| /* Copyright (c) 2011 Xiph.Org Foundation |
| Written by Jean-Marc Valin */ |
| /* |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| - Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| - Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #define ANALYSIS_C |
| |
| #include <stdio.h> |
| |
| #include "mathops.h" |
| #include "kiss_fft.h" |
| #include "celt.h" |
| #include "modes.h" |
| #include "arch.h" |
| #include "quant_bands.h" |
| #include "analysis.h" |
| #include "mlp.h" |
| #include "stack_alloc.h" |
| #include "float_cast.h" |
| |
| #ifndef M_PI |
| #define M_PI 3.141592653 |
| #endif |
| |
| #ifndef DISABLE_FLOAT_API |
| |
| #define TRANSITION_PENALTY 10 |
| |
| static const float dct_table[128] = { |
| 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, |
| 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, 0.250000f, |
| 0.351851f, 0.338330f, 0.311806f, 0.273300f, 0.224292f, 0.166664f, 0.102631f, 0.034654f, |
| -0.034654f,-0.102631f,-0.166664f,-0.224292f,-0.273300f,-0.311806f,-0.338330f,-0.351851f, |
| 0.346760f, 0.293969f, 0.196424f, 0.068975f,-0.068975f,-0.196424f,-0.293969f,-0.346760f, |
| -0.346760f,-0.293969f,-0.196424f,-0.068975f, 0.068975f, 0.196424f, 0.293969f, 0.346760f, |
| 0.338330f, 0.224292f, 0.034654f,-0.166664f,-0.311806f,-0.351851f,-0.273300f,-0.102631f, |
| 0.102631f, 0.273300f, 0.351851f, 0.311806f, 0.166664f,-0.034654f,-0.224292f,-0.338330f, |
| 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, |
| 0.326641f, 0.135299f,-0.135299f,-0.326641f,-0.326641f,-0.135299f, 0.135299f, 0.326641f, |
| 0.311806f, 0.034654f,-0.273300f,-0.338330f,-0.102631f, 0.224292f, 0.351851f, 0.166664f, |
| -0.166664f,-0.351851f,-0.224292f, 0.102631f, 0.338330f, 0.273300f,-0.034654f,-0.311806f, |
| 0.293969f,-0.068975f,-0.346760f,-0.196424f, 0.196424f, 0.346760f, 0.068975f,-0.293969f, |
| -0.293969f, 0.068975f, 0.346760f, 0.196424f,-0.196424f,-0.346760f,-0.068975f, 0.293969f, |
| 0.273300f,-0.166664f,-0.338330f, 0.034654f, 0.351851f, 0.102631f,-0.311806f,-0.224292f, |
| 0.224292f, 0.311806f,-0.102631f,-0.351851f,-0.034654f, 0.338330f, 0.166664f,-0.273300f, |
| }; |
| |
| static const float analysis_window[240] = { |
| 0.000043f, 0.000171f, 0.000385f, 0.000685f, 0.001071f, 0.001541f, 0.002098f, 0.002739f, |
| 0.003466f, 0.004278f, 0.005174f, 0.006156f, 0.007222f, 0.008373f, 0.009607f, 0.010926f, |
| 0.012329f, 0.013815f, 0.015385f, 0.017037f, 0.018772f, 0.020590f, 0.022490f, 0.024472f, |
| 0.026535f, 0.028679f, 0.030904f, 0.033210f, 0.035595f, 0.038060f, 0.040604f, 0.043227f, |
| 0.045928f, 0.048707f, 0.051564f, 0.054497f, 0.057506f, 0.060591f, 0.063752f, 0.066987f, |
| 0.070297f, 0.073680f, 0.077136f, 0.080665f, 0.084265f, 0.087937f, 0.091679f, 0.095492f, |
| 0.099373f, 0.103323f, 0.107342f, 0.111427f, 0.115579f, 0.119797f, 0.124080f, 0.128428f, |
| 0.132839f, 0.137313f, 0.141849f, 0.146447f, 0.151105f, 0.155823f, 0.160600f, 0.165435f, |
| 0.170327f, 0.175276f, 0.180280f, 0.185340f, 0.190453f, 0.195619f, 0.200838f, 0.206107f, |
| 0.211427f, 0.216797f, 0.222215f, 0.227680f, 0.233193f, 0.238751f, 0.244353f, 0.250000f, |
| 0.255689f, 0.261421f, 0.267193f, 0.273005f, 0.278856f, 0.284744f, 0.290670f, 0.296632f, |
| 0.302628f, 0.308658f, 0.314721f, 0.320816f, 0.326941f, 0.333097f, 0.339280f, 0.345492f, |
| 0.351729f, 0.357992f, 0.364280f, 0.370590f, 0.376923f, 0.383277f, 0.389651f, 0.396044f, |
| 0.402455f, 0.408882f, 0.415325f, 0.421783f, 0.428254f, 0.434737f, 0.441231f, 0.447736f, |
| 0.454249f, 0.460770f, 0.467298f, 0.473832f, 0.480370f, 0.486912f, 0.493455f, 0.500000f, |
| 0.506545f, 0.513088f, 0.519630f, 0.526168f, 0.532702f, 0.539230f, 0.545751f, 0.552264f, |
| 0.558769f, 0.565263f, 0.571746f, 0.578217f, 0.584675f, 0.591118f, 0.597545f, 0.603956f, |
| 0.610349f, 0.616723f, 0.623077f, 0.629410f, 0.635720f, 0.642008f, 0.648271f, 0.654508f, |
| 0.660720f, 0.666903f, 0.673059f, 0.679184f, 0.685279f, 0.691342f, 0.697372f, 0.703368f, |
| 0.709330f, 0.715256f, 0.721144f, 0.726995f, 0.732807f, 0.738579f, 0.744311f, 0.750000f, |
| 0.755647f, 0.761249f, 0.766807f, 0.772320f, 0.777785f, 0.783203f, 0.788573f, 0.793893f, |
