clearMargin();
if (checkColumnBreaks) {
LayoutUnit offsetBreakAdjustment = 0;
if (flowThread->addForcedColumnBreak(offsetFromLogicalTopOfFirstPage() + logicalOffset, &child, false, &offsetBreakAdjustment))
return logicalOffset + offsetBreakAdjustment;
}
return nextPageLogicalTop(logicalOffset, IncludePageBoundary);
}
return logicalOffset;
}
void LayoutBlockFlow::addOverflowFromFloats()
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
if (floatingObject.isDescendant())
addOverflowFromChild(floatingObject.layoutObject(), LayoutSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
}
}
void LayoutBlockFlow::computeOverflow(LayoutUnit oldClientAfterEdge, bool recomputeFloats)
{
LayoutBlock::computeOverflow(oldClientAfterEdge, recomputeFloats);
if (recomputeFloats || createsNewFormattingContext() || hasSelfPaintingLayer())
addOverflowFromFloats();
}
RootInlineBox* LayoutBlockFlow::createAndAppendRootInlineBox()
{
RootInlineBox* rootBox = createRootInlineBox();
m_lineBoxes.appendLineBox(rootBox);
return rootBox;
}
void LayoutBlockFlow::deleteLineBoxTree()
{
if (containsFloats())
m_floatingObjects->clearLineBoxTreePointers();
m_lineBoxes.deleteLineBoxTree();
}
void LayoutBlockFlow::markAllDescendantsWithFloatsForLayout(LayoutBox* floatToRemove, bool inLayout)
{
if (!everHadLayout() && !containsFloats())
return;
if (m_descendantsWithFloatsMarkedForLayout && !floatToRemove)
return;
m_descendantsWithFloatsMarkedForLayout |= !floatToRemove;
MarkingBehavior markParents = inLayout ? MarkOnlyThis : MarkContainerChain;
setChildNeedsLayout(markParents);
if (floatToRemove)
removeFloatingObject(floatToRemove);
// Iterate over our children and mark them as needed.
if (!childrenInline() || floatToRemove) {
for (LayoutObject* child = firstChild(); child; child = child->nextSibling()) {
if ((!floatToRemove && child->isFloatingOrOutOfFlowPositioned()) || !child->isLayoutBlock())
continue;
if (!child->isLayoutBlockFlow()) {
LayoutBlock* childBlock = toLayoutBlock(child);
if (childBlock->shrinkToAvoidFloats() && childBlock->everHadLayout())
childBlock->setChildNeedsLayout(markParents);
continue;
}
LayoutBlockFlow* childBlockFlow = toLayoutBlockFlow(child);
if ((floatToRemove ? childBlockFlow->containsFloat(floatToRemove) : childBlockFlow->containsFloats()) || childBlockFlow->shrinkToAvoidFloats())
childBlockFlow->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout);
}
}
}
void LayoutBlockFlow::markSiblingsWithFloatsForLayout(LayoutBox* floatToRemove)
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (LayoutObject* next = nextSibling(); next; next = next->nextSibling()) {
if (!next->isLayoutBlockFlow() || (!floatToRemove && (next->isFloatingOrOutOfFlowPositioned() || toLayoutBlockFlow(next)->avoidsFloats())))
continue;
LayoutBlockFlow* nextBlock = toLayoutBlockFlow(next);
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
LayoutBox* floatingBox = (*it)->layoutObject();
if (floatToRemove && floatingBox != floatToRemove)
continue;
if (nextBlock->containsFloat(floatingBox))
nextBlock->markAllDescendantsWithFloatsForLayout(floatingBox);
}
}
}
LayoutUnit LayoutBlockFlow::getClearDelta(LayoutBox* child, LayoutUnit logicalTop)
{
// There is no need to compute clearance if we have no floats.
if (!containsFloats())
return LayoutUnit();
// At least one float is present. We need to perform the clearance computation.
bool clearSet = child->style()->clear() != CNONE;
LayoutUnit logicalBottom = 0;
switch (child->style()->clear()) {
case CNONE:
break;
case CLEFT:
logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
logicalBottom = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
logicalBottom = lowestFloatLogicalBottom();
break;
}
// We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default).
LayoutUnit result = clearSet ? std::max<LayoutUnit>(0, logicalBottom - logicalTop) : LayoutUnit();
if (!result && child->avoidsFloats()) {
LayoutUnit newLogicalTop = logicalTop;
LayoutRect borderBox = child->borderBoxRect();
LayoutUnit childLogicalWidthAtOldLogicalTopOffset = isHorizontalWritingMode() ? borderBox.width() : borderBox.height();
while (true) {
LayoutUnit availableLogicalWidthAtNewLogicalTopOffset = availableLogicalWidthForLine(newLogicalTop, false, logicalHeightForChild(*child));
if (availableLogicalWidthAtNewLogicalTopOffset == availableLogicalWidthForContent())
return newLogicalTop - logicalTop;
LogicalExtentComputedValues computedValues;
child->logicalExtentAfterUpdatingLogicalWidth(newLogicalTop, computedValues);
LayoutUnit childLogicalWidthAtNewLogicalTopOffset = computedValues.m_extent;
if (childLogicalWidthAtNewLogicalTopOffset <= availableLogicalWidthAtNewLogicalTopOffset) {
// Even though we may not be moving, if the logical width did shrink because of the presence of new floats, then
// we need to force a relayout as though we shifted. This happens because of the dynamic addition of overhanging floats
// from previous siblings when negative margins exist on a child (see the addOverhangingFloats call at the end of collapseMargins).
if (childLogicalWidthAtOldLogicalTopOffset != childLogicalWidthAtNewLogicalTopOffset)
child->setChildNeedsLayout(MarkOnlyThis);
return newLogicalTop - logicalTop;
}
newLogicalTop = nextFloatLogicalBottomBelow(newLogicalTop);
ASSERT(newLogicalTop >= logicalTop);
if (newLogicalTop < logicalTop)
break;
}
ASSERT_NOT_REACHED();
}
return result;
}
void LayoutBlockFlow::createFloatingObjects()
{
m_floatingObjects = adoptPtr(new FloatingObjects(this, isHorizontalWritingMode()));
}
void LayoutBlockFlow::styleWillChange(StyleDifference diff, const ComputedStyle& newStyle)
{
const ComputedStyle* oldStyle = style();
s_canPropagateFloatIntoSibling = oldStyle ? !isFloatingOrOutOfFlowPositioned() && !avoidsFloats() : false;
if (oldStyle && parent() && diff.needsFullLayout() && oldStyle->position() != newStyle.position()
&& containsFloats() && !isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition())
markAllDescendantsWithFloatsForLayout();
LayoutBlock::styleWillChange(diff, newStyle);
}
void LayoutBlockFlow::styleDidChange(StyleDifference diff, const ComputedStyle* oldStyle)
{
LayoutBlock::styleDidChange(diff, oldStyle);
// After our style changed, if we lose our ability to propagate floats into next sibling
// blocks, then we need to find the top most parent containing that overhanging float and
// then mark its descendants with floats for layout and clear all floats from its next
// sibling blocks that exist in our floating objects list. See bug 56299 and 62875.
