|  | /* | 
|  | ** 2001 September 15 | 
|  | ** | 
|  | ** The author disclaims copyright to this source code.  In place of | 
|  | ** a legal notice, here is a blessing: | 
|  | ** | 
|  | **    May you do good and not evil. | 
|  | **    May you find forgiveness for yourself and forgive others. | 
|  | **    May you share freely, never taking more than you give. | 
|  | ** | 
|  | ************************************************************************* | 
|  | ** This file contains C code routines that are called by the parser | 
|  | ** to handle INSERT statements in SQLite. | 
|  | */ | 
|  | #include "sqliteInt.h" | 
|  |  | 
|  | /* | 
|  | ** Generate code that will | 
|  | ** | 
|  | **   (1) acquire a lock for table pTab then | 
|  | **   (2) open pTab as cursor iCur. | 
|  | ** | 
|  | ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index | 
|  | ** for that table that is actually opened. | 
|  | */ | 
|  | void sqlite3OpenTable( | 
|  | Parse *pParse,  /* Generate code into this VDBE */ | 
|  | int iCur,       /* The cursor number of the table */ | 
|  | int iDb,        /* The database index in sqlite3.aDb[] */ | 
|  | Table *pTab,    /* The table to be opened */ | 
|  | int opcode      /* OP_OpenRead or OP_OpenWrite */ | 
|  | ){ | 
|  | Vdbe *v; | 
|  | assert( !IsVirtual(pTab) ); | 
|  | assert( pParse->pVdbe!=0 ); | 
|  | v = pParse->pVdbe; | 
|  | assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); | 
|  | sqlite3TableLock(pParse, iDb, pTab->tnum, | 
|  | (opcode==OP_OpenWrite)?1:0, pTab->zName); | 
|  | if( HasRowid(pTab) ){ | 
|  | sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); | 
|  | VdbeComment((v, "%s", pTab->zName)); | 
|  | }else{ | 
|  | Index *pPk = sqlite3PrimaryKeyIndex(pTab); | 
|  | assert( pPk!=0 ); | 
|  | assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); | 
|  | sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); | 
|  | sqlite3VdbeSetP4KeyInfo(pParse, pPk); | 
|  | VdbeComment((v, "%s", pTab->zName)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return a pointer to the column affinity string associated with index | 
|  | ** pIdx. A column affinity string has one character for each column in | 
|  | ** the table, according to the affinity of the column: | 
|  | ** | 
|  | **  Character      Column affinity | 
|  | **  ------------------------------ | 
|  | **  'A'            BLOB | 
|  | **  'B'            TEXT | 
|  | **  'C'            NUMERIC | 
|  | **  'D'            INTEGER | 
|  | **  'F'            REAL | 
|  | ** | 
|  | ** An extra 'D' is appended to the end of the string to cover the | 
|  | ** rowid that appears as the last column in every index. | 
|  | ** | 
|  | ** Memory for the buffer containing the column index affinity string | 
|  | ** is managed along with the rest of the Index structure. It will be | 
|  | ** released when sqlite3DeleteIndex() is called. | 
|  | */ | 
|  | static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ | 
|  | /* The first time a column affinity string for a particular index is | 
|  | ** required, it is allocated and populated here. It is then stored as | 
|  | ** a member of the Index structure for subsequent use. | 
|  | ** | 
|  | ** The column affinity string will eventually be deleted by | 
|  | ** sqliteDeleteIndex() when the Index structure itself is cleaned | 
|  | ** up. | 
|  | */ | 
|  | int n; | 
|  | Table *pTab = pIdx->pTable; | 
|  | pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); | 
|  | if( !pIdx->zColAff ){ | 
|  | sqlite3OomFault(db); | 
|  | return 0; | 
|  | } | 
|  | for(n=0; n<pIdx->nColumn; n++){ | 
|  | i16 x = pIdx->aiColumn[n]; | 
|  | char aff; | 
|  | if( x>=0 ){ | 
|  | aff = pTab->aCol[x].affinity; | 
|  | }else if( x==XN_ROWID ){ | 
|  | aff = SQLITE_AFF_INTEGER; | 
|  | }else{ | 
|  | assert( x==XN_EXPR ); | 
|  | assert( pIdx->bHasExpr ); | 
|  | assert( pIdx->aColExpr!=0 ); | 
|  | aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); | 
|  | } | 
|  | if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; | 
|  | if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; | 
|  | pIdx->zColAff[n] = aff; | 
|  | } | 
|  | pIdx->zColAff[n] = 0; | 
|  | return pIdx->zColAff; | 
|  | } | 
|  | const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ | 
|  | if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); | 
|  | return pIdx->zColAff; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Compute an affinity string for a table.   Space is obtained | 
|  | ** from sqlite3DbMalloc().  The caller is responsible for freeing | 
|  | ** the space when done. | 
|  | */ | 
|  | char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ | 
|  | char *zColAff; | 
|  | zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); | 
|  | if( zColAff ){ | 
|  | int i, j; | 
|  | for(i=j=0; i<pTab->nCol; i++){ | 
|  | if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ | 
|  | zColAff[j++] = pTab->aCol[i].affinity; | 
|  | } | 
|  | } | 
|  | do{ | 
|  | zColAff[j--] = 0; | 
|  | }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); | 
|  | } | 
|  | return zColAff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Make changes to the evolving bytecode to do affinity transformations | 
|  | ** of values that are about to be gathered into a row for table pTab. | 
|  | ** | 
|  | ** For ordinary (legacy, non-strict) tables: | 
|  | ** ----------------------------------------- | 
|  | ** | 
|  | ** Compute the affinity string for table pTab, if it has not already been | 
|  | ** computed.  As an optimization, omit trailing SQLITE_AFF_BLOB affinities. | 
|  | ** | 
|  | ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries | 
|  | ** which were then optimized out) then this routine becomes a no-op. | 
|  | ** | 
|  | ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the | 
|  | ** affinities for register iReg and following.  Or if iReg==0, | 
|  | ** then just set the P4 operand of the previous opcode (which should  be | 
|  | ** an OP_MakeRecord) to the affinity string. | 
|  | ** | 
|  | ** A column affinity string has one character per column: | 
|  | ** | 
|  | **    Character      Column affinity | 
|  | **    ---------      --------------- | 
|  | **    'A'            BLOB | 
|  | **    'B'            TEXT | 
|  | **    'C'            NUMERIC | 
|  | **    'D'            INTEGER | 
|  | **    'E'            REAL | 
|  | ** | 
|  | ** For STRICT tables: | 
|  | ** ------------------ | 
|  | ** | 
|  | ** Generate an appropropriate OP_TypeCheck opcode that will verify the | 
|  | ** datatypes against the column definitions in pTab.  If iReg==0, that | 
|  | ** means an OP_MakeRecord opcode has already been generated and should be | 
|  | ** the last opcode generated.  The new OP_TypeCheck needs to be inserted | 
|  | ** before the OP_MakeRecord.  The new OP_TypeCheck should use the same | 
|  | ** register set as the OP_MakeRecord.  If iReg>0 then register iReg is | 
|  | ** the first of a series of registers that will form the new record. | 
|  | ** Apply the type checking to that array of registers. | 
|  | */ | 
|  | void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ | 
|  | int i; | 
|  | char *zColAff; | 
|  | if( pTab->tabFlags & TF_Strict ){ | 
|  | if( iReg==0 ){ | 
|  | /* Move the previous opcode (which should be OP_MakeRecord) forward | 
|  | ** by one slot and insert a new OP_TypeCheck where the current | 
|  | ** OP_MakeRecord is found */ | 
|  | VdbeOp *pPrev; | 
|  | sqlite3VdbeAppendP4(v, pTab, P4_TABLE); | 
|  | pPrev = sqlite3VdbeGetLastOp(v); | 
|  | assert( pPrev!=0 ); | 
|  | assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); | 
|  | pPrev->opcode = OP_TypeCheck; | 
|  | sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); | 
|  | }else{ | 
|  | /* Insert an isolated OP_Typecheck */ | 
|  | sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); | 
|  | sqlite3VdbeAppendP4(v, pTab, P4_TABLE); | 
|  | } | 
|  | return; | 
|  | } | 
|  | zColAff = pTab->zColAff; | 
|  | if( zColAff==0 ){ | 
|  | zColAff = sqlite3TableAffinityStr(0, pTab); | 
|  | if( !zColAff ){ | 
|  | sqlite3OomFault(sqlite3VdbeDb(v)); | 
|  | return; | 
|  | } | 
|  | pTab->zColAff = zColAff; | 
|  | } | 
|  | assert( zColAff!=0 ); | 
|  | i = sqlite3Strlen30NN(zColAff); | 
|  | if( i ){ | 
|  | if( iReg ){ | 
|  | sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); | 
|  | }else{ | 
|  | assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord | 
|  | || sqlite3VdbeDb(v)->mallocFailed ); | 
|  | sqlite3VdbeChangeP4(v, -1, zColAff, i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return non-zero if the table pTab in database iDb or any of its indices | 
|  | ** have been opened at any point in the VDBE program. This is used to see if | 
|  | ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can | 
|  | ** run without using a temporary table for the results of the SELECT. | 
|  | */ | 
|  | static int readsTable(Parse *p, int iDb, Table *pTab){ | 
|  | Vdbe *v = sqlite3GetVdbe(p); | 
|  | int i; | 
|  | int iEnd = sqlite3VdbeCurrentAddr(v); | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; | 
|  | #endif | 
|  |  | 
|  | for(i=1; i<iEnd; i++){ | 
|  | VdbeOp *pOp = sqlite3VdbeGetOp(v, i); | 
|  | assert( pOp!=0 ); | 
|  | if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ | 
|  | Index *pIndex; | 
|  | Pgno tnum = pOp->p2; | 
|  | if( tnum==pTab->tnum ){ | 
|  | return 1; | 
|  | } | 
|  | for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ | 
|  | if( tnum==pIndex->tnum ){ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ | 
|  | assert( pOp->p4.pVtab!=0 ); | 
|  | assert( pOp->p4type==P4_VTAB ); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This walker callback will compute the union of colFlags flags for all | 
|  | ** referenced columns in a CHECK constraint or generated column expression. | 
|  | */ | 
|  | static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ | 
|  | if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ | 
|  | assert( pExpr->iColumn < pWalker->u.pTab->nCol ); | 
|  | pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; | 
|  | } | 
|  | return WRC_Continue; | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | /* | 
|  | ** All regular columns for table pTab have been puts into registers | 
|  | ** starting with iRegStore.  The registers that correspond to STORED | 
|  | ** or VIRTUAL columns have not yet been initialized.  This routine goes | 
|  | ** back and computes the values for those columns based on the previously | 
|  | ** computed normal columns. | 
|  | */ | 
|  | void sqlite3ComputeGeneratedColumns( | 
|  | Parse *pParse,    /* Parsing context */ | 
|  | int iRegStore,    /* Register holding the first column */ | 
|  | Table *pTab       /* The table */ | 
|  | ){ | 
|  | int i; | 
|  | Walker w; | 
|  | Column *pRedo; | 
|  | int eProgress; | 
|  | VdbeOp *pOp; | 
|  |  | 