| 0.799162f, 0.804381f, 0.809547f, 0.814660f, 0.819720f, 0.824724f, 0.829673f, 0.834565f, |
| 0.839400f, 0.844177f, 0.848895f, 0.853553f, 0.858151f, 0.862687f, 0.867161f, 0.871572f, |
| 0.875920f, 0.880203f, 0.884421f, 0.888573f, 0.892658f, 0.896677f, 0.900627f, 0.904508f, |
| 0.908321f, 0.912063f, 0.915735f, 0.919335f, 0.922864f, 0.926320f, 0.929703f, 0.933013f, |
| 0.936248f, 0.939409f, 0.942494f, 0.945503f, 0.948436f, 0.951293f, 0.954072f, 0.956773f, |
| 0.959396f, 0.961940f, 0.964405f, 0.966790f, 0.969096f, 0.971321f, 0.973465f, 0.975528f, |
| 0.977510f, 0.979410f, 0.981228f, 0.982963f, 0.984615f, 0.986185f, 0.987671f, 0.989074f, |
| 0.990393f, 0.991627f, 0.992778f, 0.993844f, 0.994826f, 0.995722f, 0.996534f, 0.997261f, |
| 0.997902f, 0.998459f, 0.998929f, 0.999315f, 0.999615f, 0.999829f, 0.999957f, 1.000000f, |
| }; |
| |
| static const int tbands[NB_TBANDS+1] = { |
| 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 136, 160, 192, 240 |
| }; |
| |
| #define NB_TONAL_SKIP_BANDS 9 |
| |
| static opus_val32 silk_resampler_down2_hp( |
| opus_val32 *S, /* I/O State vector [ 2 ] */ |
| opus_val32 *out, /* O Output signal [ floor(len/2) ] */ |
| const opus_val32 *in, /* I Input signal [ len ] */ |
| int inLen /* I Number of input samples */ |
| ) |
| { |
| int k, len2 = inLen/2; |
| opus_val32 in32, out32, out32_hp, Y, X; |
| opus_val64 hp_ener = 0; |
| /* Internal variables and state are in Q10 format */ |
| for( k = 0; k < len2; k++ ) { |
| /* Convert to Q10 */ |
| in32 = in[ 2 * k ]; |
| |
| /* All-pass section for even input sample */ |
| Y = SUB32( in32, S[ 0 ] ); |
| X = MULT16_32_Q15(QCONST16(0.6074371f, 15), Y); |
| out32 = ADD32( S[ 0 ], X ); |
| S[ 0 ] = ADD32( in32, X ); |
| out32_hp = out32; |
| /* Convert to Q10 */ |
| in32 = in[ 2 * k + 1 ]; |
| |
| /* All-pass section for odd input sample, and add to output of previous section */ |
| Y = SUB32( in32, S[ 1 ] ); |
| X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); |
| out32 = ADD32( out32, S[ 1 ] ); |
| out32 = ADD32( out32, X ); |
| S[ 1 ] = ADD32( in32, X ); |
| |
| Y = SUB32( -in32, S[ 2 ] ); |
| X = MULT16_32_Q15(QCONST16(0.15063f, 15), Y); |
| out32_hp = ADD32( out32_hp, S[ 2 ] ); |
| out32_hp = ADD32( out32_hp, X ); |
| S[ 2 ] = ADD32( -in32, X ); |
| |
| hp_ener += out32_hp*(opus_val64)out32_hp; |
| /* Add, convert back to int16 and store to output */ |
| out[ k ] = HALF32(out32); |
| } |
| #ifdef FIXED_POINT |
| /* len2 can be up to 480, so we shift by 8 more to make it fit. */ |
| hp_ener = hp_ener >> (2*SIG_SHIFT + 8); |
| #endif |
| return (opus_val32)hp_ener; |
| } |
| |
| static opus_val32 downmix_and_resample(downmix_func downmix, const void *_x, opus_val32 *y, opus_val32 S[3], int subframe, int offset, int c1, int c2, int C, int Fs) |
| { |
| VARDECL(opus_val32, tmp); |
| opus_val32 scale; |
| int j; |
| opus_val32 ret = 0; |
| SAVE_STACK; |
| |
| if (subframe==0) return 0; |
| if (Fs == 48000) |
| { |
| subframe *= 2; |
| offset *= 2; |
| } else if (Fs == 16000) { |
| subframe = subframe*2/3; |
| offset = offset*2/3; |
| } |
| ALLOC(tmp, subframe, opus_val32); |
| |
| downmix(_x, tmp, subframe, offset, c1, c2, C); |
| #ifdef FIXED_POINT |
| scale = (1<<SIG_SHIFT); |
| #else |
| scale = 1.f/32768; |
| #endif |
| if (c2==-2) |
| scale /= C; |
| else if (c2>-1) |
| scale /= 2; |
| for (j=0;j<subframe;j++) |
| tmp[j] *= scale; |
| if (Fs == 48000) |
| { |
| ret = silk_resampler_down2_hp(S, y, tmp, subframe); |
| } else if (Fs == 24000) { |
| OPUS_COPY(y, tmp, subframe); |
| } else if (Fs == 16000) { |
| VARDECL(opus_val32, tmp3x); |
| ALLOC(tmp3x, 3*subframe, opus_val32); |
| /* Don't do this at home! This resampler is horrible and it's only (barely) |
| usable for the purpose of the analysis because we don't care about all |
| the aliasing between 8 kHz and 12 kHz. */ |
| for (j=0;j<subframe;j++) |
| { |
| tmp3x[3*j] = tmp[j]; |
| tmp3x[3*j+1] = tmp[j]; |
| tmp3x[3*j+2] = tmp[j]; |
| } |
| silk_resampler_down2_hp(S, y, tmp3x, 3*subframe); |
| } |
| RESTORE_STACK; |
| return ret; |
| } |
| |
| void tonality_analysis_init(TonalityAnalysisState *tonal, opus_int32 Fs) |