bool canPropagateFloatIntoSibling = !isFloatingOrOutOfFlowPositioned() && !avoidsFloats();
if (diff.needsFullLayout() && s_canPropagateFloatIntoSibling && !canPropagateFloatIntoSibling && hasOverhangingFloats()) {
LayoutBlockFlow* parentBlockFlow = this;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (LayoutObject* curr = parent(); curr && !curr->isLayoutView(); curr = curr->parent()) {
if (curr->isLayoutBlockFlow()) {
LayoutBlockFlow* currBlock = toLayoutBlockFlow(curr);
if (currBlock->hasOverhangingFloats()) {
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
LayoutBox* layoutBox = (*it)->layoutObject();
if (currBlock->hasOverhangingFloat(layoutBox)) {
parentBlockFlow = currBlock;
break;
}
}
}
}
}
parentBlockFlow->markAllDescendantsWithFloatsForLayout();
parentBlockFlow->markSiblingsWithFloatsForLayout();
}
if (diff.needsFullLayout() || !oldStyle)
createOrDestroyMultiColumnFlowThreadIfNeeded(oldStyle);
if (oldStyle) {
if (LayoutMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
if (!style()->columnRuleEquivalent(oldStyle)) {
// Column rules are painted by anonymous column set children of the multicol
// container. We need to notify them.
flowThread->columnRuleStyleDidChange();
}
}
}
}
void LayoutBlockFlow::updateBlockChildDirtyBitsBeforeLayout(bool relayoutChildren, LayoutBox& child)
{
if (child.isLayoutMultiColumnSpannerPlaceholder())
toLayoutMultiColumnSpannerPlaceholder(child).markForLayoutIfObjectInFlowThreadNeedsLayout();
LayoutBlock::updateBlockChildDirtyBitsBeforeLayout(relayoutChildren, child);
}
void LayoutBlockFlow::updateStaticInlinePositionForChild(LayoutBox& child, LayoutUnit logicalTop)
{
if (child.style()->isOriginalDisplayInlineType())
setStaticInlinePositionForChild(child, startAlignedOffsetForLine(logicalTop, false));
else
setStaticInlinePositionForChild(child, startOffsetForContent());
}
void LayoutBlockFlow::setStaticInlinePositionForChild(LayoutBox& child, LayoutUnit inlinePosition)
{
child.layer()->setStaticInlinePosition(inlinePosition);
}
void LayoutBlockFlow::addChild(LayoutObject* newChild, LayoutObject* beforeChild)
{
if (LayoutMultiColumnFlowThread* flowThread = multiColumnFlowThread()) {
if (beforeChild == flowThread)
beforeChild = flowThread->firstChild();
ASSERT(!beforeChild || beforeChild->isDescendantOf(flowThread));
flowThread->addChild(newChild, beforeChild);
return;
}
LayoutBlock::addChild(newChild, beforeChild);
}
void LayoutBlockFlow::moveAllChildrenIncludingFloatsTo(LayoutBlock* toBlock, bool fullRemoveInsert)
{
LayoutBlockFlow* toBlockFlow = toLayoutBlockFlow(toBlock);
moveAllChildrenTo(toBlockFlow, fullRemoveInsert);
// When a portion of the layout tree is being detached, anonymous blocks
// will be combined as their children are deleted. In this process, the
// anonymous block later in the tree is merged into the one preceeding it.
// It can happen that the later block (this) contains floats that the
// previous block (toBlockFlow) did not contain, and thus are not in the
// floating objects list for toBlockFlow. This can result in toBlockFlow containing
// floats that are not in it's floating objects list, but are in the
// floating objects lists of siblings and parents. This can cause problems
// when the float itself is deleted, since the deletion code assumes that
// if a float is not in it's containing block's floating objects list, it
// isn't in any floating objects list. In order to preserve this condition
// (removing it has serious performance implications), we need to copy the
// floating objects from the old block (this) to the new block (toBlockFlow).
// The float's metrics will likely all be wrong, but since toBlockFlow is
// already marked for layout, this will get fixed before anything gets
// displayed.
// See bug https://code.google.com/p/chromium/issues/detail?id=230907
if (m_floatingObjects) {
if (!toBlockFlow->m_floatingObjects)
toBlockFlow->createFloatingObjects();
const FloatingObjectSet& fromFloatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = fromFloatingObjectSet.end();
for (FloatingObjectSetIterator it = fromFloatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
// Don't insert the object again if it's already in the list
if (toBlockFlow->containsFloat(floatingObject.layoutObject()))
continue;
toBlockFlow->m_floatingObjects->add(floatingObject.unsafeClone());
}
}
}
void LayoutBlockFlow::invalidatePaintForOverhangingFloats(bool paintAllDescendants)
{
// Invalidate paint of any overhanging floats (if we know we're the one to paint them).
// Otherwise, bail out.
if (!hasOverhangingFloats())
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
// Only issue paint invaldiations for the object if it is overhanging, is not in its own layer, and
// is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter
// condition is replaced with being a descendant of us.
if (logicalBottomForFloat(floatingObject) > logicalHeight()
&& !floatingObject.layoutObject()->hasSelfPaintingLayer()
&& (floatingObject.shouldPaint() || (paintAllDescendants && floatingObject.layoutObject()->isDescendantOf(this)))) {
LayoutBox* floatingLayoutBox = floatingObject.layoutObject();
floatingLayoutBox->setShouldDoFullPaintInvalidation();
floatingLayoutBox->invalidatePaintForOverhangingFloats(false);
}
}
}
void LayoutBlockFlow::invalidatePaintForOverflow()
{
// FIXME: We could tighten up the left and right invalidation points if we let layoutInlineChildren fill them in based off the particular lines
// it had to lay out. We wouldn't need the hasOverflowClip() hack in that case either.
LayoutUnit paintInvalidationLogicalLeft = logicalLeftVisualOverflow();
LayoutUnit paintInvalidationLogicalRight = logicalRightVisualOverflow();
if (hasOverflowClip()) {
// If we have clipped overflow, we should use layout overflow as well, since visual overflow from lines didn't propagate to our block's overflow.
// Note the old code did this as well but even for overflow:visible. The addition of hasOverflowClip() at least tightens up the hack a bit.