|  | assert( pTab->tabFlags & TF_HasGenerated ); | 
|  | testcase( pTab->tabFlags & TF_HasVirtual ); | 
|  | testcase( pTab->tabFlags & TF_HasStored ); | 
|  |  | 
|  | /* Before computing generated columns, first go through and make sure | 
|  | ** that appropriate affinity has been applied to the regular columns | 
|  | */ | 
|  | sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); | 
|  | if( (pTab->tabFlags & TF_HasStored)!=0 ){ | 
|  | pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); | 
|  | if( pOp->opcode==OP_Affinity ){ | 
|  | /* Change the OP_Affinity argument to '@' (NONE) for all stored | 
|  | ** columns.  '@' is the no-op affinity and those columns have not | 
|  | ** yet been computed. */ | 
|  | int ii, jj; | 
|  | char *zP4 = pOp->p4.z; | 
|  | assert( zP4!=0 ); | 
|  | assert( pOp->p4type==P4_DYNAMIC ); | 
|  | for(ii=jj=0; zP4[jj]; ii++){ | 
|  | if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ | 
|  | continue; | 
|  | } | 
|  | if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ | 
|  | zP4[jj] = SQLITE_AFF_NONE; | 
|  | } | 
|  | jj++; | 
|  | } | 
|  | }else if( pOp->opcode==OP_TypeCheck ){ | 
|  | /* If an OP_TypeCheck was generated because the table is STRICT, | 
|  | ** then set the P3 operand to indicate that generated columns should | 
|  | ** not be checked */ | 
|  | pOp->p3 = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Because there can be multiple generated columns that refer to one another, | 
|  | ** this is a two-pass algorithm.  On the first pass, mark all generated | 
|  | ** columns as "not available". | 
|  | */ | 
|  | for(i=0; i<pTab->nCol; i++){ | 
|  | if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ | 
|  | testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); | 
|  | testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); | 
|  | pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; | 
|  | } | 
|  | } | 
|  |  | 
|  | w.u.pTab = pTab; | 
|  | w.xExprCallback = exprColumnFlagUnion; | 
|  | w.xSelectCallback = 0; | 
|  | w.xSelectCallback2 = 0; | 
|  |  | 
|  | /* On the second pass, compute the value of each NOT-AVAILABLE column. | 
|  | ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will | 
|  | ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as | 
|  | ** they are needed. | 
|  | */ | 
|  | pParse->iSelfTab = -iRegStore; | 
|  | do{ | 
|  | eProgress = 0; | 
|  | pRedo = 0; | 
|  | for(i=0; i<pTab->nCol; i++){ | 
|  | Column *pCol = pTab->aCol + i; | 
|  | if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ | 
|  | int x; | 
|  | pCol->colFlags |= COLFLAG_BUSY; | 
|  | w.eCode = 0; | 
|  | sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); | 
|  | pCol->colFlags &= ~COLFLAG_BUSY; | 
|  | if( w.eCode & COLFLAG_NOTAVAIL ){ | 
|  | pRedo = pCol; | 
|  | continue; | 
|  | } | 
|  | eProgress = 1; | 
|  | assert( pCol->colFlags & COLFLAG_GENERATED ); | 
|  | x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; | 
|  | sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); | 
|  | pCol->colFlags &= ~COLFLAG_NOTAVAIL; | 
|  | } | 
|  | } | 
|  | }while( pRedo && eProgress ); | 
|  | if( pRedo ){ | 
|  | sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); | 
|  | } | 
|  | pParse->iSelfTab = 0; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ | 
|  |  | 
|  |  | 
|  | #ifndef SQLITE_OMIT_AUTOINCREMENT | 
|  | /* | 
|  | ** Locate or create an AutoincInfo structure associated with table pTab | 
|  | ** which is in database iDb.  Return the register number for the register | 
|  | ** that holds the maximum rowid.  Return zero if pTab is not an AUTOINCREMENT | 
|  | ** table.  (Also return zero when doing a VACUUM since we do not want to | 
|  | ** update the AUTOINCREMENT counters during a VACUUM.) | 
|  | ** | 
|  | ** There is at most one AutoincInfo structure per table even if the | 
|  | ** same table is autoincremented multiple times due to inserts within | 
|  | ** triggers.  A new AutoincInfo structure is created if this is the | 
|  | ** first use of table pTab.  On 2nd and subsequent uses, the original | 
|  | ** AutoincInfo structure is used. | 
|  | ** | 
|  | ** Four consecutive registers are allocated: | 
|  | ** | 
|  | **   (1)  The name of the pTab table. | 
|  | **   (2)  The maximum ROWID of pTab. | 
|  | **   (3)  The rowid in sqlite_sequence of pTab | 
|  | **   (4)  The original value of the max ROWID in pTab, or NULL if none | 
|  | ** | 
|  | ** The 2nd register is the one that is returned.  That is all the | 
|  | ** insert routine needs to know about. | 
|  | */ | 
|  | static int autoIncBegin( | 
|  | Parse *pParse,      /* Parsing context */ | 
|  | int iDb,            /* Index of the database holding pTab */ | 
|  | Table *pTab         /* The table we are writing to */ | 
|  | ){ | 
|  | int memId = 0;      /* Register holding maximum rowid */ | 
|  | assert( pParse->db->aDb[iDb].pSchema!=0 ); | 
|  | if( (pTab->tabFlags & TF_Autoincrement)!=0 | 
|  | && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 | 
|  | ){ | 
|  | Parse *pToplevel = sqlite3ParseToplevel(pParse); | 
|  | AutoincInfo *pInfo; | 
|  | Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; | 
|  |  | 
|  | /* Verify that the sqlite_sequence table exists and is an ordinary | 
|  | ** rowid table with exactly two columns. | 
|  | ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ | 
|  | if( pSeqTab==0 | 
|  | || !HasRowid(pSeqTab) | 
|  | || NEVER(IsVirtual(pSeqTab)) | 
|  | || pSeqTab->nCol!=2 | 
|  | ){ | 
|  | pParse->nErr++; | 
|  | pParse->rc = SQLITE_CORRUPT_SEQUENCE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pInfo = pToplevel->pAinc; | 
|  | while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } | 
|  | if( pInfo==0 ){ | 
|  | pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); | 
|  | sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); | 
|  | testcase( pParse->earlyCleanup ); | 
|  | if( pParse->db->mallocFailed ) return 0; | 
|  | pInfo->pNext = pToplevel->pAinc; | 
|  | pToplevel->pAinc = pInfo; | 
|  | pInfo->pTab = pTab; | 
|  | pInfo->iDb = iDb; | 
|  | pToplevel->nMem++;                  /* Register to hold name of table */ | 
|  | pInfo->regCtr = ++pToplevel->nMem;  /* Max rowid register */ | 
|  | pToplevel->nMem +=2;       /* Rowid in sqlite_sequence + orig max val */ | 
|  | } | 
|  | memId = pInfo->regCtr; | 
|  | } | 
|  | return memId; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This routine generates code that will initialize all of the | 
|  | ** register used by the autoincrement tracker. | 
|  | */ | 
|  | void sqlite3AutoincrementBegin(Parse *pParse){ | 
|  | AutoincInfo *p;            /* Information about an AUTOINCREMENT */ | 
|  | sqlite3 *db = pParse->db;  /* The database connection */ | 
|  | Db *pDb;                   /* Database only autoinc table */ | 
|  | int memId;                 /* Register holding max rowid */ | 
|  | Vdbe *v = pParse->pVdbe;   /* VDBE under construction */ | 
|  |  | 
|  | /* This routine is never called during trigger-generation.  It is | 
|  | ** only called from the top-level */ | 
|  | assert( pParse->pTriggerTab==0 ); | 
|  | assert( sqlite3IsToplevel(pParse) ); | 
|  |  | 
|  | assert( v );   /* We failed long ago if this is not so */ | 
|  | for(p = pParse->pAinc; p; p = p->pNext){ | 
|  | static const int iLn = VDBE_OFFSET_LINENO(2); | 
|  | static const VdbeOpList autoInc[] = { | 
|  | /* 0  */ {OP_Null,    0,  0, 0}, | 
|  | /* 1  */ {OP_Rewind,  0, 10, 0}, | 
|  | /* 2  */ {OP_Column,  0,  0, 0}, | 
|  | /* 3  */ {OP_Ne,      0,  9, 0}, | 
|  | /* 4  */ {OP_Rowid,   0,  0, 0}, | 
|  | /* 5  */ {OP_Column,  0,  1, 0}, | 
|  | /* 6  */ {OP_AddImm,  0,  0, 0}, | 
|  | /* 7  */ {OP_Copy,    0,  0, 0}, | 
|  | /* 8  */ {OP_Goto,    0, 11, 0}, | 
|  | /* 9  */ {OP_Next,    0,  2, 0}, | 
|  | /* 10 */ {OP_Integer, 0,  0, 0}, | 
|  | /* 11 */ {OP_Close,   0,  0, 0} | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  | pDb = &db->aDb[p->iDb]; | 
|  | memId = p->regCtr; | 
|  | assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); | 
|  | sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); | 
|  | sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); | 
|  | if( aOp==0 ) break; | 
|  | aOp[0].p2 = memId; | 
|  | aOp[0].p3 = memId+2; | 
|  | aOp[2].p3 = memId; | 
|  | aOp[3].p1 = memId-1; | 
|  | aOp[3].p3 = memId; | 
|  | aOp[3].p5 = SQLITE_JUMPIFNULL; | 
|  | aOp[4].p2 = memId+1; | 
|  | aOp[5].p3 = memId; | 
|  | aOp[6].p1 = memId; | 
|  | aOp[7].p2 = memId+2; | 
|  | aOp[7].p1 = memId; | 
|  | aOp[10].p2 = memId; | 
|  | if( pParse->nTab==0 ) pParse->nTab = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Update the maximum rowid for an autoincrement calculation. | 
|  | ** | 
|  | ** This routine should be called when the regRowid register holds a | 
|  | ** new rowid that is about to be inserted.  If that new rowid is | 
|  | ** larger than the maximum rowid in the memId memory cell, then the | 
|  | ** memory cell is updated. | 
|  | */ | 
|  | static void autoIncStep(Parse *pParse, int memId, int regRowid){ | 
|  | if( memId>0 ){ | 
|  | sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This routine generates the code needed to write autoincrement | 
|  | ** maximum rowid values back into the sqlite_sequence register. | 
|  | ** Every statement that might do an INSERT into an autoincrement | 
|  | ** table (either directly or through triggers) needs to call this | 
|  | ** routine just before the "exit" code. | 
|  | */ | 
|  | static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ | 
|  | AutoincInfo *p; | 
|  | Vdbe *v = pParse->pVdbe; | 
|  | sqlite3 *db = pParse->db; | 
|  |  | 
|  | assert( v ); | 
|  | for(p = pParse->pAinc; p; p = p->pNext){ | 
|  | static const int iLn = VDBE_OFFSET_LINENO(2); | 
|  | static const VdbeOpList autoIncEnd[] = { | 
|  | /* 0 */ {OP_NotNull,     0, 2, 0}, | 
|  | /* 1 */ {OP_NewRowid,    0, 0, 0}, | 
|  | /* 2 */ {OP_MakeRecord,  0, 2, 0}, | 
|  | /* 3 */ {OP_Insert,      0, 0, 0}, | 
|  | /* 4 */ {OP_Close,       0, 0, 0} | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  | Db *pDb = &db->aDb[p->iDb]; | 
|  | int iRec; | 
|  | int memId = p->regCtr; | 
|  |  | 
|  | iRec = sqlite3GetTempReg(pParse); | 
|  | assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); | 
|  | sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); | 
|  | VdbeCoverage(v); | 
|  | sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); | 
|  | if( aOp==0 ) break; | 
|  | aOp[0].p1 = memId+1; | 
|  | aOp[1].p2 = memId+1; | 
|  | aOp[2].p1 = memId-1; | 
|  | aOp[2].p3 = iRec; | 
|  | aOp[3].p2 = iRec; | 
|  | aOp[3].p3 = memId+1; | 
|  | aOp[3].p5 = OPFLAG_APPEND; | 
|  | sqlite3ReleaseTempReg(pParse, iRec); | 
|  | } | 
|  | } | 
|  | void sqlite3AutoincrementEnd(Parse *pParse){ | 
|  | if( pParse->pAinc ) autoIncrementEnd(pParse); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines | 