| { |
| /* Initialize reusable fields. */ |
| tonal->arch = opus_select_arch(); |
| tonal->Fs = Fs; |
| /* Clear remaining fields. */ |
| tonality_analysis_reset(tonal); |
| } |
| |
| void tonality_analysis_reset(TonalityAnalysisState *tonal) |
| { |
| /* Clear non-reusable fields. */ |
| char *start = (char*)&tonal->TONALITY_ANALYSIS_RESET_START; |
| OPUS_CLEAR(start, sizeof(TonalityAnalysisState) - (start - (char*)tonal)); |
| } |
| |
| void tonality_get_info(TonalityAnalysisState *tonal, AnalysisInfo *info_out, int len) |
| { |
| int pos; |
| int curr_lookahead; |
| float tonality_max; |
| float tonality_avg; |
| int tonality_count; |
| int i; |
| int pos0; |
| float prob_avg; |
| float prob_count; |
| float prob_min, prob_max; |
| float vad_prob; |
| int mpos, vpos; |
| int bandwidth_span; |
| |
| pos = tonal->read_pos; |
| curr_lookahead = tonal->write_pos-tonal->read_pos; |
| if (curr_lookahead<0) |
| curr_lookahead += DETECT_SIZE; |
| |
| /* On long frames, look at the second analysis window rather than the first. */ |
| if (len > tonal->Fs/50 && pos != tonal->write_pos) |
| { |
| pos++; |
| if (pos==DETECT_SIZE) |
| pos=0; |
| } |
| if (pos == tonal->write_pos) |
| pos--; |
| if (pos<0) |
| pos = DETECT_SIZE-1; |
| pos0 = pos; |
| OPUS_COPY(info_out, &tonal->info[pos], 1); |
| tonality_max = tonality_avg = info_out->tonality; |
| tonality_count = 1; |
| /* Look at the neighbouring frames and pick largest bandwidth found (to be safe). */ |
| bandwidth_span = 6; |
| /* If possible, look ahead for a tone to compensate for the delay in the tone detector. */ |
| for (i=0;i<3;i++) |
| { |
| pos++; |
| if (pos==DETECT_SIZE) |
| pos = 0; |
| if (pos == tonal->write_pos) |
| break; |
| tonality_max = MAX32(tonality_max, tonal->info[pos].tonality); |
| tonality_avg += tonal->info[pos].tonality; |
| tonality_count++; |
| info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); |
| bandwidth_span--; |
| } |
| pos = pos0; |
| /* Look back in time to see if any has a wider bandwidth than the current frame. */ |
| for (i=0;i<bandwidth_span;i++) |
| { |
| pos--; |
| if (pos < 0) |
| pos = DETECT_SIZE-1; |
| if (pos == tonal->write_pos) |
| break; |
| info_out->bandwidth = IMAX(info_out->bandwidth, tonal->info[pos].bandwidth); |
| } |
| info_out->tonality = MAX32(tonality_avg/tonality_count, tonality_max-.2f); |
| |
| mpos = vpos = pos0; |
| /* If we have enough look-ahead, compensate for the ~5-frame delay in the music prob and |
| ~1 frame delay in the VAD prob. */ |
| if (curr_lookahead > 15) |
| { |
| mpos += 5; |
| if (mpos>=DETECT_SIZE) |
| mpos -= DETECT_SIZE; |
| vpos += 1; |
| if (vpos>=DETECT_SIZE) |
| vpos -= DETECT_SIZE; |
| } |
| |
| /* The following calculations attempt to minimize a "badness function" |
| for the transition. When switching from speech to music, the badness |
| of switching at frame k is |
| b_k = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) |
| where |
| v_i is the activity probability (VAD) at frame i, |
| p_i is the music probability at frame i |
| T is the probability threshold for switching |
| S is the penalty for switching during active audio rather than silence |
| the current frame has index i=0 |
| |
| Rather than apply badness to directly decide when to switch, what we compute |
| instead is the threshold for which the optimal switching point is now. When |
| considering whether to switch now (frame 0) or at frame k, we have: |
| S*v_0 = S*v_k + \sum_{i=0}^{k-1} v_i*(p_i - T) |
| which gives us: |
| T = ( \sum_{i=0}^{k-1} v_i*p_i + S*(v_k-v_0) ) / ( \sum_{i=0}^{k-1} v_i ) |
| We take the min threshold across all positive values of k (up to the maximum |
| amount of lookahead we have) to give us the threshold for which the current |
| frame is the optimal switch point. |
| |
| The last step is that we need to consider whether we want to switch at all. |
| For that we use the average of the music probability over the entire window. |
| If the threshold is higher than that average we're not going to |
| switch, so we compute a min with the average as well. The result of all these |