// layoutInlineChildren should be patched to compute the entire paint invalidation rect.
paintInvalidationLogicalLeft = std::min(paintInvalidationLogicalLeft, logicalLeftLayoutOverflow());
paintInvalidationLogicalRight = std::max(paintInvalidationLogicalRight, logicalRightLayoutOverflow());
}
LayoutRect paintInvalidationRect;
if (isHorizontalWritingMode())
paintInvalidationRect = LayoutRect(paintInvalidationLogicalLeft, m_paintInvalidationLogicalTop, paintInvalidationLogicalRight - paintInvalidationLogicalLeft, m_paintInvalidationLogicalBottom - m_paintInvalidationLogicalTop);
else
paintInvalidationRect = LayoutRect(m_paintInvalidationLogicalTop, paintInvalidationLogicalLeft, m_paintInvalidationLogicalBottom - m_paintInvalidationLogicalTop, paintInvalidationLogicalRight - paintInvalidationLogicalLeft);
if (hasOverflowClip()) {
// Adjust the paint invalidation rect for scroll offset
paintInvalidationRect.move(-scrolledContentOffset());
// Don't allow this rect to spill out of our overflow box.
paintInvalidationRect.intersect(LayoutRect(LayoutPoint(), size()));
}
// Make sure the rect is still non-empty after intersecting for overflow above
if (!paintInvalidationRect.isEmpty()) {
// Hits in media/event-attributes.html
DisableCompositingQueryAsserts disabler;
invalidatePaintRectangle(paintInvalidationRect); // We need to do a partial paint invalidation of our content.
if (hasReflection())
invalidatePaintRectangle(reflectedRect(paintInvalidationRect));
}
m_paintInvalidationLogicalTop = 0;
m_paintInvalidationLogicalBottom = 0;
}
void LayoutBlockFlow::paintFloats(const PaintInfo& paintInfo, const LayoutPoint& paintOffset, bool preservePhase)
{
BlockFlowPainter(*this).paintFloats(paintInfo, paintOffset, preservePhase);
}
void LayoutBlockFlow::paintSelection(const PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
BlockFlowPainter(*this).paintSelection(paintInfo, paintOffset);
}
void LayoutBlockFlow::clipOutFloatingObjects(const LayoutBlock* rootBlock, ClipScope& clipScope,
const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock) const
{
if (!m_floatingObjects)
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
LayoutRect floatBox(LayoutPoint(offsetFromRootBlock), floatingObject.layoutObject()->size());
floatBox.move(positionForFloatIncludingMargin(floatingObject));
rootBlock->flipForWritingMode(floatBox);
floatBox.move(rootBlockPhysicalPosition.x(), rootBlockPhysicalPosition.y());
clipScope.clip(floatBox, SkRegion::kDifference_Op);
}
}
void LayoutBlockFlow::clearFloats(EClear clear)
{
positionNewFloats();
// set y position
LayoutUnit newY = 0;
switch (clear) {
case CLEFT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatLeft);
break;
case CRIGHT:
newY = lowestFloatLogicalBottom(FloatingObject::FloatRight);
break;
case CBOTH:
newY = lowestFloatLogicalBottom();
default:
break;
}
if (size().height() < newY)
setLogicalHeight(newY);
}
bool LayoutBlockFlow::containsFloat(LayoutBox* layoutBox) const
{
return m_floatingObjects && m_floatingObjects->set().contains<FloatingObjectHashTranslator>(layoutBox);
}
void LayoutBlockFlow::removeFloatingObjects()
{
if (!m_floatingObjects)
return;
markSiblingsWithFloatsForLayout();
m_floatingObjects->clear();
}
LayoutPoint LayoutBlockFlow::flipFloatForWritingModeForChild(const FloatingObject& child, const LayoutPoint& point) const
{
if (!style()->isFlippedBlocksWritingMode())
return point;
// This is similar to LayoutBox::flipForWritingModeForChild. We have to subtract out our left/top offsets twice, since
// it's going to get added back in. We hide this complication here so that the calling code looks normal for the unflipped
// case.
if (isHorizontalWritingMode())
return LayoutPoint(point.x(), point.y() + size().height() - child.layoutObject()->size().height() - 2 * yPositionForFloatIncludingMargin(child));
return LayoutPoint(point.x() + size().width() - child.layoutObject()->size().width() - 2 * xPositionForFloatIncludingMargin(child), point.y());
}
LayoutUnit LayoutBlockFlow::logicalLeftOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
LayoutUnit offset = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
offset = m_floatingObjects->logicalLeftOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
return adjustLogicalLeftOffsetForLine(offset, applyTextIndent);
}
LayoutUnit LayoutBlockFlow::logicalRightOffsetForPositioningFloat(LayoutUnit logicalTop, LayoutUnit fixedOffset, bool applyTextIndent, LayoutUnit* heightRemaining) const
{
LayoutUnit offset = fixedOffset;
if (m_floatingObjects && m_floatingObjects->hasRightObjects())
offset = m_floatingObjects->logicalRightOffsetForPositioningFloat(fixedOffset, logicalTop, heightRemaining);
return adjustLogicalRightOffsetForLine(offset, applyTextIndent);
}
LayoutUnit LayoutBlockFlow::adjustLogicalLeftOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
LayoutUnit left = offsetFromFloats;
if (applyTextIndent && style()->isLeftToRightDirection())
left += textIndentOffset();
return left;
}
LayoutUnit LayoutBlockFlow::adjustLogicalRightOffsetForLine(LayoutUnit offsetFromFloats, bool applyTextIndent) const
{
LayoutUnit right = offsetFromFloats;
if (applyTextIndent && !style()->isLeftToRightDirection())
right -= textIndentOffset();
return right;
}
LayoutPoint LayoutBlockFlow::computeLogicalLocationForFloat(const FloatingObject& floatingObject, LayoutUnit logicalTopOffset) const
{
LayoutBox* childBox = floatingObject.layoutObject();
LayoutUnit logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
LayoutUnit logicalRightOffset; // Constant part of right offset.
logicalRightOffset = logicalRightOffsetForContent();
LayoutUnit floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset); // The width we look for.
LayoutUnit floatLogicalLeft;
bool insideFlowThread = flowThreadContainingBlock();
if (childBox->style()->floating() == LeftFloat) {
LayoutUnit heightRemainingLeft = 1;
LayoutUnit heightRemainingRight = 1;
floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
while (logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight) - floatLogicalLeft < floatLogicalWidth) {
logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft);
if (insideFlowThread) {
// Have to re-evaluate all of our offsets, since they may have changed.
logicalRightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
}
}
floatLogicalLeft = std::max(logicalLeftOffset - borderAndPaddingLogicalLeft(), floatLogicalLeft);
} else {
LayoutUnit heightRemainingLeft = 1;
LayoutUnit heightRemainingRight = 1;
floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
while (floatLogicalLeft - logicalLeftOffsetForPositioningFloat(logicalTopOffset, logicalLeftOffset, false, &heightRemainingLeft) < floatLogicalWidth) {
logicalTopOffset += std::min(heightRemainingLeft, heightRemainingRight);
floatLogicalLeft = logicalRightOffsetForPositioningFloat(logicalTopOffset, logicalRightOffset, false, &heightRemainingRight);
if (insideFlowThread) {
// Have to re-evaluate all of our offsets, since they may have changed.
logicalRightOffset = logicalRightOffsetForContent(); // Constant part of right offset.
logicalLeftOffset = logicalLeftOffsetForContent(); // Constant part of left offset.
floatLogicalWidth = std::min(logicalWidthForFloat(floatingObject), logicalRightOffset - logicalLeftOffset);
}
}
// Use the original width of the float here, since the local variable
// |floatLogicalWidth| was capped to the available line width. See
// fast/block/float/clamped-right-float.html.
floatLogicalLeft -= logicalWidthForFloat(floatingObject);
}
return LayoutPoint(floatLogicalLeft, logicalTopOffset);
}
FloatingObject* LayoutBlockFlow::insertFloatingObject(LayoutBox& floatBox)
{
ASSERT(floatBox.isFloating());
// Create the list of special objects if we don't aleady have one
if (!m_floatingObjects) {
createFloatingObjects();
} else {
// Don't insert the object again if it's already in the list
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(&floatBox);
if (it != floatingObjectSet.end())
return it->get();
}
// Create the special object entry & append it to the list
OwnPtr<FloatingObject> newObj = FloatingObject::create(&floatBox);
// Our location is irrelevant if we're unsplittable or no pagination is in effect.