|  | ** above are all no-ops | 
|  | */ | 
|  | # define autoIncBegin(A,B,C) (0) | 
|  | # define autoIncStep(A,B,C) | 
|  | #endif /* SQLITE_OMIT_AUTOINCREMENT */ | 
|  |  | 
|  |  | 
|  | /* Forward declaration */ | 
|  | static int xferOptimization( | 
|  | Parse *pParse,        /* Parser context */ | 
|  | Table *pDest,         /* The table we are inserting into */ | 
|  | Select *pSelect,      /* A SELECT statement to use as the data source */ | 
|  | int onError,          /* How to handle constraint errors */ | 
|  | int iDbDest           /* The database of pDest */ | 
|  | ); | 
|  |  | 
|  | /* | 
|  | ** This routine is called to handle SQL of the following forms: | 
|  | ** | 
|  | **    insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... | 
|  | **    insert into TABLE (IDLIST) select | 
|  | **    insert into TABLE (IDLIST) default values | 
|  | ** | 
|  | ** The IDLIST following the table name is always optional.  If omitted, | 
|  | ** then a list of all (non-hidden) columns for the table is substituted. | 
|  | ** The IDLIST appears in the pColumn parameter.  pColumn is NULL if IDLIST | 
|  | ** is omitted. | 
|  | ** | 
|  | ** For the pSelect parameter holds the values to be inserted for the | 
|  | ** first two forms shown above.  A VALUES clause is really just short-hand | 
|  | ** for a SELECT statement that omits the FROM clause and everything else | 
|  | ** that follows.  If the pSelect parameter is NULL, that means that the | 
|  | ** DEFAULT VALUES form of the INSERT statement is intended. | 
|  | ** | 
|  | ** The code generated follows one of four templates.  For a simple | 
|  | ** insert with data coming from a single-row VALUES clause, the code executes | 
|  | ** once straight down through.  Pseudo-code follows (we call this | 
|  | ** the "1st template"): | 
|  | ** | 
|  | **         open write cursor to <table> and its indices | 
|  | **         put VALUES clause expressions into registers | 
|  | **         write the resulting record into <table> | 
|  | **         cleanup | 
|  | ** | 
|  | ** The three remaining templates assume the statement is of the form | 
|  | ** | 
|  | **   INSERT INTO <table> SELECT ... | 
|  | ** | 
|  | ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - | 
|  | ** in other words if the SELECT pulls all columns from a single table | 
|  | ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and | 
|  | ** if <table2> and <table1> are distinct tables but have identical | 
|  | ** schemas, including all the same indices, then a special optimization | 
|  | ** is invoked that copies raw records from <table2> over to <table1>. | 
|  | ** See the xferOptimization() function for the implementation of this | 
|  | ** template.  This is the 2nd template. | 
|  | ** | 
|  | **         open a write cursor to <table> | 
|  | **         open read cursor on <table2> | 
|  | **         transfer all records in <table2> over to <table> | 
|  | **         close cursors | 
|  | **         foreach index on <table> | 
|  | **           open a write cursor on the <table> index | 
|  | **           open a read cursor on the corresponding <table2> index | 
|  | **           transfer all records from the read to the write cursors | 
|  | **           close cursors | 
|  | **         end foreach | 
|  | ** | 
|  | ** The 3rd template is for when the second template does not apply | 
|  | ** and the SELECT clause does not read from <table> at any time. | 
|  | ** The generated code follows this template: | 
|  | ** | 
|  | **         X <- A | 
|  | **         goto B | 
|  | **      A: setup for the SELECT | 
|  | **         loop over the rows in the SELECT | 
|  | **           load values into registers R..R+n | 
|  | **           yield X | 
|  | **         end loop | 
|  | **         cleanup after the SELECT | 
|  | **         end-coroutine X | 
|  | **      B: open write cursor to <table> and its indices | 
|  | **      C: yield X, at EOF goto D | 
|  | **         insert the select result into <table> from R..R+n | 
|  | **         goto C | 
|  | **      D: cleanup | 
|  | ** | 
|  | ** The 4th template is used if the insert statement takes its | 
|  | ** values from a SELECT but the data is being inserted into a table | 
|  | ** that is also read as part of the SELECT.  In the third form, | 
|  | ** we have to use an intermediate table to store the results of | 
|  | ** the select.  The template is like this: | 
|  | ** | 
|  | **         X <- A | 
|  | **         goto B | 
|  | **      A: setup for the SELECT | 
|  | **         loop over the tables in the SELECT | 
|  | **           load value into register R..R+n | 
|  | **           yield X | 
|  | **         end loop | 
|  | **         cleanup after the SELECT | 
|  | **         end co-routine R | 
|  | **      B: open temp table | 
|  | **      L: yield X, at EOF goto M | 
|  | **         insert row from R..R+n into temp table | 
|  | **         goto L | 
|  | **      M: open write cursor to <table> and its indices | 
|  | **         rewind temp table | 
|  | **      C: loop over rows of intermediate table | 
|  | **           transfer values form intermediate table into <table> | 
|  | **         end loop | 
|  | **      D: cleanup | 
|  | */ | 
|  | void sqlite3Insert( | 
|  | Parse *pParse,        /* Parser context */ | 
|  | SrcList *pTabList,    /* Name of table into which we are inserting */ | 
|  | Select *pSelect,      /* A SELECT statement to use as the data source */ | 
|  | IdList *pColumn,      /* Column names corresponding to IDLIST, or NULL. */ | 
|  | int onError,          /* How to handle constraint errors */ | 
|  | Upsert *pUpsert       /* ON CONFLICT clauses for upsert, or NULL */ | 
|  | ){ | 
|  | sqlite3 *db;          /* The main database structure */ | 
|  | Table *pTab;          /* The table to insert into.  aka TABLE */ | 
|  | int i, j;             /* Loop counters */ | 
|  | Vdbe *v;              /* Generate code into this virtual machine */ | 
|  | Index *pIdx;          /* For looping over indices of the table */ | 
|  | int nColumn;          /* Number of columns in the data */ | 
|  | int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */ | 
|  | int iDataCur = 0;     /* VDBE cursor that is the main data repository */ | 
|  | int iIdxCur = 0;      /* First index cursor */ | 
|  | int ipkColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */ | 
|  | int endOfLoop;        /* Label for the end of the insertion loop */ | 
|  | int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */ | 
|  | int addrInsTop = 0;   /* Jump to label "D" */ | 
|  | int addrCont = 0;     /* Top of insert loop. Label "C" in templates 3 and 4 */ | 
|  | SelectDest dest;      /* Destination for SELECT on rhs of INSERT */ | 
|  | int iDb;              /* Index of database holding TABLE */ | 
|  | u8 useTempTable = 0;  /* Store SELECT results in intermediate table */ | 
|  | u8 appendFlag = 0;    /* True if the insert is likely to be an append */ | 
|  | u8 withoutRowid;      /* 0 for normal table.  1 for WITHOUT ROWID table */ | 
|  | u8 bIdListInOrder;    /* True if IDLIST is in table order */ | 
|  | ExprList *pList = 0;  /* List of VALUES() to be inserted  */ | 
|  | int iRegStore;        /* Register in which to store next column */ | 
|  |  | 
|  | /* Register allocations */ | 
|  | int regFromSelect = 0;/* Base register for data coming from SELECT */ | 
|  | int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */ | 
|  | int regRowCount = 0;  /* Memory cell used for the row counter */ | 
|  | int regIns;           /* Block of regs holding rowid+data being inserted */ | 
|  | int regRowid;         /* registers holding insert rowid */ | 
|  | int regData;          /* register holding first column to insert */ | 
|  | int *aRegIdx = 0;     /* One register allocated to each index */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_TRIGGER | 
|  | int isView;                 /* True if attempting to insert into a view */ | 
|  | Trigger *pTrigger;          /* List of triggers on pTab, if required */ | 
|  | int tmask;                  /* Mask of trigger times */ | 
|  | #endif | 
|  |  | 
|  | db = pParse->db; | 
|  | assert( db->pParse==pParse ); | 
|  | if( pParse->nErr ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | assert( db->mallocFailed==0 ); | 
|  | dest.iSDParm = 0;  /* Suppress a harmless compiler warning */ | 
|  |  | 
|  | /* If the Select object is really just a simple VALUES() list with a | 
|  | ** single row (the common case) then keep that one row of values | 
|  | ** and discard the other (unused) parts of the pSelect object | 
|  | */ | 
|  | if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ | 
|  | pList = pSelect->pEList; | 
|  | pSelect->pEList = 0; | 
|  | sqlite3SelectDelete(db, pSelect); | 
|  | pSelect = 0; | 
|  | } | 
|  |  | 
|  | /* Locate the table into which we will be inserting new information. | 
|  | */ | 
|  | assert( pTabList->nSrc==1 ); | 
|  | pTab = sqlite3SrcListLookup(pParse, pTabList); | 
|  | if( pTab==0 ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | 
|  | assert( iDb<db->nDb ); | 
|  | if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, | 
|  | db->aDb[iDb].zDbSName) ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | withoutRowid = !HasRowid(pTab); | 
|  |  | 
|  | /* Figure out if we have any triggers and if the table being | 
|  | ** inserted into is a view | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_TRIGGER | 
|  | pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); | 
|  | isView = IsView(pTab); | 
|  | #else | 
|  | # define pTrigger 0 | 
|  | # define tmask 0 | 
|  | # define isView 0 | 
|  | #endif | 
|  | #ifdef SQLITE_OMIT_VIEW | 
|  | # undef isView | 
|  | # define isView 0 | 
|  | #endif | 
|  | assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); | 
|  |  | 
|  | #if TREETRACE_ENABLED | 
|  | if( sqlite3TreeTrace & 0x10000 ){ | 
|  | sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); | 
|  | sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, | 
|  | onError, pUpsert, pTrigger); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* If pTab is really a view, make sure it has been initialized. | 
|  | ** ViewGetColumnNames() is a no-op if pTab is not a view. | 
|  | */ | 
|  | if( sqlite3ViewGetColumnNames(pParse, pTab) ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  |  | 
|  | /* Cannot insert into a read-only table. | 
|  | */ | 
|  | if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  |  | 
|  | /* Allocate a VDBE | 
|  | */ | 
|  | v = sqlite3GetVdbe(pParse); | 
|  | if( v==0 ) goto insert_cleanup; | 
|  | if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | 
|  | sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); | 
|  |  | 
|  | #ifndef SQLITE_OMIT_XFER_OPT | 
|  | /* If the statement is of the form | 
|  | ** | 
|  | **       INSERT INTO <table1> SELECT * FROM <table2>; | 
|  | ** | 