| min operations is music_prob_min, which gives the threshold for switching to music |
| if we're currently encoding for speech. |
| |
| We do the exact opposite to compute music_prob_max which is used for switching |
| from music to speech. |
| */ |
| prob_min = 1.f; |
| prob_max = 0.f; |
| vad_prob = tonal->info[vpos].activity_probability; |
| prob_count = MAX16(.1f, vad_prob); |
| prob_avg = MAX16(.1f, vad_prob)*tonal->info[mpos].music_prob; |
| while (1) |
| { |
| float pos_vad; |
| mpos++; |
| if (mpos==DETECT_SIZE) |
| mpos = 0; |
| if (mpos == tonal->write_pos) |
| break; |
| vpos++; |
| if (vpos==DETECT_SIZE) |
| vpos = 0; |
| if (vpos == tonal->write_pos) |
| break; |
| pos_vad = tonal->info[vpos].activity_probability; |
| prob_min = MIN16((prob_avg - TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_min); |
| prob_max = MAX16((prob_avg + TRANSITION_PENALTY*(vad_prob - pos_vad))/prob_count, prob_max); |
| prob_count += MAX16(.1f, pos_vad); |
| prob_avg += MAX16(.1f, pos_vad)*tonal->info[mpos].music_prob; |
| } |
| info_out->music_prob = prob_avg/prob_count; |
| prob_min = MIN16(prob_avg/prob_count, prob_min); |
| prob_max = MAX16(prob_avg/prob_count, prob_max); |
| prob_min = MAX16(prob_min, 0.f); |
| prob_max = MIN16(prob_max, 1.f); |
| |
| /* If we don't have enough look-ahead, do our best to make a decent decision. */ |
| if (curr_lookahead < 10) |
| { |
| float pmin, pmax; |
| pmin = prob_min; |
| pmax = prob_max; |
| pos = pos0; |
| /* Look for min/max in the past. */ |
| for (i=0;i<IMIN(tonal->count-1, 15);i++) |
| { |
| pos--; |
| if (pos < 0) |
| pos = DETECT_SIZE-1; |
| pmin = MIN16(pmin, tonal->info[pos].music_prob); |
| pmax = MAX16(pmax, tonal->info[pos].music_prob); |
| } |
| /* Bias against switching on active audio. */ |
| pmin = MAX16(0.f, pmin - .1f*vad_prob); |
| pmax = MIN16(1.f, pmax + .1f*vad_prob); |
| prob_min += (1.f-.1f*curr_lookahead)*(pmin - prob_min); |
| prob_max += (1.f-.1f*curr_lookahead)*(pmax - prob_max); |
| } |
| info_out->music_prob_min = prob_min; |
| info_out->music_prob_max = prob_max; |
| |
| /* printf("%f %f %f %f %f\n", prob_min, prob_max, prob_avg/prob_count, vad_prob, info_out->music_prob); */ |
| tonal->read_subframe += len/(tonal->Fs/400); |
| while (tonal->read_subframe>=8) |
| { |
| tonal->read_subframe -= 8; |
| tonal->read_pos++; |
| } |
| if (tonal->read_pos>=DETECT_SIZE) |
| tonal->read_pos-=DETECT_SIZE; |
| } |
| |
| static const float std_feature_bias[9] = { |
| 5.684947f, 3.475288f, 1.770634f, 1.599784f, 3.773215f, |
| 2.163313f, 1.260756f, 1.116868f, 1.918795f |
| }; |
| |
| #define LEAKAGE_OFFSET 2.5f |
| #define LEAKAGE_SLOPE 2.f |
| |
| #ifdef FIXED_POINT |
| /* For fixed-point, the input is +/-2^15 shifted up by SIG_SHIFT, so we need to |
| compensate for that in the energy. */ |
| #define SCALE_COMPENS (1.f/((opus_int32)1<<(15+SIG_SHIFT))) |
| #define SCALE_ENER(e) ((SCALE_COMPENS*SCALE_COMPENS)*(e)) |
| #else |
| #define SCALE_ENER(e) (e) |
| #endif |
| |
| static void tonality_analysis(TonalityAnalysisState *tonal, const CELTMode *celt_mode, const void *x, int len, int offset, int c1, int c2, int C, int lsb_depth, downmix_func downmix) |
| { |
| int i, b; |
| const kiss_fft_state *kfft; |
| VARDECL(kiss_fft_cpx, in); |
| VARDECL(kiss_fft_cpx, out); |
| int N = 480, N2=240; |
| float * OPUS_RESTRICT A = tonal->angle; |
| float * OPUS_RESTRICT dA = tonal->d_angle; |
| float * OPUS_RESTRICT d2A = tonal->d2_angle; |
| VARDECL(float, tonality); |
| VARDECL(float, noisiness); |
| float band_tonality[NB_TBANDS]; |
| float logE[NB_TBANDS]; |
| float BFCC[8]; |
| float features[25]; |
| float frame_tonality; |
| float max_frame_tonality; |
| /*float tw_sum=0;*/ |
| float frame_noisiness; |
| const float pi4 = (float)(M_PI*M_PI*M_PI*M_PI); |
| float slope=0; |
| float frame_stationarity; |
| float relativeE; |
| float frame_probs[2]; |
| float alpha, alphaE, alphaE2; |
| float frame_loudness; |
| float bandwidth_mask; |
| int is_masked[NB_TBANDS+1]; |
| int bandwidth=0; |
| float maxE = 0; |
| float noise_floor; |
| int remaining; |
| AnalysisInfo *info; |
| float hp_ener; |