// Just go ahead and lay out the float.
bool isChildLayoutBlock = floatBox.isLayoutBlock();
if (isChildLayoutBlock && !floatBox.needsLayout() && view()->layoutState()->pageLogicalHeightChanged())
floatBox.setChildNeedsLayout(MarkOnlyThis);
bool needsBlockDirectionLocationSetBeforeLayout = isChildLayoutBlock && view()->layoutState()->needsBlockDirectionLocationSetBeforeLayout();
if (!needsBlockDirectionLocationSetBeforeLayout || isWritingModeRoot()) { // We are unsplittable if we're a block flow root.
floatBox.layoutIfNeeded();
} else {
floatBox.updateLogicalWidth();
floatBox.computeAndSetBlockDirectionMargins(this);
}
setLogicalWidthForFloat(*newObj, logicalWidthForChild(floatBox) + marginStartForChild(floatBox) + marginEndForChild(floatBox));
return m_floatingObjects->add(newObj.release());
}
void LayoutBlockFlow::removeFloatingObject(LayoutBox* floatBox)
{
if (m_floatingObjects) {
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(floatBox);
if (it != floatingObjectSet.end()) {
FloatingObject& floatingObject = *it->get();
if (childrenInline()) {
LayoutUnit logicalTop = logicalTopForFloat(floatingObject);
LayoutUnit logicalBottom = logicalBottomForFloat(floatingObject);
// Fix for https://bugs.webkit.org/show_bug.cgi?id=54995.
if (logicalBottom < 0 || logicalBottom < logicalTop || logicalTop == LayoutUnit::max()) {
logicalBottom = LayoutUnit::max();
} else {
// Special-case zero- and less-than-zero-height floats: those don't touch
// the line that they're on, but it still needs to be dirtied. This is
// accomplished by pretending they have a height of 1.
logicalBottom = std::max(logicalBottom, logicalTop + 1);
}
if (floatingObject.originatingLine()) {
if (!selfNeedsLayout()) {
ASSERT(floatingObject.originatingLine()->layoutObject() == this);
floatingObject.originatingLine()->markDirty();
}
#if ENABLE(ASSERT)
floatingObject.setOriginatingLine(nullptr);
#endif
}
markLinesDirtyInBlockRange(0, logicalBottom);
}
m_floatingObjects->remove(&floatingObject);
}
}
}
void LayoutBlockFlow::removeFloatingObjectsBelow(FloatingObject* lastFloat, int logicalOffset)
{
if (!containsFloats())
return;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObject* curr = floatingObjectSet.last().get();
while (curr != lastFloat && (!curr->isPlaced() || logicalTopForFloat(*curr) >= logicalOffset)) {
m_floatingObjects->remove(curr);
if (floatingObjectSet.isEmpty())
break;
curr = floatingObjectSet.last().get();
}
}
bool LayoutBlockFlow::positionNewFloats(LineWidth* width)
{
if (!m_floatingObjects)
return false;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
if (floatingObjectSet.isEmpty())
return false;
// If all floats have already been positioned, then we have no work to do.
if (floatingObjectSet.last()->isPlaced())
return false;
// Move backwards through our floating object list until we find a float that has
// already been positioned. Then we'll be able to move forward, positioning all of
// the new floats that need it.
FloatingObjectSetIterator it = floatingObjectSet.end();
--it; // Go to last item.
FloatingObjectSetIterator begin = floatingObjectSet.begin();
FloatingObject* lastPlacedFloatingObject = nullptr;
while (it != begin) {
--it;
if ((*it)->isPlaced()) {
lastPlacedFloatingObject = it->get();
++it;
break;
}
}
LayoutUnit logicalTop = logicalHeight();
// The float cannot start above the top position of the last positioned float.
if (lastPlacedFloatingObject)
logicalTop = std::max(logicalTopForFloat(*lastPlacedFloatingObject), logicalTop);
FloatingObjectSetIterator end = floatingObjectSet.end();
// Now walk through the set of unpositioned floats and place them.
for (; it != end; ++it) {
FloatingObject& floatingObject = *it->get();
// The containing block is responsible for positioning floats, so if we have floats in our
// list that come from somewhere else, do not attempt to position them.
if (floatingObject.layoutObject()->containingBlock() != this)
continue;
LayoutBox* childBox = floatingObject.layoutObject();
// FIXME Investigate if this can be removed. crbug.com/370006
childBox->setMayNeedPaintInvalidation();
LayoutUnit childLogicalLeftMargin = style()->isLeftToRightDirection() ? marginStartForChild(*childBox) : marginEndForChild(*childBox);
if (childBox->style()->clear() & CLEFT)
logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatLeft), logicalTop);
if (childBox->style()->clear() & CRIGHT)
logicalTop = std::max(lowestFloatLogicalBottom(FloatingObject::FloatRight), logicalTop);
LayoutPoint floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, logicalTop);
setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());
setLogicalLeftForChild(*childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
setLogicalTopForChild(*childBox, floatLogicalLocation.y() + marginBeforeForChild(*childBox));
SubtreeLayoutScope layoutScope(*childBox);
LayoutState* layoutState = view()->layoutState();
bool isPaginated = layoutState->isPaginated();
if (isPaginated && !childBox->needsLayout())
childBox->markForPaginationRelayoutIfNeeded(layoutScope);
childBox->layoutIfNeeded();
if (isPaginated) {
// If we are unsplittable and don't fit, then we need to move down.
// We include our margins as part of the unsplittable area.
LayoutUnit newLogicalTop = adjustForUnsplittableChild(*childBox, floatLogicalLocation.y(), true);
// See if we have a pagination strut that is making us move down further.
// Note that an unsplittable child can't also have a pagination strut, so this is
// exclusive with the case above.
LayoutBlockFlow* childBlockFlow = childBox->isLayoutBlockFlow() ? toLayoutBlockFlow(childBox) : 0;
if (childBlockFlow && childBlockFlow->paginationStrut()) {
newLogicalTop += childBlockFlow->paginationStrut();
childBlockFlow->setPaginationStrut(0);
}
if (newLogicalTop != floatLogicalLocation.y()) {
floatingObject.setPaginationStrut(newLogicalTop - floatLogicalLocation.y());
floatLogicalLocation = computeLogicalLocationForFloat(floatingObject, newLogicalTop);
setLogicalLeftForFloat(floatingObject, floatLogicalLocation.x());
setLogicalLeftForChild(*childBox, floatLogicalLocation.x() + childLogicalLeftMargin);
setLogicalTopForChild(*childBox, floatLogicalLocation.y() + marginBeforeForChild(*childBox));
if (childBox->isLayoutBlock())
childBox->setChildNeedsLayout(MarkOnlyThis);
childBox->layoutIfNeeded();
}
}
setLogicalTopForFloat(floatingObject, floatLogicalLocation.y());
setLogicalHeightForFloat(floatingObject, logicalHeightForChild(*childBox) + marginBeforeForChild(*childBox) + marginAfterForChild(*childBox));
m_floatingObjects->addPlacedObject(floatingObject);
if (ShapeOutsideInfo* shapeOutside = childBox->shapeOutsideInfo())
shapeOutside->setReferenceBoxLogicalSize(logicalSizeForChild(*childBox));
if (width)
width->shrinkAvailableWidthForNewFloatIfNeeded(floatingObject);
}
return true;
}
bool LayoutBlockFlow::hasOverhangingFloat(LayoutBox* layoutBox)
{
if (!m_floatingObjects || !parent())
return false;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator it = floatingObjectSet.find<FloatingObjectHashTranslator>(layoutBox);
if (it == floatingObjectSet.end())
return false;
return logicalBottomForFloat(*it->get()) > logicalHeight();
}
void LayoutBlockFlow::addIntrudingFloats(LayoutBlockFlow* prev, LayoutUnit logicalLeftOffset, LayoutUnit logicalTopOffset)
{
ASSERT(!avoidsFloats());
// If we create our own block formatting context then our contents don't interact with floats outside it, even those from our parent.