|  | ** Then special optimizations can be applied that make the transfer | 
|  | ** very fast and which reduce fragmentation of indices. | 
|  | ** | 
|  | ** This is the 2nd template. | 
|  | */ | 
|  | if( pColumn==0 | 
|  | && pSelect!=0 | 
|  | && pTrigger==0 | 
|  | && xferOptimization(pParse, pTab, pSelect, onError, iDb) | 
|  | ){ | 
|  | assert( !pTrigger ); | 
|  | assert( pList==0 ); | 
|  | goto insert_end; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_XFER_OPT */ | 
|  |  | 
|  | /* If this is an AUTOINCREMENT table, look up the sequence number in the | 
|  | ** sqlite_sequence table and store it in memory cell regAutoinc. | 
|  | */ | 
|  | regAutoinc = autoIncBegin(pParse, iDb, pTab); | 
|  |  | 
|  | /* Allocate a block registers to hold the rowid and the values | 
|  | ** for all columns of the new row. | 
|  | */ | 
|  | regRowid = regIns = pParse->nMem+1; | 
|  | pParse->nMem += pTab->nCol + 1; | 
|  | if( IsVirtual(pTab) ){ | 
|  | regRowid++; | 
|  | pParse->nMem++; | 
|  | } | 
|  | regData = regRowid+1; | 
|  |  | 
|  | /* If the INSERT statement included an IDLIST term, then make sure | 
|  | ** all elements of the IDLIST really are columns of the table and | 
|  | ** remember the column indices. | 
|  | ** | 
|  | ** If the table has an INTEGER PRIMARY KEY column and that column | 
|  | ** is named in the IDLIST, then record in the ipkColumn variable | 
|  | ** the index into IDLIST of the primary key column.  ipkColumn is | 
|  | ** the index of the primary key as it appears in IDLIST, not as | 
|  | ** is appears in the original table.  (The index of the INTEGER | 
|  | ** PRIMARY KEY in the original table is pTab->iPKey.)  After this | 
|  | ** loop, if ipkColumn==(-1), that means that integer primary key | 
|  | ** is unspecified, and hence the table is either WITHOUT ROWID or | 
|  | ** it will automatically generated an integer primary key. | 
|  | ** | 
|  | ** bIdListInOrder is true if the columns in IDLIST are in storage | 
|  | ** order.  This enables an optimization that avoids shuffling the | 
|  | ** columns into storage order.  False negatives are harmless, | 
|  | ** but false positives will cause database corruption. | 
|  | */ | 
|  | bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; | 
|  | if( pColumn ){ | 
|  | assert( pColumn->eU4!=EU4_EXPR ); | 
|  | pColumn->eU4 = EU4_IDX; | 
|  | for(i=0; i<pColumn->nId; i++){ | 
|  | pColumn->a[i].u4.idx = -1; | 
|  | } | 
|  | for(i=0; i<pColumn->nId; i++){ | 
|  | for(j=0; j<pTab->nCol; j++){ | 
|  | if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ | 
|  | pColumn->a[i].u4.idx = j; | 
|  | if( i!=j ) bIdListInOrder = 0; | 
|  | if( j==pTab->iPKey ){ | 
|  | ipkColumn = i;  assert( !withoutRowid ); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ | 
|  | sqlite3ErrorMsg(pParse, | 
|  | "cannot INSERT into generated column \"%s\"", | 
|  | pTab->aCol[j].zCnName); | 
|  | goto insert_cleanup; | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  | if( j>=pTab->nCol ){ | 
|  | if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ | 
|  | ipkColumn = i; | 
|  | bIdListInOrder = 0; | 
|  | }else{ | 
|  | sqlite3ErrorMsg(pParse, "table %S has no column named %s", | 
|  | pTabList->a, pColumn->a[i].zName); | 
|  | pParse->checkSchema = 1; | 
|  | goto insert_cleanup; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Figure out how many columns of data are supplied.  If the data | 
|  | ** is coming from a SELECT statement, then generate a co-routine that | 
|  | ** produces a single row of the SELECT on each invocation.  The | 
|  | ** co-routine is the common header to the 3rd and 4th templates. | 
|  | */ | 
|  | if( pSelect ){ | 
|  | /* Data is coming from a SELECT or from a multi-row VALUES clause. | 
|  | ** Generate a co-routine to run the SELECT. */ | 
|  | int regYield;       /* Register holding co-routine entry-point */ | 
|  | int addrTop;        /* Top of the co-routine */ | 
|  | int rc;             /* Result code */ | 
|  |  | 
|  | regYield = ++pParse->nMem; | 
|  | addrTop = sqlite3VdbeCurrentAddr(v) + 1; | 
|  | sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); | 
|  | sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); | 
|  | dest.iSdst = bIdListInOrder ? regData : 0; | 
|  | dest.nSdst = pTab->nCol; | 
|  | rc = sqlite3Select(pParse, pSelect, &dest); | 
|  | regFromSelect = dest.iSdst; | 
|  | assert( db->pParse==pParse ); | 
|  | if( rc || pParse->nErr ) goto insert_cleanup; | 
|  | assert( db->mallocFailed==0 ); | 
|  | sqlite3VdbeEndCoroutine(v, regYield); | 
|  | sqlite3VdbeJumpHere(v, addrTop - 1);                       /* label B: */ | 
|  | assert( pSelect->pEList ); | 
|  | nColumn = pSelect->pEList->nExpr; | 
|  |  | 
|  | /* Set useTempTable to TRUE if the result of the SELECT statement | 
|  | ** should be written into a temporary table (template 4).  Set to | 
|  | ** FALSE if each output row of the SELECT can be written directly into | 
|  | ** the destination table (template 3). | 
|  | ** | 
|  | ** A temp table must be used if the table being updated is also one | 
|  | ** of the tables being read by the SELECT statement.  Also use a | 
|  | ** temp table in the case of row triggers. | 
|  | */ | 
|  | if( pTrigger || readsTable(pParse, iDb, pTab) ){ | 
|  | useTempTable = 1; | 
|  | } | 
|  |  | 
|  | if( useTempTable ){ | 
|  | /* Invoke the coroutine to extract information from the SELECT | 
|  | ** and add it to a transient table srcTab.  The code generated | 
|  | ** here is from the 4th template: | 
|  | ** | 
|  | **      B: open temp table | 
|  | **      L: yield X, goto M at EOF | 
|  | **         insert row from R..R+n into temp table | 
|  | **         goto L | 
|  | **      M: ... | 
|  | */ | 
|  | int regRec;          /* Register to hold packed record */ | 
|  | int regTempRowid;    /* Register to hold temp table ROWID */ | 
|  | int addrL;           /* Label "L" */ | 
|  |  | 
|  | srcTab = pParse->nTab++; | 
|  | regRec = sqlite3GetTempReg(pParse); | 
|  | regTempRowid = sqlite3GetTempReg(pParse); | 
|  | sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); | 
|  | addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); | 
|  | sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); | 
|  | sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); | 
|  | sqlite3VdbeGoto(v, addrL); | 
|  | sqlite3VdbeJumpHere(v, addrL); | 
|  | sqlite3ReleaseTempReg(pParse, regRec); | 
|  | sqlite3ReleaseTempReg(pParse, regTempRowid); | 
|  | } | 
|  | }else{ | 
|  | /* This is the case if the data for the INSERT is coming from a | 
|  | ** single-row VALUES clause | 
|  | */ | 
|  | NameContext sNC; | 
|  | memset(&sNC, 0, sizeof(sNC)); | 
|  | sNC.pParse = pParse; | 
|  | srcTab = -1; | 
|  | assert( useTempTable==0 ); | 
|  | if( pList ){ | 
|  | nColumn = pList->nExpr; | 
|  | if( sqlite3ResolveExprListNames(&sNC, pList) ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | }else{ | 
|  | nColumn = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is no IDLIST term but the table has an integer primary | 
|  | ** key, the set the ipkColumn variable to the integer primary key | 
|  | ** column index in the original table definition. | 
|  | */ | 
|  | if( pColumn==0 && nColumn>0 ){ | 
|  | ipkColumn = pTab->iPKey; | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ | 
|  | testcase( pTab->tabFlags & TF_HasVirtual ); | 
|  | testcase( pTab->tabFlags & TF_HasStored ); | 
|  | for(i=ipkColumn-1; i>=0; i--){ | 
|  | if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ | 
|  | testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); | 
|  | testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); | 
|  | ipkColumn--; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Make sure the number of columns in the source data matches the number | 
|  | ** of columns to be inserted into the table. | 
|  | */ | 
|  | assert( TF_HasHidden==COLFLAG_HIDDEN ); | 
|  | assert( TF_HasGenerated==COLFLAG_GENERATED ); | 
|  | assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); | 
|  | if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ | 
|  | for(i=0; i<pTab->nCol; i++){ | 
|  | if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; | 
|  | } | 
|  | } | 
|  | if( nColumn!=(pTab->nCol-nHidden) ){ | 
|  | sqlite3ErrorMsg(pParse, | 
|  | "table %S has %d columns but %d values were supplied", | 
|  | pTabList->a, pTab->nCol-nHidden, nColumn); | 
|  | goto insert_cleanup; | 
|  | } | 
|  | } | 
|  | if( pColumn!=0 && nColumn!=pColumn->nId ){ | 
|  | sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); | 
|  | goto insert_cleanup; | 
|  | } | 
|  |  | 
|  | /* Initialize the count of rows to be inserted | 
|  | */ | 
|  | if( (db->flags & SQLITE_CountRows)!=0 | 
|  | && !pParse->nested | 
|  | && !pParse->pTriggerTab | 
|  | && !pParse->bReturning | 
|  | ){ | 
|  | regRowCount = ++pParse->nMem; | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); | 
|  | } | 
|  |  | 
|  | /* If this is not a view, open the table and and all indices */ | 
|  | if( !isView ){ | 
|  | int nIdx; | 
|  | nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, | 
|  | &iDataCur, &iIdxCur); | 
|  | aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); | 
|  | if( aRegIdx==0 ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ | 
|  | assert( pIdx ); | 
|  | aRegIdx[i] = ++pParse->nMem; | 
|  | pParse->nMem += pIdx->nColumn; | 
|  | } | 
|  | aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */ | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UPSERT | 
|  | if( pUpsert ){ | 
|  | Upsert *pNx; | 
|  | if( IsVirtual(pTab) ){ | 
|  | sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", | 
|  | pTab->zName); | 
|  | goto insert_cleanup; | 
|  | } | 
|  | if( IsView(pTab) ){ | 
|  | sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); | 
|  | goto insert_cleanup; | 
|  | } | 
|  | if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | pTabList->a[0].iCursor = iDataCur; | 
|  | pNx = pUpsert; | 
|  | do{ | 
|  | pNx->pUpsertSrc = pTabList; | 
|  | pNx->regData = regData; | 
|  | pNx->iDataCur = iDataCur; | 
|  | pNx->iIdxCur = iIdxCur; | 
|  | if( pNx->pUpsertTarget ){ | 
|  | if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){ | 
|  | goto insert_cleanup; | 
|  | } | 
|  | } | 
|  | pNx = pNx->pNextUpsert; | 
|  | }while( pNx!=0 ); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* This is the top of the main insertion loop */ | 
|  | if( useTempTable ){ | 
|  | /* This block codes the top of loop only.  The complete loop is the | 
|  | ** following pseudocode (template 4): | 
|  | ** | 
|  | **         rewind temp table, if empty goto D | 
|  | **      C: loop over rows of intermediate table | 
|  | **           transfer values form intermediate table into <table> | 
|  | **         end loop | 
|  | **      D: ... | 
|  | */ | 
|  | addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); | 