| float tonality2[240]; |
| float midE[8]; |
| float spec_variability=0; |
| float band_log2[NB_TBANDS+1]; |
| float leakage_from[NB_TBANDS+1]; |
| float leakage_to[NB_TBANDS+1]; |
| float layer_out[MAX_NEURONS]; |
| float below_max_pitch; |
| float above_max_pitch; |
| SAVE_STACK; |
| |
| alpha = 1.f/IMIN(10, 1+tonal->count); |
| alphaE = 1.f/IMIN(25, 1+tonal->count); |
| /* Noise floor related decay for bandwidth detection: -2.2 dB/second */ |
| alphaE2 = 1.f/IMIN(100, 1+tonal->count); |
| if (tonal->count <= 1) alphaE2 = 1; |
| |
| if (tonal->Fs == 48000) |
| { |
| /* len and offset are now at 24 kHz. */ |
| len/= 2; |
| offset /= 2; |
| } else if (tonal->Fs == 16000) { |
| len = 3*len/2; |
| offset = 3*offset/2; |
| } |
| |
| kfft = celt_mode->mdct.kfft[0]; |
| if (tonal->count==0) |
| tonal->mem_fill = 240; |
| tonal->hp_ener_accum += (float)downmix_and_resample(downmix, x, |
| &tonal->inmem[tonal->mem_fill], tonal->downmix_state, |
| IMIN(len, ANALYSIS_BUF_SIZE-tonal->mem_fill), offset, c1, c2, C, tonal->Fs); |
| if (tonal->mem_fill+len < ANALYSIS_BUF_SIZE) |
| { |
| tonal->mem_fill += len; |
| /* Don't have enough to update the analysis */ |
| RESTORE_STACK; |
| return; |
| } |
| hp_ener = tonal->hp_ener_accum; |
| info = &tonal->info[tonal->write_pos++]; |
| if (tonal->write_pos>=DETECT_SIZE) |
| tonal->write_pos-=DETECT_SIZE; |
| |
| ALLOC(in, 480, kiss_fft_cpx); |
| ALLOC(out, 480, kiss_fft_cpx); |
| ALLOC(tonality, 240, float); |
| ALLOC(noisiness, 240, float); |
| for (i=0;i<N2;i++) |
| { |
| float w = analysis_window[i]; |
| in[i].r = (kiss_fft_scalar)(w*tonal->inmem[i]); |
| in[i].i = (kiss_fft_scalar)(w*tonal->inmem[N2+i]); |
| in[N-i-1].r = (kiss_fft_scalar)(w*tonal->inmem[N-i-1]); |
| in[N-i-1].i = (kiss_fft_scalar)(w*tonal->inmem[N+N2-i-1]); |
| } |
| OPUS_MOVE(tonal->inmem, tonal->inmem+ANALYSIS_BUF_SIZE-240, 240); |
| remaining = len - (ANALYSIS_BUF_SIZE-tonal->mem_fill); |
| tonal->hp_ener_accum = (float)downmix_and_resample(downmix, x, |
| &tonal->inmem[240], tonal->downmix_state, remaining, |
| offset+ANALYSIS_BUF_SIZE-tonal->mem_fill, c1, c2, C, tonal->Fs); |
| tonal->mem_fill = 240 + remaining; |
| opus_fft(kfft, in, out, tonal->arch); |
| #ifndef FIXED_POINT |
| /* If there's any NaN on the input, the entire output will be NaN, so we only need to check one value. */ |
| if (celt_isnan(out[0].r)) |
| { |
| info->valid = 0; |
| RESTORE_STACK; |
| return; |
| } |
| #endif |
| |
| for (i=1;i<N2;i++) |
| { |
| float X1r, X2r, X1i, X2i; |
| float angle, d_angle, d2_angle; |
| float angle2, d_angle2, d2_angle2; |
| float mod1, mod2, avg_mod; |
| X1r = (float)out[i].r+out[N-i].r; |
| X1i = (float)out[i].i-out[N-i].i; |
| X2r = (float)out[i].i+out[N-i].i; |
| X2i = (float)out[N-i].r-out[i].r; |
| |
| angle = (float)(.5f/M_PI)*fast_atan2f(X1i, X1r); |
| d_angle = angle - A[i]; |
| d2_angle = d_angle - dA[i]; |
| |
| angle2 = (float)(.5f/M_PI)*fast_atan2f(X2i, X2r); |
| d_angle2 = angle2 - angle; |
| d2_angle2 = d_angle2 - d_angle; |
| |
| mod1 = d2_angle - (float)float2int(d2_angle); |
| noisiness[i] = ABS16(mod1); |
| mod1 *= mod1; |
| mod1 *= mod1; |
| |
| mod2 = d2_angle2 - (float)float2int(d2_angle2); |
| noisiness[i] += ABS16(mod2); |
| mod2 *= mod2; |
| mod2 *= mod2; |
| |
| avg_mod = .25f*(d2A[i]+mod1+2*mod2); |
| /* This introduces an extra delay of 2 frames in the detection. */ |
| tonality[i] = 1.f/(1.f+40.f*16.f*pi4*avg_mod)-.015f; |
| /* No delay on this detection, but it's less reliable. */ |
| tonality2[i] = 1.f/(1.f+40.f*16.f*pi4*mod2)-.015f; |
| |
| A[i] = angle2; |
| dA[i] = d_angle2; |
| d2A[i] = mod2; |
| } |
| for (i=2;i<N2-1;i++) |
| { |
| float tt = MIN32(tonality2[i], MAX32(tonality2[i-1], tonality2[i+1])); |
| tonality[i] = .9f*MAX32(tonality[i], tt-.1f); |
| } |
| frame_tonality = 0; |
| max_frame_tonality = 0; |
| /*tw_sum = 0;*/ |
| info->activity = 0; |
| frame_noisiness = 0; |
| frame_stationarity = 0; |
| if (!tonal->count) |
| { |
| for (b=0;b<NB_TBANDS;b++) |
| { |
| tonal->lowE[b] = 1e10; |
| tonal->highE[b] = -1e10; |
| } |
| } |
| relativeE = 0; |
| frame_loudness = 0; |