if (createsNewFormattingContext())
return;
// If the parent or previous sibling doesn't have any floats to add, don't bother.
if (!prev->m_floatingObjects)
return;
logicalLeftOffset += marginLogicalLeft();
const FloatingObjectSet& prevSet = prev->m_floatingObjects->set();
FloatingObjectSetIterator prevEnd = prevSet.end();
for (FloatingObjectSetIterator prevIt = prevSet.begin(); prevIt != prevEnd; ++prevIt) {
FloatingObject& floatingObject = *prevIt->get();
if (logicalBottomForFloat(floatingObject) > logicalTopOffset) {
if (!m_floatingObjects || !m_floatingObjects->set().contains(&floatingObject)) {
// We create the floating object list lazily.
if (!m_floatingObjects)
createFloatingObjects();
// Applying the child's margin makes no sense in the case where the child was passed in.
// since this margin was added already through the modification of the |logicalLeftOffset| variable
// above. |logicalLeftOffset| will equal the margin in this case, so it's already been taken
// into account. Only apply this code if prev is the parent, since otherwise the left margin
// will get applied twice.
LayoutSize offset = isHorizontalWritingMode()
? LayoutSize(logicalLeftOffset - (prev != parent() ? prev->marginLeft() : LayoutUnit()), logicalTopOffset)
: LayoutSize(logicalTopOffset, logicalLeftOffset - (prev != parent() ? prev->marginTop() : LayoutUnit()));
m_floatingObjects->add(floatingObject.copyToNewContainer(offset));
}
}
}
}
void LayoutBlockFlow::addOverhangingFloats(LayoutBlockFlow* child, bool makeChildPaintOtherFloats)
{
// Prevent floats from being added to the canvas by the root element, e.g., <html>.
if (!child->containsFloats() || child->createsNewFormattingContext())
return;
LayoutUnit childLogicalTop = child->logicalTop();
LayoutUnit childLogicalLeft = child->logicalLeft();
// Floats that will remain the child's responsibility to paint should factor into its
// overflow.
FloatingObjectSetIterator childEnd = child->m_floatingObjects->set().end();
for (FloatingObjectSetIterator childIt = child->m_floatingObjects->set().begin(); childIt != childEnd; ++childIt) {
FloatingObject& floatingObject = *childIt->get();
LayoutUnit logicalBottomForFloat = std::min(this->logicalBottomForFloat(floatingObject), LayoutUnit::max() - childLogicalTop);
LayoutUnit logicalBottom = childLogicalTop + logicalBottomForFloat;
if (logicalBottom > logicalHeight()) {
// If the object is not in the list, we add it now.
if (!containsFloat(floatingObject.layoutObject())) {
LayoutSize offset = isHorizontalWritingMode() ? LayoutSize(-childLogicalLeft, -childLogicalTop) : LayoutSize(-childLogicalTop, -childLogicalLeft);
bool shouldPaint = false;
// The nearest enclosing layer always paints the float (so that zindex and stacking
// behaves properly). We always want to propagate the desire to paint the float as
// far out as we can, to the outermost block that overlaps the float, stopping only
// if we hit a self-painting layer boundary.
if (floatingObject.layoutObject()->enclosingFloatPaintingLayer() == enclosingFloatPaintingLayer() && !floatingObject.isLowestNonOverhangingFloatInChild()) {
floatingObject.setShouldPaint(false);
shouldPaint = true;
}
// We create the floating object list lazily.
if (!m_floatingObjects)
createFloatingObjects();
m_floatingObjects->add(floatingObject.copyToNewContainer(offset, shouldPaint, true));
}
} else {
if (makeChildPaintOtherFloats && !floatingObject.shouldPaint() && !floatingObject.layoutObject()->hasSelfPaintingLayer() && !floatingObject.isLowestNonOverhangingFloatInChild()
&& floatingObject.layoutObject()->isDescendantOf(child) && floatingObject.layoutObject()->enclosingFloatPaintingLayer() == child->enclosingFloatPaintingLayer()) {
// The float is not overhanging from this block, so if it is a descendant of the child, the child should
// paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing
// layer.
// If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats
// it should paint.
floatingObject.setShouldPaint(true);
}
// Since the float doesn't overhang, it didn't get put into our list. We need to go ahead and add its overflow in to the
// child now.
if (floatingObject.isDescendant())
child->addOverflowFromChild(floatingObject.layoutObject(), LayoutSize(xPositionForFloatIncludingMargin(floatingObject), yPositionForFloatIncludingMargin(floatingObject)));
}
}
}
LayoutUnit LayoutBlockFlow::lowestFloatLogicalBottom(FloatingObject::Type floatType) const
{
if (!m_floatingObjects)
return LayoutUnit();
return m_floatingObjects->lowestFloatLogicalBottom(floatType);
}
LayoutUnit LayoutBlockFlow::nextFloatLogicalBottomBelow(LayoutUnit logicalHeight, ShapeOutsideFloatOffsetMode offsetMode) const
{
if (!m_floatingObjects)
return logicalHeight;
LayoutUnit logicalBottom;
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator end = floatingObjectSet.end();
for (FloatingObjectSetIterator it = floatingObjectSet.begin(); it != end; ++it) {
const FloatingObject& floatingObject = *it->get();
LayoutUnit floatLogicalBottom = logicalBottomForFloat(floatingObject);
ShapeOutsideInfo* shapeOutside = floatingObject.layoutObject()->shapeOutsideInfo();
if (shapeOutside && (offsetMode == ShapeOutsideFloatShapeOffset)) {
LayoutUnit shapeLogicalBottom = logicalTopForFloat(floatingObject) + marginBeforeForChild(*floatingObject.layoutObject()) + shapeOutside->shapeLogicalBottom();
// Use the shapeLogicalBottom unless it extends outside of the margin box, in which case it is clipped.