|  | addrCont = sqlite3VdbeCurrentAddr(v); | 
|  | }else if( pSelect ){ | 
|  | /* This block codes the top of loop only.  The complete loop is the | 
|  | ** following pseudocode (template 3): | 
|  | ** | 
|  | **      C: yield X, at EOF goto D | 
|  | **         insert the select result into <table> from R..R+n | 
|  | **         goto C | 
|  | **      D: ... | 
|  | */ | 
|  | sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); | 
|  | addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); | 
|  | VdbeCoverage(v); | 
|  | if( ipkColumn>=0 ){ | 
|  | /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the | 
|  | ** SELECT, go ahead and copy the value into the rowid slot now, so that | 
|  | ** the value does not get overwritten by a NULL at tag-20191021-002. */ | 
|  | sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compute data for ordinary columns of the new entry.  Values | 
|  | ** are written in storage order into registers starting with regData. | 
|  | ** Only ordinary columns are computed in this loop. The rowid | 
|  | ** (if there is one) is computed later and generated columns are | 
|  | ** computed after the rowid since they might depend on the value | 
|  | ** of the rowid. | 
|  | */ | 
|  | nHidden = 0; | 
|  | iRegStore = regData;  assert( regData==regRowid+1 ); | 
|  | for(i=0; i<pTab->nCol; i++, iRegStore++){ | 
|  | int k; | 
|  | u32 colFlags; | 
|  | assert( i>=nHidden ); | 
|  | if( i==pTab->iPKey ){ | 
|  | /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled | 
|  | ** using the rowid. So put a NULL in the IPK slot of the record to avoid | 
|  | ** using excess space.  The file format definition requires this extra | 
|  | ** NULL - we cannot optimize further by skipping the column completely */ | 
|  | sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); | 
|  | continue; | 
|  | } | 
|  | if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ | 
|  | nHidden++; | 
|  | if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ | 
|  | /* Virtual columns do not participate in OP_MakeRecord.  So back up | 
|  | ** iRegStore by one slot to compensate for the iRegStore++ in the | 
|  | ** outer for() loop */ | 
|  | iRegStore--; | 
|  | continue; | 
|  | }else if( (colFlags & COLFLAG_STORED)!=0 ){ | 
|  | /* Stored columns are computed later.  But if there are BEFORE | 
|  | ** triggers, the slots used for stored columns will be OP_Copy-ed | 
|  | ** to a second block of registers, so the register needs to be | 
|  | ** initialized to NULL to avoid an uninitialized register read */ | 
|  | if( tmask & TRIGGER_BEFORE ){ | 
|  | sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); | 
|  | } | 
|  | continue; | 
|  | }else if( pColumn==0 ){ | 
|  | /* Hidden columns that are not explicitly named in the INSERT | 
|  | ** get there default value */ | 
|  | sqlite3ExprCodeFactorable(pParse, | 
|  | sqlite3ColumnExpr(pTab, &pTab->aCol[i]), | 
|  | iRegStore); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | if( pColumn ){ | 
|  | assert( pColumn->eU4==EU4_IDX ); | 
|  | for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} | 
|  | if( j>=pColumn->nId ){ | 
|  | /* A column not named in the insert column list gets its | 
|  | ** default value */ | 
|  | sqlite3ExprCodeFactorable(pParse, | 
|  | sqlite3ColumnExpr(pTab, &pTab->aCol[i]), | 
|  | iRegStore); | 
|  | continue; | 
|  | } | 
|  | k = j; | 
|  | }else if( nColumn==0 ){ | 
|  | /* This is INSERT INTO ... DEFAULT VALUES.  Load the default value. */ | 
|  | sqlite3ExprCodeFactorable(pParse, | 
|  | sqlite3ColumnExpr(pTab, &pTab->aCol[i]), | 
|  | iRegStore); | 
|  | continue; | 
|  | }else{ | 
|  | k = i - nHidden; | 
|  | } | 
|  |  | 
|  | if( useTempTable ){ | 
|  | sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); | 
|  | }else if( pSelect ){ | 
|  | if( regFromSelect!=regData ){ | 
|  | sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); | 
|  | } | 
|  | }else{ | 
|  | Expr *pX = pList->a[k].pExpr; | 
|  | int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); | 
|  | if( y!=iRegStore ){ | 
|  | sqlite3VdbeAddOp2(v, | 
|  | ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Run the BEFORE and INSTEAD OF triggers, if there are any | 
|  | */ | 
|  | endOfLoop = sqlite3VdbeMakeLabel(pParse); | 
|  | if( tmask & TRIGGER_BEFORE ){ | 
|  | int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); | 
|  |  | 
|  | /* build the NEW.* reference row.  Note that if there is an INTEGER | 
|  | ** PRIMARY KEY into which a NULL is being inserted, that NULL will be | 
|  | ** translated into a unique ID for the row.  But on a BEFORE trigger, | 
|  | ** we do not know what the unique ID will be (because the insert has | 
|  | ** not happened yet) so we substitute a rowid of -1 | 
|  | */ | 
|  | if( ipkColumn<0 ){ | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); | 
|  | }else{ | 
|  | int addr1; | 
|  | assert( !withoutRowid ); | 
|  | if( useTempTable ){ | 
|  | sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); | 
|  | }else{ | 
|  | assert( pSelect==0 );  /* Otherwise useTempTable is true */ | 
|  | sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); | 
|  | } | 
|  | addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); | 
|  | sqlite3VdbeJumpHere(v, addr1); | 
|  | sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); | 
|  | } | 
|  |  | 
|  | /* Copy the new data already generated. */ | 
|  | assert( pTab->nNVCol>0 ); | 
|  | sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); | 
|  |  | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | /* Compute the new value for generated columns after all other | 
|  | ** columns have already been computed.  This must be done after | 
|  | ** computing the ROWID in case one of the generated columns | 
|  | ** refers to the ROWID. */ | 
|  | if( pTab->tabFlags & TF_HasGenerated ){ | 
|  | testcase( pTab->tabFlags & TF_HasVirtual ); | 
|  | testcase( pTab->tabFlags & TF_HasStored ); | 
|  | sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, | 
|  | ** do not attempt any conversions before assembling the record. | 
|  | ** If this is a real table, attempt conversions as required by the | 
|  | ** table column affinities. | 
|  | */ | 
|  | if( !isView ){ | 
|  | sqlite3TableAffinity(v, pTab, regCols+1); | 
|  | } | 
|  |  | 
|  | /* Fire BEFORE or INSTEAD OF triggers */ | 
|  | sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, | 
|  | pTab, regCols-pTab->nCol-1, onError, endOfLoop); | 
|  |  | 
|  | sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); | 
|  | } | 
|  |  | 
|  | if( !isView ){ | 
|  | if( IsVirtual(pTab) ){ | 
|  | /* The row that the VUpdate opcode will delete: none */ | 
|  | sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); | 
|  | } | 
|  | if( ipkColumn>=0 ){ | 
|  | /* Compute the new rowid */ | 
|  | if( useTempTable ){ | 
|  | sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); | 
|  | }else if( pSelect ){ | 
|  | /* Rowid already initialized at tag-20191021-001 */ | 
|  | }else{ | 
|  | Expr *pIpk = pList->a[ipkColumn].pExpr; | 
|  | if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ | 
|  | sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | 
|  | appendFlag = 1; | 
|  | }else{ | 
|  | sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); | 
|  | } | 
|  | } | 
|  | /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid | 
|  | ** to generate a unique primary key value. | 
|  | */ | 
|  | if( !appendFlag ){ | 
|  | int addr1; | 
|  | if( !IsVirtual(pTab) ){ | 
|  | addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | 
|  | sqlite3VdbeJumpHere(v, addr1); | 
|  | }else{ | 
|  | addr1 = sqlite3VdbeCurrentAddr(v); | 
|  | sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); | 
|  | } | 
|  | sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); | 
|  | } | 
|  | }else if( IsVirtual(pTab) || withoutRowid ){ | 
|  | sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); | 
|  | }else{ | 
|  | sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | 
|  | appendFlag = 1; | 
|  | } | 
|  | autoIncStep(pParse, regAutoinc, regRowid); | 
|  |  | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | /* Compute the new value for generated columns after all other | 
|  | ** columns have already been computed.  This must be done after | 
|  | ** computing the ROWID in case one of the generated columns | 
|  | ** is derived from the INTEGER PRIMARY KEY. */ | 
|  | if( pTab->tabFlags & TF_HasGenerated ){ | 
|  | sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Generate code to check constraints and generate index keys and | 
|  | ** do the insertion. | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | if( IsVirtual(pTab) ){ | 
|  | const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); | 
|  | sqlite3VtabMakeWritable(pParse, pTab); | 
|  | sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); | 
|  | sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); | 
|  | sqlite3MayAbort(pParse); | 
|  | }else | 
|  | #endif | 
|  | { | 
|  | int isReplace = 0;/* Set to true if constraints may cause a replace */ | 
|  | int bUseSeek;     /* True to use OPFLAG_SEEKRESULT */ | 
|  | sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, | 
|  | regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert | 
|  | ); | 
|  | if( db->flags & SQLITE_ForeignKeys ){ | 
|  | sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); | 
|  | } | 
|  |  | 
|  | /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE | 
|  | ** constraints or (b) there are no triggers and this table is not a | 
|  | ** parent table in a foreign key constraint. It is safe to set the | 
|  | ** flag in the second case as if any REPLACE constraint is hit, an | 
|  | ** OP_Delete or OP_IdxDelete instruction will be executed on each | 
|  | ** cursor that is disturbed. And these instructions both clear the | 
|  | ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT | 
|  | ** functionality.  */ | 
|  | bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); | 
|  | sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, | 
|  | regIns, aRegIdx, 0, appendFlag, bUseSeek | 
|  | ); | 
|  | } | 
|  | #ifdef SQLITE_ALLOW_ROWID_IN_VIEW | 
|  | }else if( pParse->bReturning ){ | 
|  | /* If there is a RETURNING clause, populate the rowid register with | 
|  | ** constant value -1, in case one or more of the returned expressions | 
|  | ** refer to the "rowid" of the view.  */ | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Update the count of rows that are inserted | 
|  | */ | 
|  | if( regRowCount ){ | 
|  | sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); | 
|  | } | 
|  |  | 
|  | if( pTrigger ){ | 
|  | /* Code AFTER triggers */ | 
|  | sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, | 
|  | pTab, regData-2-pTab->nCol, onError, endOfLoop); | 
|  | } | 
|  |  | 
|  | /* The bottom of the main insertion loop, if the data source | 