| /* The energy of the very first band is special because of DC. */ |
| { |
| float E = 0; |
| float X1r, X2r; |
| X1r = 2*(float)out[0].r; |
| X2r = 2*(float)out[0].i; |
| E = X1r*X1r + X2r*X2r; |
| for (i=1;i<4;i++) |
| { |
| float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r |
| + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; |
| E += binE; |
| } |
| E = SCALE_ENER(E); |
| band_log2[0] = .5f*1.442695f*(float)log(E+1e-10f); |
| } |
| for (b=0;b<NB_TBANDS;b++) |
| { |
| float E=0, tE=0, nE=0; |
| float L1, L2; |
| float stationarity; |
| for (i=tbands[b];i<tbands[b+1];i++) |
| { |
| float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r |
| + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; |
| binE = SCALE_ENER(binE); |
| E += binE; |
| tE += binE*MAX32(0, tonality[i]); |
| nE += binE*2.f*(.5f-noisiness[i]); |
| } |
| #ifndef FIXED_POINT |
| /* Check for extreme band energies that could cause NaNs later. */ |
| if (!(E<1e9f) || celt_isnan(E)) |
| { |
| info->valid = 0; |
| RESTORE_STACK; |
| return; |
| } |
| #endif |
| |
| tonal->E[tonal->E_count][b] = E; |
| frame_noisiness += nE/(1e-15f+E); |
| |
| frame_loudness += (float)sqrt(E+1e-10f); |
| logE[b] = (float)log(E+1e-10f); |
| band_log2[b+1] = .5f*1.442695f*(float)log(E+1e-10f); |
| tonal->logE[tonal->E_count][b] = logE[b]; |
| if (tonal->count==0) |
| tonal->highE[b] = tonal->lowE[b] = logE[b]; |
| if (tonal->highE[b] > tonal->lowE[b] + 7.5) |
| { |
| if (tonal->highE[b] - logE[b] > logE[b] - tonal->lowE[b]) |
| tonal->highE[b] -= .01f; |
| else |
| tonal->lowE[b] += .01f; |
| } |
| if (logE[b] > tonal->highE[b]) |
| { |
| tonal->highE[b] = logE[b]; |
| tonal->lowE[b] = MAX32(tonal->highE[b]-15, tonal->lowE[b]); |
| } else if (logE[b] < tonal->lowE[b]) |
| { |
| tonal->lowE[b] = logE[b]; |
| tonal->highE[b] = MIN32(tonal->lowE[b]+15, tonal->highE[b]); |
| } |
| relativeE += (logE[b]-tonal->lowE[b])/(1e-15f + (tonal->highE[b]-tonal->lowE[b])); |
| |
| L1=L2=0; |
| for (i=0;i<NB_FRAMES;i++) |
| { |
| L1 += (float)sqrt(tonal->E[i][b]); |
| L2 += tonal->E[i][b]; |
| } |
| |
| stationarity = MIN16(0.99f,L1/(float)sqrt(1e-15+NB_FRAMES*L2)); |
| stationarity *= stationarity; |
| stationarity *= stationarity; |
| frame_stationarity += stationarity; |
| /*band_tonality[b] = tE/(1e-15+E)*/; |
| band_tonality[b] = MAX16(tE/(1e-15f+E), stationarity*tonal->prev_band_tonality[b]); |
| #if 0 |
| if (b>=NB_TONAL_SKIP_BANDS) |
| { |
| frame_tonality += tweight[b]*band_tonality[b]; |
| tw_sum += tweight[b]; |
| } |
| #else |
| frame_tonality += band_tonality[b]; |
| if (b>=NB_TBANDS-NB_TONAL_SKIP_BANDS) |
| frame_tonality -= band_tonality[b-NB_TBANDS+NB_TONAL_SKIP_BANDS]; |
| #endif |
| max_frame_tonality = MAX16(max_frame_tonality, (1.f+.03f*(b-NB_TBANDS))*frame_tonality); |
| slope += band_tonality[b]*(b-8); |
| /*printf("%f %f ", band_tonality[b], stationarity);*/ |
| tonal->prev_band_tonality[b] = band_tonality[b]; |
| } |
| |
| leakage_from[0] = band_log2[0]; |
| leakage_to[0] = band_log2[0] - LEAKAGE_OFFSET; |
| for (b=1;b<NB_TBANDS+1;b++) |
| { |
| float leak_slope = LEAKAGE_SLOPE*(tbands[b]-tbands[b-1])/4; |
| leakage_from[b] = MIN16(leakage_from[b-1]+leak_slope, band_log2[b]); |
| leakage_to[b] = MAX16(leakage_to[b-1]-leak_slope, band_log2[b]-LEAKAGE_OFFSET); |
| } |
| for (b=NB_TBANDS-2;b>=0;b--) |
| { |
| float leak_slope = LEAKAGE_SLOPE*(tbands[b+1]-tbands[b])/4; |
| leakage_from[b] = MIN16(leakage_from[b+1]+leak_slope, leakage_from[b]); |
| leakage_to[b] = MAX16(leakage_to[b+1]-leak_slope, leakage_to[b]); |
| } |
| celt_assert(NB_TBANDS+1 <= LEAK_BANDS); |
| for (b=0;b<NB_TBANDS+1;b++) |
| { |
| /* leak_boost[] is made up of two terms. The first, based on leakage_to[], |
| represents the boost needed to overcome the amount of analysis leakage |
| cause in a weaker band b by louder neighbouring bands. |
| The second, based on leakage_from[], applies to a loud band b for |
| which the quantization noise causes synthesis leakage to the weaker |
| neighbouring bands. */ |
| float boost = MAX16(0, leakage_to[b] - band_log2[b]) + |
| MAX16(0, band_log2[b] - (leakage_from[b]+LEAKAGE_OFFSET)); |