if (shapeLogicalBottom < floatLogicalBottom)
floatLogicalBottom = shapeLogicalBottom;
}
if (floatLogicalBottom > logicalHeight)
logicalBottom = logicalBottom ? std::min(floatLogicalBottom, logicalBottom) : floatLogicalBottom;
}
return logicalBottom;
}
bool LayoutBlockFlow::hitTestFloats(HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset)
{
if (!m_floatingObjects)
return false;
LayoutPoint adjustedLocation = accumulatedOffset;
if (isLayoutView()) {
DoublePoint position = toLayoutView(this)->frameView()->scrollPositionDouble();
adjustedLocation.move(position.x(), position.y());
}
const FloatingObjectSet& floatingObjectSet = m_floatingObjects->set();
FloatingObjectSetIterator begin = floatingObjectSet.begin();
for (FloatingObjectSetIterator it = floatingObjectSet.end(); it != begin;) {
--it;
const FloatingObject& floatingObject = *it->get();
if (floatingObject.shouldPaint() && !floatingObject.layoutObject()->hasSelfPaintingLayer()) {
LayoutUnit xOffset = xPositionForFloatIncludingMargin(floatingObject) - floatingObject.layoutObject()->location().x();
LayoutUnit yOffset = yPositionForFloatIncludingMargin(floatingObject) - floatingObject.layoutObject()->location().y();
LayoutPoint childPoint = flipFloatForWritingModeForChild(floatingObject, adjustedLocation + LayoutSize(xOffset, yOffset));
if (floatingObject.layoutObject()->hitTest(result, locationInContainer, childPoint)) {
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(childPoint));
return true;
}
}
}
return false;
}
LayoutUnit LayoutBlockFlow::logicalLeftFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
if (m_floatingObjects && m_floatingObjects->hasLeftObjects())
return m_floatingObjects->logicalLeftOffset(fixedOffset, logicalTop, logicalHeight);
return fixedOffset;
}
LayoutUnit LayoutBlockFlow::logicalRightFloatOffsetForLine(LayoutUnit logicalTop, LayoutUnit fixedOffset, LayoutUnit logicalHeight) const
{
if (m_floatingObjects && m_floatingObjects->hasRightObjects())
return m_floatingObjects->logicalRightOffset(fixedOffset, logicalTop, logicalHeight);
return fixedOffset;
}
LayoutRect LayoutBlockFlow::selectionRectForPaintInvalidation(const LayoutBoxModelObject* paintInvalidationContainer) const
{
LayoutRect rect = selectionGapRectsForPaintInvalidation(paintInvalidationContainer);
// FIXME: groupedMapping() leaks the squashing abstraction.
if (paintInvalidationContainer->layer()->groupedMapping())
DeprecatedPaintLayer::mapRectToPaintBackingCoordinates(paintInvalidationContainer, rect);
return rect;
}
GapRects LayoutBlockFlow::selectionGapRectsForPaintInvalidation(const LayoutBoxModelObject* paintInvalidationContainer) const
{
ASSERT(!needsLayout());
if (!shouldPaintSelectionGaps())
return GapRects();
TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint());
mapLocalToContainer(paintInvalidationContainer, transformState, ApplyContainerFlip | UseTransforms);
LayoutPoint offsetFromPaintInvalidationContainer = roundedLayoutPoint(transformState.mappedPoint());
if (hasOverflowClip())
offsetFromPaintInvalidationContainer -= scrolledContentOffset();
LayoutUnit lastTop = 0;
LayoutUnit lastLeft = logicalLeftSelectionOffset(this, lastTop);
LayoutUnit lastRight = logicalRightSelectionOffset(this, lastTop);
return selectionGaps(this, offsetFromPaintInvalidationContainer, LayoutSize(), lastTop, lastLeft, lastRight);
}
static void clipOutPositionedObjects(ClipScope& clipScope, const LayoutPoint& offset, TrackedLayoutBoxListHashSet* positionedObjects)
{
if (!positionedObjects)
return;
TrackedLayoutBoxListHashSet::const_iterator end = positionedObjects->end();
for (TrackedLayoutBoxListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) {
LayoutBox* r = *it;
clipScope.clip(LayoutRect(flooredIntPoint(r->location() + offset), flooredIntSize(r->size())), SkRegion::kDifference_Op);
}
}
GapRects LayoutBlockFlow::selectionGaps(const LayoutBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition,
const LayoutSize& offsetFromRootBlock, LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight,
const PaintInfo* paintInfo, ClipScope* clipScope) const
{
// IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore.
if (clipScope) {
// Note that we don't clip out overflow for positioned objects. We just stick to the border box.
LayoutRect flippedBlockRect(LayoutPoint(offsetFromRootBlock), size());
rootBlock->flipForWritingMode(flippedBlockRect);
flippedBlockRect.moveBy(rootBlockPhysicalPosition);
clipOutPositionedObjects(*clipScope, flippedBlockRect.location(), positionedObjects());
if (isBody() || isDocumentElement()) // The <body> must make sure to examine its containingBlock's positioned objects.
for (LayoutBlock* cb = containingBlock(); cb && !cb->isLayoutView(); cb = cb->containingBlock())
clipOutPositionedObjects(*clipScope, cb->location(), cb->positionedObjects()); // FIXME: Not right for flipped writing modes.
clipOutFloatingObjects(rootBlock, *clipScope, rootBlockPhysicalPosition, offsetFromRootBlock);
}
GapRects result;
if (hasTransformRelatedProperty() || style()->columnSpan())
return result;
if (childrenInline())
result = inlineSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo);
else
result = blockSelectionGaps(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo);
// Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block.
if (rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd)) {
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock,
lastLogicalTop, lastLogicalLeft, lastLogicalRight, logicalHeight(), paintInfo));
}
return result;
}
GapRects LayoutBlockFlow::inlineSelectionGaps(const LayoutBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo) const
{
GapRects result;
bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth;
if (!firstLineBox()) {
if (containsStart) {
// Go ahead and update our lastLogicalTop to be the bottom of the block. <hr>s or empty blocks with height can trip this
// case.
lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + logicalHeight();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, logicalHeight());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, logicalHeight());
}
return result;
}
RootInlineBox* lastSelectedLine = nullptr;
RootInlineBox* curr;
for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { }
// Now paint the gaps for the lines.
for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) {
LayoutUnit selTop = curr->selectionTopAdjustedForPrecedingBlock();
LayoutUnit selHeight = curr->selectionHeightAdjustedForPrecedingBlock();
if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) {
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop,
lastLogicalLeft, lastLogicalRight, selTop, paintInfo));
}
LayoutRect logicalRect(curr->logicalLeft(), selTop, curr->logicalWidth(), selTop + selHeight);
logicalRect.move(isHorizontalWritingMode() ? offsetFromRootBlock : offsetFromRootBlock.transposedSize());
LayoutRect physicalRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, logicalRect);
if (!paintInfo || (isHorizontalWritingMode() && physicalRect.y() < paintInfo->rect.maxY() && physicalRect.maxY() > paintInfo->rect.y())
|| (!isHorizontalWritingMode() && physicalRect.x() < paintInfo->rect.maxX() && physicalRect.maxX() > paintInfo->rect.x()))
result.unite(curr->lineSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, selTop, selHeight, paintInfo));
lastSelectedLine = curr;
}
if (containsStart && !lastSelectedLine) {
// VisibleSelection must start just after our last line.
lastSelectedLine = lastRootBox();
}
if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) {
// Go ahead and update our lastY to be the bottom of the last selected line.
lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + lastSelectedLine->selectionBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom());
}
return result;
}
IntRect alignSelectionRectToDevicePixels(LayoutRect& rect)
{
LayoutUnit roundedX = rect.x().round();
return IntRect(roundedX, rect.y().round(),
(rect.maxX() - roundedX).round(),
snapSizeToPixel(rect.height(), rect.y()));
}
bool LayoutBlockFlow::shouldPaintSelectionGaps() const
{
return selectionState() != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot();
}
LayoutRect LayoutBlockFlow::blockSelectionGap(const LayoutBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit lastLogicalTop, LayoutUnit lastLogicalLeft, LayoutUnit lastLogicalRight, LayoutUnit logicalBottom, const PaintInfo* paintInfo) const
{
LayoutUnit logicalTop = lastLogicalTop;
LayoutUnit logicalHeight = rootBlock->blockDirectionOffset(offsetFromRootBlock) + logicalBottom - logicalTop;
if (logicalHeight <= 0)
return LayoutRect();
// Get the selection offsets for the bottom of the gap
LayoutUnit logicalLeft = std::max(lastLogicalLeft, logicalLeftSelectionOffset(rootBlock, logicalBottom));
LayoutUnit logicalRight = std::min(lastLogicalRight, logicalRightSelectionOffset(rootBlock, logicalBottom));
LayoutUnit logicalWidth = logicalRight - logicalLeft;
if (logicalWidth <= 0)
return LayoutRect();
LayoutRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(logicalLeft, logicalTop, logicalWidth, logicalHeight));
if (paintInfo) {
IntRect selectionGapRect = alignSelectionRectToDevicePixels(gapRect);
paintInfo->context->fillRect(selectionGapRect, selectionBackgroundColor());
}
return gapRect;
}
GapRects LayoutBlockFlow::blockSelectionGaps(const LayoutBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
LayoutUnit& lastLogicalTop, LayoutUnit& lastLogicalLeft, LayoutUnit& lastLogicalRight, const PaintInfo* paintInfo) const
{
GapRects result;
// Go ahead and jump right to the first block child that contains some selected objects.
LayoutBox* curr;
for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { }
for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) {
SelectionState childState = curr->selectionState();
if (childState == SelectionBoth || childState == SelectionEnd)
sawSelectionEnd = true;
if (curr->isFloatingOrOutOfFlowPositioned())
continue; // We must be a normal flow object in order to even be considered.
if (curr->isRelPositioned() && curr->hasLayer()) {
// If the relposition offset is anything other than 0, then treat this just like an absolute positioned element.
// Just disregard it completely.
LayoutSize relOffset = curr->layer()->offsetForInFlowPosition();
if (relOffset.width() || relOffset.height())
continue;
}
bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this.
bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone);
if (fillBlockGaps) {
// We need to fill the vertical gap above this object.
if (childState == SelectionEnd || childState == SelectionInside) {
// Fill the gap above the object.
result.uniteCenter(blockSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, lastLogicalTop, lastLogicalLeft, lastLogicalRight,
curr->logicalTop(), paintInfo));
}
// Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past*
// our object. We know this if the selection did not end inside our object.
if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd))
childState = SelectionNone;
// Fill side gaps on this object based off its state.
bool leftGap, rightGap;
getSelectionGapInfo(childState, leftGap, rightGap);
if (leftGap)
result.uniteLeft(logicalLeftSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalLeft(), curr->logicalTop(), curr->logicalHeight(), paintInfo));
if (rightGap)
result.uniteRight(logicalRightSelectionGap(rootBlock, rootBlockPhysicalPosition, offsetFromRootBlock, this, curr->logicalRight(), curr->logicalTop(), curr->logicalHeight(), paintInfo));
// Update lastLogicalTop to be just underneath the object. lastLogicalLeft and lastLogicalRight extend as far as
// they can without bumping into floating or positioned objects. Ideally they will go right up
// to the border of the root selection block.
lastLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + curr->logicalBottom();
lastLogicalLeft = logicalLeftSelectionOffset(rootBlock, curr->logicalBottom());
lastLogicalRight = logicalRightSelectionOffset(rootBlock, curr->logicalBottom());
} else if (childState != SelectionNone && curr->isLayoutBlockFlow()) {
// We must be a block that has some selected object inside it. Go ahead and recur.
result.unite(toLayoutBlockFlow(curr)->selectionGaps(rootBlock, rootBlockPhysicalPosition, LayoutSize(offsetFromRootBlock.width() + curr->location().x(), offsetFromRootBlock.height() + curr->location().y()),
lastLogicalTop, lastLogicalLeft, lastLogicalRight, paintInfo));
}
}
return result;
}
LayoutRect LayoutBlockFlow::logicalLeftSelectionGap(const LayoutBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
const LayoutObject* selObj, LayoutUnit logicalLeft, LayoutUnit logicalTop, LayoutUnit logicalHeight, const PaintInfo* paintInfo) const
{
LayoutUnit rootBlockLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + logicalTop;
LayoutUnit rootBlockLogicalLeft = std::max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight));
LayoutUnit rootBlockLogicalRight = std::min(rootBlock->inlineDirectionOffset(offsetFromRootBlock) + logicalLeft, std::min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight)));
LayoutUnit rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft;
if (rootBlockLogicalWidth <= 0)
return LayoutRect();
LayoutRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight));
if (paintInfo) {
IntRect selectionGapRect = alignSelectionRectToDevicePixels(gapRect);
paintInfo->context->fillRect(selectionGapRect, selObj->selectionBackgroundColor());
}
return gapRect;
}
LayoutRect LayoutBlockFlow::logicalRightSelectionGap(const LayoutBlock* rootBlock, const LayoutPoint& rootBlockPhysicalPosition, const LayoutSize& offsetFromRootBlock,
const LayoutObject* selObj, LayoutUnit logicalRight, LayoutUnit logicalTop, LayoutUnit logicalHeight, const PaintInfo* paintInfo) const
{
LayoutUnit rootBlockLogicalTop = rootBlock->blockDirectionOffset(offsetFromRootBlock) + logicalTop;
LayoutUnit rootBlockLogicalLeft = std::max(rootBlock->inlineDirectionOffset(offsetFromRootBlock) + logicalRight, max(logicalLeftSelectionOffset(rootBlock, logicalTop), logicalLeftSelectionOffset(rootBlock, logicalTop + logicalHeight)));
LayoutUnit rootBlockLogicalRight = std::min(logicalRightSelectionOffset(rootBlock, logicalTop), logicalRightSelectionOffset(rootBlock, logicalTop + logicalHeight));
LayoutUnit rootBlockLogicalWidth = rootBlockLogicalRight - rootBlockLogicalLeft;
if (rootBlockLogicalWidth <= 0)
return LayoutRect();
LayoutRect gapRect = rootBlock->logicalRectToPhysicalRect(rootBlockPhysicalPosition, LayoutRect(rootBlockLogicalLeft, rootBlockLogicalTop, rootBlockLogicalWidth, logicalHeight));
if (paintInfo) {
IntRect selectionGapRect = alignSelectionRectToDevicePixels(gapRect);
paintInfo->context->fillRect(selectionGapRect, selObj->selectionBackgroundColor());
}
return gapRect;
}
void LayoutBlockFlow::getSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) const
{
bool ltr = style()->isLeftToRightDirection();
leftGap = (state == LayoutObject::SelectionInside)
|| (state == LayoutObject::SelectionEnd && ltr)
|| (state == LayoutObject::SelectionStart && !ltr);
rightGap = (state == LayoutObject::SelectionInside)
|| (state == LayoutObject::SelectionStart && ltr)
|| (state == LayoutObject::SelectionEnd && !ltr);
}
void LayoutBlockFlow::setPaginationStrut(LayoutUnit strut)
{
if (!m_rareData) {
if (!strut)
return;
m_rareData = adoptPtr(new LayoutBlockFlowRareData(this));
}
m_rareData->m_paginationStrut = strut;
}
void LayoutBlockFlow::positionSpannerDescendant(LayoutMultiColumnSpannerPlaceholder& child)
{
LayoutBox& spanner = *child.layoutObjectInFlowThread();
// FIXME: |spanner| is a descendant, but never a direct child, so the names here are bad, if
// nothing else.