|  | ** is a SELECT statement. | 
|  | */ | 
|  | sqlite3VdbeResolveLabel(v, endOfLoop); | 
|  | if( useTempTable ){ | 
|  | sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); | 
|  | sqlite3VdbeJumpHere(v, addrInsTop); | 
|  | sqlite3VdbeAddOp1(v, OP_Close, srcTab); | 
|  | }else if( pSelect ){ | 
|  | sqlite3VdbeGoto(v, addrCont); | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* If we are jumping back to an OP_Yield that is preceded by an | 
|  | ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the | 
|  | ** OP_ReleaseReg will be included in the loop. */ | 
|  | if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ | 
|  | assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); | 
|  | sqlite3VdbeChangeP5(v, 1); | 
|  | } | 
|  | #endif | 
|  | sqlite3VdbeJumpHere(v, addrInsTop); | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_XFER_OPT | 
|  | insert_end: | 
|  | #endif /* SQLITE_OMIT_XFER_OPT */ | 
|  | /* Update the sqlite_sequence table by storing the content of the | 
|  | ** maximum rowid counter values recorded while inserting into | 
|  | ** autoincrement tables. | 
|  | */ | 
|  | if( pParse->nested==0 && pParse->pTriggerTab==0 ){ | 
|  | sqlite3AutoincrementEnd(pParse); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the number of rows inserted. If this routine is | 
|  | ** generating code because of a call to sqlite3NestedParse(), do not | 
|  | ** invoke the callback function. | 
|  | */ | 
|  | if( regRowCount ){ | 
|  | sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); | 
|  | } | 
|  |  | 
|  | insert_cleanup: | 
|  | sqlite3SrcListDelete(db, pTabList); | 
|  | sqlite3ExprListDelete(db, pList); | 
|  | sqlite3UpsertDelete(db, pUpsert); | 
|  | sqlite3SelectDelete(db, pSelect); | 
|  | sqlite3IdListDelete(db, pColumn); | 
|  | if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); | 
|  | } | 
|  |  | 
|  | /* Make sure "isView" and other macros defined above are undefined. Otherwise | 
|  | ** they may interfere with compilation of other functions in this file | 
|  | ** (or in another file, if this file becomes part of the amalgamation).  */ | 
|  | #ifdef isView | 
|  | #undef isView | 
|  | #endif | 
|  | #ifdef pTrigger | 
|  | #undef pTrigger | 
|  | #endif | 
|  | #ifdef tmask | 
|  | #undef tmask | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Meanings of bits in of pWalker->eCode for | 
|  | ** sqlite3ExprReferencesUpdatedColumn() | 
|  | */ | 
|  | #define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */ | 
|  | #define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */ | 
|  |  | 
|  | /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). | 
|  | *  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this | 
|  | ** expression node references any of the | 
|  | ** columns that are being modifed by an UPDATE statement. | 
|  | */ | 
|  | static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ | 
|  | if( pExpr->op==TK_COLUMN ){ | 
|  | assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); | 
|  | if( pExpr->iColumn>=0 ){ | 
|  | if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ | 
|  | pWalker->eCode |= CKCNSTRNT_COLUMN; | 
|  | } | 
|  | }else{ | 
|  | pWalker->eCode |= CKCNSTRNT_ROWID; | 
|  | } | 
|  | } | 
|  | return WRC_Continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The | 
|  | ** only columns that are modified by the UPDATE are those for which | 
|  | ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. | 
|  | ** | 
|  | ** Return true if CHECK constraint pExpr uses any of the | 
|  | ** changing columns (or the rowid if it is changing).  In other words, | 
|  | ** return true if this CHECK constraint must be validated for | 
|  | ** the new row in the UPDATE statement. | 
|  | ** | 
|  | ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. | 
|  | ** The operation of this routine is the same - return true if an only if | 
|  | ** the expression uses one or more of columns identified by the second and | 
|  | ** third arguments. | 
|  | */ | 
|  | int sqlite3ExprReferencesUpdatedColumn( | 
|  | Expr *pExpr,    /* The expression to be checked */ | 
|  | int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */ | 
|  | int chngRowid   /* True if UPDATE changes the rowid */ | 
|  | ){ | 
|  | Walker w; | 
|  | memset(&w, 0, sizeof(w)); | 
|  | w.eCode = 0; | 
|  | w.xExprCallback = checkConstraintExprNode; | 
|  | w.u.aiCol = aiChng; | 
|  | sqlite3WalkExpr(&w, pExpr); | 
|  | if( !chngRowid ){ | 
|  | testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); | 
|  | w.eCode &= ~CKCNSTRNT_ROWID; | 
|  | } | 
|  | testcase( w.eCode==0 ); | 
|  | testcase( w.eCode==CKCNSTRNT_COLUMN ); | 
|  | testcase( w.eCode==CKCNSTRNT_ROWID ); | 
|  | testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); | 
|  | return w.eCode!=0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The sqlite3GenerateConstraintChecks() routine usually wants to visit | 
|  | ** the indexes of a table in the order provided in the Table->pIndex list. | 
|  | ** However, sometimes (rarely - when there is an upsert) it wants to visit | 
|  | ** the indexes in a different order.  The following data structures accomplish | 
|  | ** this. | 
|  | ** | 
|  | ** The IndexIterator object is used to walk through all of the indexes | 
|  | ** of a table in either Index.pNext order, or in some other order established | 
|  | ** by an array of IndexListTerm objects. | 
|  | */ | 
|  | typedef struct IndexListTerm IndexListTerm; | 
|  | typedef struct IndexIterator IndexIterator; | 
|  | struct IndexIterator { | 
|  | int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */ | 
|  | int i;        /* Index of the current item from the list */ | 
|  | union { | 
|  | struct {    /* Use this object for eType==0: A Index.pNext list */ | 
|  | Index *pIdx;   /* The current Index */ | 
|  | } lx; | 
|  | struct {    /* Use this object for eType==1; Array of IndexListTerm */ | 
|  | int nIdx;               /* Size of the array */ | 
|  | IndexListTerm *aIdx;    /* Array of IndexListTerms */ | 
|  | } ax; | 
|  | } u; | 
|  | }; | 
|  |  | 
|  | /* When IndexIterator.eType==1, then each index is an array of instances | 
|  | ** of the following object | 
|  | */ | 
|  | struct IndexListTerm { | 
|  | Index *p;  /* The index */ | 
|  | int ix;    /* Which entry in the original Table.pIndex list is this index*/ | 
|  | }; | 
|  |  | 
|  | /* Return the first index on the list */ | 
|  | static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ | 
|  | assert( pIter->i==0 ); | 
|  | if( pIter->eType ){ | 
|  | *pIx = pIter->u.ax.aIdx[0].ix; | 
|  | return pIter->u.ax.aIdx[0].p; | 
|  | }else{ | 
|  | *pIx = 0; | 
|  | return pIter->u.lx.pIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the next index from the list.  Return NULL when out of indexes */ | 
|  | static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ | 
|  | if( pIter->eType ){ | 
|  | int i = ++pIter->i; | 
|  | if( i>=pIter->u.ax.nIdx ){ | 
|  | *pIx = i; | 
|  | return 0; | 
|  | } | 
|  | *pIx = pIter->u.ax.aIdx[i].ix; | 
|  | return pIter->u.ax.aIdx[i].p; | 
|  | }else{ | 
|  | ++(*pIx); | 
|  | pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; | 
|  | return pIter->u.lx.pIdx; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Generate code to do constraint checks prior to an INSERT or an UPDATE | 
|  | ** on table pTab. | 
|  | ** | 
|  | ** The regNewData parameter is the first register in a range that contains | 
|  | ** the data to be inserted or the data after the update.  There will be | 
|  | ** pTab->nCol+1 registers in this range.  The first register (the one | 
|  | ** that regNewData points to) will contain the new rowid, or NULL in the | 
|  | ** case of a WITHOUT ROWID table.  The second register in the range will | 
|  | ** contain the content of the first table column.  The third register will | 
|  | ** contain the content of the second table column.  And so forth. | 
|  | ** | 
|  | ** The regOldData parameter is similar to regNewData except that it contains | 
|  | ** the data prior to an UPDATE rather than afterwards.  regOldData is zero | 
|  | ** for an INSERT.  This routine can distinguish between UPDATE and INSERT by | 
|  | ** checking regOldData for zero. | 
|  | ** | 
|  | ** For an UPDATE, the pkChng boolean is true if the true primary key (the | 
|  | ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) | 
|  | ** might be modified by the UPDATE.  If pkChng is false, then the key of | 
|  | ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. | 
|  | ** | 
|  | ** For an INSERT, the pkChng boolean indicates whether or not the rowid | 
|  | ** was explicitly specified as part of the INSERT statement.  If pkChng | 
|  | ** is zero, it means that the either rowid is computed automatically or | 
|  | ** that the table is a WITHOUT ROWID table and has no rowid.  On an INSERT, | 
|  | ** pkChng will only be true if the INSERT statement provides an integer | 
|  | ** value for either the rowid column or its INTEGER PRIMARY KEY alias. | 
|  | ** | 
|  | ** The code generated by this routine will store new index entries into | 
|  | ** registers identified by aRegIdx[].  No index entry is created for | 
|  | ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is | 
|  | ** the same as the order of indices on the linked list of indices | 
|  | ** at pTab->pIndex. | 
|  | ** | 
|  | ** (2019-05-07) The generated code also creates a new record for the | 
|  | ** main table, if pTab is a rowid table, and stores that record in the | 
|  | ** register identified by aRegIdx[nIdx] - in other words in the first | 
|  | ** entry of aRegIdx[] past the last index.  It is important that the | 
|  | ** record be generated during constraint checks to avoid affinity changes | 
|  | ** to the register content that occur after constraint checks but before | 
|  | ** the new record is inserted. | 
|  | ** | 
|  | ** The caller must have already opened writeable cursors on the main | 
|  | ** table and all applicable indices (that is to say, all indices for which | 
|  | ** aRegIdx[] is not zero).  iDataCur is the cursor for the main table when | 
|  | ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY | 
|  | ** index when operating on a WITHOUT ROWID table.  iIdxCur is the cursor | 
|  | ** for the first index in the pTab->pIndex list.  Cursors for other indices | 
|  | ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. | 
|  | ** | 
|  | ** This routine also generates code to check constraints.  NOT NULL, | 
|  | ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails, | 
|  | ** then the appropriate action is performed.  There are five possible | 
|  | ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. | 
|  | ** | 
|  | **  Constraint type  Action       What Happens | 
|  | **  ---------------  ----------   ---------------------------------------- | 