| info->leak_boost[b] = IMIN(255, (int)floor(.5 + 64.f*boost)); |
| } |
| for (;b<LEAK_BANDS;b++) info->leak_boost[b] = 0; |
| |
| for (i=0;i<NB_FRAMES;i++) |
| { |
| int j; |
| float mindist = 1e15f; |
| for (j=0;j<NB_FRAMES;j++) |
| { |
| int k; |
| float dist=0; |
| for (k=0;k<NB_TBANDS;k++) |
| { |
| float tmp; |
| tmp = tonal->logE[i][k] - tonal->logE[j][k]; |
| dist += tmp*tmp; |
| } |
| if (j!=i) |
| mindist = MIN32(mindist, dist); |
| } |
| spec_variability += mindist; |
| } |
| spec_variability = (float)sqrt(spec_variability/NB_FRAMES/NB_TBANDS); |
| bandwidth_mask = 0; |
| bandwidth = 0; |
| maxE = 0; |
| noise_floor = 5.7e-4f/(1<<(IMAX(0,lsb_depth-8))); |
| noise_floor *= noise_floor; |
| below_max_pitch=0; |
| above_max_pitch=0; |
| for (b=0;b<NB_TBANDS;b++) |
| { |
| float E=0; |
| float Em; |
| int band_start, band_end; |
| /* Keep a margin of 300 Hz for aliasing */ |
| band_start = tbands[b]; |
| band_end = tbands[b+1]; |
| for (i=band_start;i<band_end;i++) |
| { |
| float binE = out[i].r*(float)out[i].r + out[N-i].r*(float)out[N-i].r |
| + out[i].i*(float)out[i].i + out[N-i].i*(float)out[N-i].i; |
| E += binE; |
| } |
| E = SCALE_ENER(E); |
| maxE = MAX32(maxE, E); |
| if (band_start < 64) |
| { |
| below_max_pitch += E; |
| } else { |
| above_max_pitch += E; |
| } |
| tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); |
| Em = MAX32(E, tonal->meanE[b]); |
| /* Consider the band "active" only if all these conditions are met: |
| 1) less than 90 dB below the peak band (maximal masking possible considering |
| both the ATH and the loudness-dependent slope of the spreading function) |
| 2) above the PCM quantization noise floor |
| We use b+1 because the first CELT band isn't included in tbands[] |
| */ |
| if (E*1e9f > maxE && (Em > 3*noise_floor*(band_end-band_start) || E > noise_floor*(band_end-band_start))) |
| bandwidth = b+1; |
| /* Check if the band is masked (see below). */ |
| is_masked[b] = E < (tonal->prev_bandwidth >= b+1 ? .01f : .05f)*bandwidth_mask; |
| /* Use a simple follower with 13 dB/Bark slope for spreading function. */ |
| bandwidth_mask = MAX32(.05f*bandwidth_mask, E); |
| } |
| /* Special case for the last two bands, for which we don't have spectrum but only |
| the energy above 12 kHz. The difficulty here is that the high-pass we use |
| leaks some LF energy, so we need to increase the threshold without accidentally cutting |
| off the band. */ |
| if (tonal->Fs == 48000) { |
| float noise_ratio; |
| float Em; |
| float E = hp_ener*(1.f/(60*60)); |
| noise_ratio = tonal->prev_bandwidth==20 ? 10.f : 30.f; |
| |
| #ifdef FIXED_POINT |
| /* silk_resampler_down2_hp() shifted right by an extra 8 bits. */ |
| E *= 256.f*(1.f/Q15ONE)*(1.f/Q15ONE); |
| #endif |
| above_max_pitch += E; |
| tonal->meanE[b] = MAX32((1-alphaE2)*tonal->meanE[b], E); |
| Em = MAX32(E, tonal->meanE[b]); |
| if (Em > 3*noise_ratio*noise_floor*160 || E > noise_ratio*noise_floor*160) |
| bandwidth = 20; |
| /* Check if the band is masked (see below). */ |
| is_masked[b] = E < (tonal->prev_bandwidth == 20 ? .01f : .05f)*bandwidth_mask; |
| } |
| if (above_max_pitch > below_max_pitch) |
| info->max_pitch_ratio = below_max_pitch/above_max_pitch; |
| else |
| info->max_pitch_ratio = 1; |
| /* In some cases, resampling aliasing can create a small amount of energy in the first band |
| being cut. So if the last band is masked, we don't include it. */ |
| if (bandwidth == 20 && is_masked[NB_TBANDS]) |
| bandwidth-=2; |
| else if (bandwidth > 0 && bandwidth <= NB_TBANDS && is_masked[bandwidth-1]) |
| bandwidth--; |
| if (tonal->count<=2) |
| bandwidth = 20; |
| frame_loudness = 20*(float)log10(frame_loudness); |
| tonal->Etracker = MAX32(tonal->Etracker-.003f, frame_loudness); |
| tonal->lowECount *= (1-alphaE); |
| if (frame_loudness < tonal->Etracker-30) |
| tonal->lowECount += alphaE; |
| |
| for (i=0;i<8;i++) |
| { |
| float sum=0; |
| for (b=0;b<16;b++) |
| sum += dct_table[i*16+b]*logE[b]; |
| BFCC[i] = sum; |
| } |
| for (i=0;i<8;i++) |
| { |
| float sum=0; |
| for (b=0;b<16;b++) |