setLogicalTopForChild(spanner, child.logicalTop());
determineLogicalLeftPositionForChild(spanner);
}
bool LayoutBlockFlow::avoidsFloats() const
{
// Floats can't intrude into our box if we have a non-auto column count or width.
// Note: we need to use LayoutBox::avoidsFloats here since LayoutBlock::avoidsFloats is always true.
return LayoutBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth();
}
void LayoutBlockFlow::moveChildrenTo(LayoutBoxModelObject* toBoxModelObject, LayoutObject* startChild, LayoutObject* endChild, LayoutObject* beforeChild, bool fullRemoveInsert)
{
if (childrenInline())
deleteLineBoxTree();
LayoutBoxModelObject::moveChildrenTo(toBoxModelObject, startChild, endChild, beforeChild, fullRemoveInsert);
}
LayoutUnit LayoutBlockFlow::logicalLeftSelectionOffset(const LayoutBlock* rootBlock, LayoutUnit position) const
{
LayoutUnit logicalLeft = logicalLeftOffsetForLine(position, false);
if (logicalLeft == logicalLeftOffsetForContent())
return LayoutBlock::logicalLeftSelectionOffset(rootBlock, position);
const LayoutBlock* cb = this;
while (cb != rootBlock) {
logicalLeft += cb->logicalLeft();
cb = cb->containingBlock();
}
return logicalLeft;
}
LayoutUnit LayoutBlockFlow::logicalRightSelectionOffset(const LayoutBlock* rootBlock, LayoutUnit position) const
{
LayoutUnit logicalRight = logicalRightOffsetForLine(position, false);
if (logicalRight == logicalRightOffsetForContent())
return LayoutBlock::logicalRightSelectionOffset(rootBlock, position);
const LayoutBlock* cb = this;
while (cb != rootBlock) {
logicalRight += cb->logicalLeft();
cb = cb->containingBlock();
}
return logicalRight;
}
RootInlineBox* LayoutBlockFlow::createRootInlineBox()
{
return new RootInlineBox(*this);
}
bool LayoutBlockFlow::isPagedOverflow(const ComputedStyle& style)
{
return style.isOverflowPaged() && node() != document().viewportDefiningElement();
}
LayoutBlockFlow::FlowThreadType LayoutBlockFlow::flowThreadType(const ComputedStyle& style)
{
if (isPagedOverflow(style))
return PagedFlowThread;
if (style.specifiesColumns())
return MultiColumnFlowThread;
return NoFlowThread;
}
LayoutMultiColumnFlowThread* LayoutBlockFlow::createMultiColumnFlowThread(FlowThreadType type)
{
switch (type) {
case MultiColumnFlowThread:
return LayoutMultiColumnFlowThread::createAnonymous(document(), styleRef());
case PagedFlowThread:
// Paged overflow is currently done using the multicol implementation.
return LayoutPagedFlowThread::createAnonymous(document(), styleRef());
default:
ASSERT_NOT_REACHED();
return nullptr;
}
}
void LayoutBlockFlow::createOrDestroyMultiColumnFlowThreadIfNeeded(const ComputedStyle* oldStyle)
{
// Paged overflow trumps multicol in this implementation. Ideally, it should be possible to have
// both paged overflow and multicol on the same element, but then we need two flow
// threads. Anyway, this is nothing to worry about until we can actually nest multicol properly
// inside other fragmentation contexts.
FlowThreadType type = flowThreadType(styleRef());
if (multiColumnFlowThread()) {
ASSERT(oldStyle);
if (type != flowThreadType(*oldStyle)) {
// If we're no longer to be multicol/paged, destroy the flow thread. Also destroy it
// when switching between multicol and paged, since that affects the column set
// structure (multicol containers may have spanners, paged containers may not).
multiColumnFlowThread()->evacuateAndDestroy();
ASSERT(!multiColumnFlowThread());
}
}
if (type == NoFlowThread || multiColumnFlowThread())
return;
// Ruby elements manage child insertion in a special way, and would mess up insertion of the
// flow thread. The flow thread needs to be a direct child of the multicol block (|this|).
if (isRuby())
return;
// Fieldsets look for a legend special child (layoutSpecialExcludedChild()). We currently only
// support one special child per layout object, and the flow thread would make for a second one.
if (isFieldset())
return;
// Form controls are replaced content, and are therefore not supposed to support multicol.
if (isFileUploadControl() || isTextControl() || isListBox())
return;
LayoutMultiColumnFlowThread* flowThread = createMultiColumnFlowThread(type);
addChild(flowThread);
// Check that addChild() put the flow thread as a direct child, and didn't do fancy things.
ASSERT(flowThread->parent() == this);
flowThread->populate();
LayoutBlockFlowRareData& rareData = ensureRareData();
ASSERT(!rareData.m_multiColumnFlowThread);
rareData.m_multiColumnFlowThread = flowThread;
}
LayoutBlockFlow::LayoutBlockFlowRareData& LayoutBlockFlow::ensureRareData()
{
if (m_rareData)
return *m_rareData;
m_rareData = adoptPtr(new LayoutBlockFlowRareData(this));
return *m_rareData;
}
void LayoutBlockFlow::positionDialog()
{
HTMLDialogElement* dialog = toHTMLDialogElement(node());
if (dialog->centeringMode() == HTMLDialogElement::NotCentered)
return;
bool canCenterDialog = (style()->position() == AbsolutePosition || style()->position() == FixedPosition)
&& style()->hasAutoTopAndBottom();
if (dialog->centeringMode() == HTMLDialogElement::Centered) {
if (canCenterDialog)
setY(dialog->centeredPosition());
return;
}
ASSERT(dialog->centeringMode() == HTMLDialogElement::NeedsCentering);
if (!canCenterDialog) {
dialog->setNotCentered();
return;
}
FrameView* frameView = document().view();
LayoutUnit top = (style()->position() == FixedPosition) ? 0 : frameView->scrollOffset().height();
int visibleHeight = frameView->visibleContentRect(IncludeScrollbars).height();
if (size().height() < visibleHeight)
top += (visibleHeight - size().height()) / 2;
setY(top);
dialog->setCentered(top);
}
} // namespace blink