|  | **  any              ROLLBACK     The current transaction is rolled back and | 
|  | **                                sqlite3_step() returns immediately with a | 
|  | **                                return code of SQLITE_CONSTRAINT. | 
|  | ** | 
|  | **  any              ABORT        Back out changes from the current command | 
|  | **                                only (do not do a complete rollback) then | 
|  | **                                cause sqlite3_step() to return immediately | 
|  | **                                with SQLITE_CONSTRAINT. | 
|  | ** | 
|  | **  any              FAIL         Sqlite3_step() returns immediately with a | 
|  | **                                return code of SQLITE_CONSTRAINT.  The | 
|  | **                                transaction is not rolled back and any | 
|  | **                                changes to prior rows are retained. | 
|  | ** | 
|  | **  any              IGNORE       The attempt in insert or update the current | 
|  | **                                row is skipped, without throwing an error. | 
|  | **                                Processing continues with the next row. | 
|  | **                                (There is an immediate jump to ignoreDest.) | 
|  | ** | 
|  | **  NOT NULL         REPLACE      The NULL value is replace by the default | 
|  | **                                value for that column.  If the default value | 
|  | **                                is NULL, the action is the same as ABORT. | 
|  | ** | 
|  | **  UNIQUE           REPLACE      The other row that conflicts with the row | 
|  | **                                being inserted is removed. | 
|  | ** | 
|  | **  CHECK            REPLACE      Illegal.  The results in an exception. | 
|  | ** | 
|  | ** Which action to take is determined by the overrideError parameter. | 
|  | ** Or if overrideError==OE_Default, then the pParse->onError parameter | 
|  | ** is used.  Or if pParse->onError==OE_Default then the onError value | 
|  | ** for the constraint is used. | 
|  | */ | 
|  | void sqlite3GenerateConstraintChecks( | 
|  | Parse *pParse,       /* The parser context */ | 
|  | Table *pTab,         /* The table being inserted or updated */ | 
|  | int *aRegIdx,        /* Use register aRegIdx[i] for index i.  0 for unused */ | 
|  | int iDataCur,        /* Canonical data cursor (main table or PK index) */ | 
|  | int iIdxCur,         /* First index cursor */ | 
|  | int regNewData,      /* First register in a range holding values to insert */ | 
|  | int regOldData,      /* Previous content.  0 for INSERTs */ | 
|  | u8 pkChng,           /* Non-zero if the rowid or PRIMARY KEY changed */ | 
|  | u8 overrideError,    /* Override onError to this if not OE_Default */ | 
|  | int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */ | 
|  | int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */ | 
|  | int *aiChng,         /* column i is unchanged if aiChng[i]<0 */ | 
|  | Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */ | 
|  | ){ | 
|  | Vdbe *v;             /* VDBE under constrution */ | 
|  | Index *pIdx;         /* Pointer to one of the indices */ | 
|  | Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */ | 
|  | sqlite3 *db;         /* Database connection */ | 
|  | int i;               /* loop counter */ | 
|  | int ix;              /* Index loop counter */ | 
|  | int nCol;            /* Number of columns */ | 
|  | int onError;         /* Conflict resolution strategy */ | 
|  | int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ | 
|  | int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ | 
|  | Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */ | 
|  | u8 isUpdate;           /* True if this is an UPDATE operation */ | 
|  | u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */ | 
|  | int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ | 
|  | int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */ | 
|  | int ipkTop = 0;        /* Top of the IPK uniqueness check */ | 
|  | int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */ | 
|  | /* Variables associated with retesting uniqueness constraints after | 
|  | ** replace triggers fire have run */ | 
|  | int regTrigCnt;       /* Register used to count replace trigger invocations */ | 
|  | int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */ | 
|  | int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ | 
|  | Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */ | 
|  | int nReplaceTrig = 0; /* Number of replace triggers coded */ | 
|  | IndexIterator sIdxIter;  /* Index iterator */ | 
|  |  | 
|  | isUpdate = regOldData!=0; | 
|  | db = pParse->db; | 
|  | v = pParse->pVdbe; | 
|  | assert( v!=0 ); | 
|  | assert( !IsView(pTab) );  /* This table is not a VIEW */ | 
|  | nCol = pTab->nCol; | 
|  |  | 
|  | /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for | 
|  | ** normal rowid tables.  nPkField is the number of key fields in the | 
|  | ** pPk index or 1 for a rowid table.  In other words, nPkField is the | 
|  | ** number of fields in the true primary key of the table. */ | 
|  | if( HasRowid(pTab) ){ | 
|  | pPk = 0; | 
|  | nPkField = 1; | 
|  | }else{ | 
|  | pPk = sqlite3PrimaryKeyIndex(pTab); | 
|  | nPkField = pPk->nKeyCol; | 
|  | } | 
|  |  | 
|  | /* Record that this module has started */ | 
|  | VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", | 
|  | iDataCur, iIdxCur, regNewData, regOldData, pkChng)); | 
|  |  | 
|  | /* Test all NOT NULL constraints. | 
|  | */ | 
|  | if( pTab->tabFlags & TF_HasNotNull ){ | 
|  | int b2ndPass = 0;         /* True if currently running 2nd pass */ | 
|  | int nSeenReplace = 0;     /* Number of ON CONFLICT REPLACE operations */ | 
|  | int nGenerated = 0;       /* Number of generated columns with NOT NULL */ | 
|  | while(1){  /* Make 2 passes over columns. Exit loop via "break" */ | 
|  | for(i=0; i<nCol; i++){ | 
|  | int iReg;                        /* Register holding column value */ | 
|  | Column *pCol = &pTab->aCol[i];   /* The column to check for NOT NULL */ | 
|  | int isGenerated;                 /* non-zero if column is generated */ | 
|  | onError = pCol->notNull; | 
|  | if( onError==OE_None ) continue; /* No NOT NULL on this column */ | 
|  | if( i==pTab->iPKey ){ | 
|  | continue;        /* ROWID is never NULL */ | 
|  | } | 
|  | isGenerated = pCol->colFlags & COLFLAG_GENERATED; | 
|  | if( isGenerated && !b2ndPass ){ | 
|  | nGenerated++; | 
|  | continue;        /* Generated columns processed on 2nd pass */ | 
|  | } | 
|  | if( aiChng && aiChng[i]<0 && !isGenerated ){ | 
|  | /* Do not check NOT NULL on columns that do not change */ | 
|  | continue; | 
|  | } | 
|  | if( overrideError!=OE_Default ){ | 
|  | onError = overrideError; | 
|  | }else if( onError==OE_Default ){ | 
|  | onError = OE_Abort; | 
|  | } | 
|  | if( onError==OE_Replace ){ | 
|  | if( b2ndPass        /* REPLACE becomes ABORT on the 2nd pass */ | 
|  | || pCol->iDflt==0  /* REPLACE is ABORT if no DEFAULT value */ | 
|  | ){ | 
|  | testcase( pCol->colFlags & COLFLAG_VIRTUAL ); | 
|  | testcase( pCol->colFlags & COLFLAG_STORED ); | 
|  | testcase( pCol->colFlags & COLFLAG_GENERATED ); | 
|  | onError = OE_Abort; | 
|  | }else{ | 
|  | assert( !isGenerated ); | 
|  | } | 
|  | }else if( b2ndPass && !isGenerated ){ | 
|  | continue; | 
|  | } | 
|  | assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | 
|  | || onError==OE_Ignore || onError==OE_Replace ); | 
|  | testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); | 
|  | iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; | 
|  | switch( onError ){ | 
|  | case OE_Replace: { | 
|  | int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); | 
|  | VdbeCoverage(v); | 
|  | assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); | 
|  | nSeenReplace++; | 
|  | sqlite3ExprCodeCopy(pParse, | 
|  | sqlite3ColumnExpr(pTab, pCol), iReg); | 
|  | sqlite3VdbeJumpHere(v, addr1); | 
|  | break; | 
|  | } | 
|  | case OE_Abort: | 
|  | sqlite3MayAbort(pParse); | 
|  | /* no break */ deliberate_fall_through | 
|  | case OE_Rollback: | 
|  | case OE_Fail: { | 
|  | char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, | 
|  | pCol->zCnName); | 
|  | testcase( zMsg==0 && db->mallocFailed==0 ); | 
|  | sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, | 
|  | onError, iReg); | 
|  | sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); | 
|  | sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); | 
|  | VdbeCoverage(v); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | assert( onError==OE_Ignore ); | 
|  | sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); | 
|  | VdbeCoverage(v); | 
|  | break; | 
|  | } | 
|  | } /* end switch(onError) */ | 
|  | } /* end loop i over columns */ | 
|  | if( nGenerated==0 && nSeenReplace==0 ){ | 
|  | /* If there are no generated columns with NOT NULL constraints | 
|  | ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single | 
|  | ** pass is sufficient */ | 
|  | break; | 
|  | } | 
|  | if( b2ndPass ) break;  /* Never need more than 2 passes */ | 
|  | b2ndPass = 1; | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ | 
|  | /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the | 
|  | ** first pass, recomputed values for all generated columns, as | 
|  | ** those values might depend on columns affected by the REPLACE. | 
|  | */ | 
|  | sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); | 
|  | } | 
|  | #endif | 
|  | } /* end of 2-pass loop */ | 
|  | } /* end if( has-not-null-constraints ) */ | 
|  |  | 
|  | /* Test all CHECK constraints | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_CHECK | 
|  | if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ | 
|  | ExprList *pCheck = pTab->pCheck; | 
|  | pParse->iSelfTab = -(regNewData+1); | 
|  | onError = overrideError!=OE_Default ? overrideError : OE_Abort; | 
|  | for(i=0; i<pCheck->nExpr; i++){ | 
|  | int allOk; | 
|  | Expr *pCopy; | 
|  | Expr *pExpr = pCheck->a[i].pExpr; | 
|  | if( aiChng | 
|  | && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) | 
|  | ){ | 
|  | /* The check constraints do not reference any of the columns being | 
|  | ** updated so there is no point it verifying the check constraint */ | 
|  | continue; | 
|  | } | 
|  | if( bAffinityDone==0 ){ | 
|  | sqlite3TableAffinity(v, pTab, regNewData+1); | 
|  | bAffinityDone = 1; | 
|  | } | 
|  | allOk = sqlite3VdbeMakeLabel(pParse); | 
|  | sqlite3VdbeVerifyAbortable(v, onError); | 
|  | pCopy = sqlite3ExprDup(db, pExpr, 0); | 
|  | if( !db->mallocFailed ){ | 
|  | sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); | 
|  | } | 
|  | sqlite3ExprDelete(db, pCopy); | 
|  | if( onError==OE_Ignore ){ | 
|  | sqlite3VdbeGoto(v, ignoreDest); | 
|  | }else{ | 
|  | char *zName = pCheck->a[i].zEName; | 
|  | assert( zName!=0 || pParse->db->mallocFailed ); | 