| sum += dct_table[i*16+b]*.5f*(tonal->highE[b]+tonal->lowE[b]); |
| midE[i] = sum; |
| } |
| |
| frame_stationarity /= NB_TBANDS; |
| relativeE /= NB_TBANDS; |
| if (tonal->count<10) |
| relativeE = .5f; |
| frame_noisiness /= NB_TBANDS; |
| #if 1 |
| info->activity = frame_noisiness + (1-frame_noisiness)*relativeE; |
| #else |
| info->activity = .5*(1+frame_noisiness-frame_stationarity); |
| #endif |
| frame_tonality = (max_frame_tonality/(NB_TBANDS-NB_TONAL_SKIP_BANDS)); |
| frame_tonality = MAX16(frame_tonality, tonal->prev_tonality*.8f); |
| tonal->prev_tonality = frame_tonality; |
| |
| slope /= 8*8; |
| info->tonality_slope = slope; |
| |
| tonal->E_count = (tonal->E_count+1)%NB_FRAMES; |
| tonal->count = IMIN(tonal->count+1, ANALYSIS_COUNT_MAX); |
| info->tonality = frame_tonality; |
| |
| for (i=0;i<4;i++) |
| features[i] = -0.12299f*(BFCC[i]+tonal->mem[i+24]) + 0.49195f*(tonal->mem[i]+tonal->mem[i+16]) + 0.69693f*tonal->mem[i+8] - 1.4349f*tonal->cmean[i]; |
| |
| for (i=0;i<4;i++) |
| tonal->cmean[i] = (1-alpha)*tonal->cmean[i] + alpha*BFCC[i]; |
| |
| for (i=0;i<4;i++) |
| features[4+i] = 0.63246f*(BFCC[i]-tonal->mem[i+24]) + 0.31623f*(tonal->mem[i]-tonal->mem[i+16]); |
| for (i=0;i<3;i++) |
| features[8+i] = 0.53452f*(BFCC[i]+tonal->mem[i+24]) - 0.26726f*(tonal->mem[i]+tonal->mem[i+16]) -0.53452f*tonal->mem[i+8]; |
| |
| if (tonal->count > 5) |
| { |
| for (i=0;i<9;i++) |
| tonal->std[i] = (1-alpha)*tonal->std[i] + alpha*features[i]*features[i]; |
| } |
| for (i=0;i<4;i++) |
| features[i] = BFCC[i]-midE[i]; |
| |
| for (i=0;i<8;i++) |
| { |
| tonal->mem[i+24] = tonal->mem[i+16]; |
| tonal->mem[i+16] = tonal->mem[i+8]; |
| tonal->mem[i+8] = tonal->mem[i]; |
| tonal->mem[i] = BFCC[i]; |
| } |
| for (i=0;i<9;i++) |
| features[11+i] = (float)sqrt(tonal->std[i]) - std_feature_bias[i]; |
| features[18] = spec_variability - 0.78f; |
| features[20] = info->tonality - 0.154723f; |
| features[21] = info->activity - 0.724643f; |
| features[22] = frame_stationarity - 0.743717f; |
| features[23] = info->tonality_slope + 0.069216f; |
| features[24] = tonal->lowECount - 0.067930f; |
| |
| compute_dense(&layer0, layer_out, features); |
| compute_gru(&layer1, tonal->rnn_state, layer_out); |
| compute_dense(&layer2, frame_probs, tonal->rnn_state); |
| |
| /* Probability of speech or music vs noise */ |
| info->activity_probability = frame_probs[1]; |
| /* It seems like the RNN tends to have a bias towards speech and this |
| warping of the probabilities compensates for it. */ |
| info->music_prob = MAX16(1.f-10.f*(1.f-frame_probs[0]), MIN16(10.f*frame_probs[0], .12f+.69f*frame_probs[0]*(2.f-frame_probs[0]))); |
| |
| /*printf("%f %f %f\n", frame_probs[0], frame_probs[1], info->music_prob);*/ |
| #ifdef MLP_TRAINING |
| for (i=0;i<25;i++) |
| printf("%f ", features[i]); |
| printf("\n"); |
| #endif |
| |
| info->bandwidth = bandwidth; |
| tonal->prev_bandwidth = bandwidth; |
| /*printf("%d %d\n", info->bandwidth, info->opus_bandwidth);*/ |
| info->noisiness = frame_noisiness; |
| info->valid = 1; |
| RESTORE_STACK; |
| } |
| |
| void run_analysis(TonalityAnalysisState *analysis, const CELTMode *celt_mode, const void *analysis_pcm, |
| int analysis_frame_size, int frame_size, int c1, int c2, int C, opus_int32 Fs, |
| int lsb_depth, downmix_func downmix, AnalysisInfo *analysis_info) |
| { |
| int offset; |
| int pcm_len; |
| |
| analysis_frame_size -= analysis_frame_size&1; |
| if (analysis_pcm != NULL) |
| { |
| /* Avoid overflow/wrap-around of the analysis buffer */ |
| analysis_frame_size = IMIN((DETECT_SIZE-5)*Fs/50, analysis_frame_size); |
| |
| pcm_len = analysis_frame_size - analysis->analysis_offset; |
| offset = analysis->analysis_offset; |
| while (pcm_len>0) { |
| tonality_analysis(analysis, celt_mode, analysis_pcm, IMIN(Fs/50, pcm_len), offset, c1, c2, C, lsb_depth, downmix); |
| offset += Fs/50; |
| pcm_len -= Fs/50; |
| } |
| analysis->analysis_offset = analysis_frame_size; |
| |
| analysis->analysis_offset -= frame_size; |
| } |
| |
| analysis_info->valid = 0; |
| tonality_get_info(analysis, analysis_info, frame_size); |
| } |
| |
| #endif /* DISABLE_FLOAT_API */ |