|  | if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ | 
|  | sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, | 
|  | onError, zName, P4_TRANSIENT, | 
|  | P5_ConstraintCheck); | 
|  | } | 
|  | sqlite3VdbeResolveLabel(v, allOk); | 
|  | } | 
|  | pParse->iSelfTab = 0; | 
|  | } | 
|  | #endif /* !defined(SQLITE_OMIT_CHECK) */ | 
|  |  | 
|  | /* UNIQUE and PRIMARY KEY constraints should be handled in the following | 
|  | ** order: | 
|  | ** | 
|  | **   (1)  OE_Update | 
|  | **   (2)  OE_Abort, OE_Fail, OE_Rollback, OE_Ignore | 
|  | **   (3)  OE_Replace | 
|  | ** | 
|  | ** OE_Fail and OE_Ignore must happen before any changes are made. | 
|  | ** OE_Update guarantees that only a single row will change, so it | 
|  | ** must happen before OE_Replace.  Technically, OE_Abort and OE_Rollback | 
|  | ** could happen in any order, but they are grouped up front for | 
|  | ** convenience. | 
|  | ** | 
|  | ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 | 
|  | ** The order of constraints used to have OE_Update as (2) and OE_Abort | 
|  | ** and so forth as (1). But apparently PostgreSQL checks the OE_Update | 
|  | ** constraint before any others, so it had to be moved. | 
|  | ** | 
|  | ** Constraint checking code is generated in this order: | 
|  | **   (A)  The rowid constraint | 
|  | **   (B)  Unique index constraints that do not have OE_Replace as their | 
|  | **        default conflict resolution strategy | 
|  | **   (C)  Unique index that do use OE_Replace by default. | 
|  | ** | 
|  | ** The ordering of (2) and (3) is accomplished by making sure the linked | 
|  | ** list of indexes attached to a table puts all OE_Replace indexes last | 
|  | ** in the list.  See sqlite3CreateIndex() for where that happens. | 
|  | */ | 
|  | sIdxIter.eType = 0; | 
|  | sIdxIter.i = 0; | 
|  | sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */ | 
|  | sIdxIter.u.lx.pIdx = pTab->pIndex; | 
|  | if( pUpsert ){ | 
|  | if( pUpsert->pUpsertTarget==0 ){ | 
|  | /* There is just on ON CONFLICT clause and it has no constraint-target */ | 
|  | assert( pUpsert->pNextUpsert==0 ); | 
|  | if( pUpsert->isDoUpdate==0 ){ | 
|  | /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. | 
|  | ** Make all unique constraint resolution be OE_Ignore */ | 
|  | overrideError = OE_Ignore; | 
|  | pUpsert = 0; | 
|  | }else{ | 
|  | /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */ | 
|  | overrideError = OE_Update; | 
|  | } | 
|  | }else if( pTab->pIndex!=0 ){ | 
|  | /* Otherwise, we'll need to run the IndexListTerm array version of the | 
|  | ** iterator to ensure that all of the ON CONFLICT conditions are | 
|  | ** checked first and in order. */ | 
|  | int nIdx, jj; | 
|  | u64 nByte; | 
|  | Upsert *pTerm; | 
|  | u8 *bUsed; | 
|  | for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ | 
|  | assert( aRegIdx[nIdx]>0 ); | 
|  | } | 
|  | sIdxIter.eType = 1; | 
|  | sIdxIter.u.ax.nIdx = nIdx; | 
|  | nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; | 
|  | sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); | 
|  | if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ | 
|  | bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; | 
|  | pUpsert->pToFree = sIdxIter.u.ax.aIdx; | 
|  | for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ | 
|  | if( pTerm->pUpsertTarget==0 ) break; | 
|  | if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */ | 
|  | jj = 0; | 
|  | pIdx = pTab->pIndex; | 
|  | while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ | 
|  | pIdx = pIdx->pNext; | 
|  | jj++; | 
|  | } | 
|  | if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ | 
|  | bUsed[jj] = 1; | 
|  | sIdxIter.u.ax.aIdx[i].p = pIdx; | 
|  | sIdxIter.u.ax.aIdx[i].ix = jj; | 
|  | i++; | 
|  | } | 
|  | for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ | 
|  | if( bUsed[jj] ) continue; | 
|  | sIdxIter.u.ax.aIdx[i].p = pIdx; | 
|  | sIdxIter.u.ax.aIdx[i].ix = jj; | 
|  | i++; | 
|  | } | 
|  | assert( i==nIdx ); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine if it is possible that triggers (either explicitly coded | 
|  | ** triggers or FK resolution actions) might run as a result of deletes | 
|  | ** that happen when OE_Replace conflict resolution occurs. (Call these | 
|  | ** "replace triggers".)  If any replace triggers run, we will need to | 
|  | ** recheck all of the uniqueness constraints after they have all run. | 
|  | ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. | 
|  | ** | 
|  | ** If replace triggers are a possibility, then | 
|  | ** | 
|  | **   (1) Allocate register regTrigCnt and initialize it to zero. | 
|  | **       That register will count the number of replace triggers that | 
|  | **       fire.  Constraint recheck only occurs if the number is positive. | 
|  | **   (2) Initialize pTrigger to the list of all DELETE triggers on pTab. | 
|  | **   (3) Initialize addrRecheck and lblRecheckOk | 
|  | ** | 
|  | ** The uniqueness rechecking code will create a series of tests to run | 
|  | ** in a second pass.  The addrRecheck and lblRecheckOk variables are | 
|  | ** used to link together these tests which are separated from each other | 
|  | ** in the generate bytecode. | 
|  | */ | 
|  | if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ | 
|  | /* There are not DELETE triggers nor FK constraints.  No constraint | 
|  | ** rechecks are needed. */ | 
|  | pTrigger = 0; | 
|  | regTrigCnt = 0; | 
|  | }else{ | 
|  | if( db->flags&SQLITE_RecTriggers ){ | 
|  | pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); | 
|  | regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); | 
|  | }else{ | 
|  | pTrigger = 0; | 
|  | regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); | 
|  | } | 
|  | if( regTrigCnt ){ | 
|  | /* Replace triggers might exist.  Allocate the counter and | 
|  | ** initialize it to zero. */ | 
|  | regTrigCnt = ++pParse->nMem; | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); | 
|  | VdbeComment((v, "trigger count")); | 
|  | lblRecheckOk = sqlite3VdbeMakeLabel(pParse); | 
|  | addrRecheck = lblRecheckOk; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If rowid is changing, make sure the new rowid does not previously | 
|  | ** exist in the table. | 
|  | */ | 
|  | if( pkChng && pPk==0 ){ | 
|  | int addrRowidOk = sqlite3VdbeMakeLabel(pParse); | 
|  |  | 
|  | /* Figure out what action to take in case of a rowid collision */ | 
|  | onError = pTab->keyConf; | 
|  | if( overrideError!=OE_Default ){ | 
|  | onError = overrideError; | 
|  | }else if( onError==OE_Default ){ | 
|  | onError = OE_Abort; | 
|  | } | 
|  |  | 
|  | /* figure out whether or not upsert applies in this case */ | 
|  | if( pUpsert ){ | 
|  | pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); | 
|  | if( pUpsertClause!=0 ){ | 
|  | if( pUpsertClause->isDoUpdate==0 ){ | 
|  | onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */ | 
|  | }else{ | 
|  | onError = OE_Update;  /* DO UPDATE */ | 
|  | } | 
|  | } | 
|  | if( pUpsertClause!=pUpsert ){ | 
|  | /* The first ON CONFLICT clause has a conflict target other than | 
|  | ** the IPK.  We have to jump ahead to that first ON CONFLICT clause | 
|  | ** and then come back here and deal with the IPK afterwards */ | 
|  | upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the response to a rowid conflict is REPLACE but the response | 
|  | ** to some other UNIQUE constraint is FAIL or IGNORE, then we need | 
|  | ** to defer the running of the rowid conflict checking until after | 
|  | ** the UNIQUE constraints have run. | 
|  | */ | 
|  | if( onError==OE_Replace      /* IPK rule is REPLACE */ | 
|  | && onError!=overrideError   /* Rules for other constraints are different */ | 
|  | && pTab->pIndex             /* There exist other constraints */ | 
|  | && !upsertIpkDelay          /* IPK check already deferred by UPSERT */ | 
|  | ){ | 
|  | ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; | 
|  | VdbeComment((v, "defer IPK REPLACE until last")); | 
|  | } | 
|  |  | 
|  | if( isUpdate ){ | 
|  | /* pkChng!=0 does not mean that the rowid has changed, only that | 
|  | ** it might have changed.  Skip the conflict logic below if the rowid | 
|  | ** is unchanged. */ | 
|  | sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); | 
|  | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  |  | 
|  | /* Check to see if the new rowid already exists in the table.  Skip | 
|  | ** the following conflict logic if it does not. */ | 
|  | VdbeNoopComment((v, "uniqueness check for ROWID")); | 
|  | sqlite3VdbeVerifyAbortable(v, onError); | 
|  | sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); | 
|  | VdbeCoverage(v); | 
|  |  | 
|  | switch( onError ){ | 
|  | default: { | 
|  | onError = OE_Abort; | 
|  | /* no break */ deliberate_fall_through | 
|  | } | 
|  | case OE_Rollback: | 
|  | case OE_Abort: | 
|  | case OE_Fail: { | 
|  | testcase( onError==OE_Rollback ); | 
|  | testcase( onError==OE_Abort ); | 
|  | testcase( onError==OE_Fail ); | 
|  | sqlite3RowidConstraint(pParse, onError, pTab); | 
|  | break; | 
|  | } | 
|  | case OE_Replace: { | 
|  | /* If there are DELETE triggers on this table and the | 
|  | ** recursive-triggers flag is set, call GenerateRowDelete() to | 
|  | ** remove the conflicting row from the table. This will fire | 
|  | ** the triggers and remove both the table and index b-tree entries. | 
|  | ** | 
|  | ** Otherwise, if there are no triggers or the recursive-triggers | 
|  | ** flag is not set, but the table has one or more indexes, call | 
|  | ** GenerateRowIndexDelete(). This removes the index b-tree entries | 
|  | ** only. The table b-tree entry will be replaced by the new entry | 
|  | ** when it is inserted. | 
|  | ** | 
|  | ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, | 
|  | ** also invoke MultiWrite() to indicate that this VDBE may require | 
|  | ** statement rollback (if the statement is aborted after the delete | 
|  | ** takes place). Earlier versions called sqlite3MultiWrite() regardless, | 
|  | ** but being more selective here allows statements like: | 
|  | ** | 
|  | **   REPLACE INTO t(rowid) VALUES($newrowid) | 
|  | ** | 
|  | ** to run without a statement journal if there are no indexes on the | 
|  | ** table. | 
|  | */ | 
|  | if( regTrigCnt ){ | 
|  | sqlite3MultiWrite(pParse); | 
|  | sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, | 
|  | regNewData, 1, 0, OE_Replace, 1, -1); | 
|  | sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ | 
|  | nReplaceTrig++; | 
|  | }else{ | 
|  | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK | 
|  | assert( HasRowid(pTab) ); | 
|  | /* This OP_Delete opcode fires the pre-update-hook only. It does | 
|  | ** not modify the b-tree. It is more efficient to let the coming | 
|  | ** OP_Insert replace the existing entry than it is to delete the | 
|  | ** existing entry and then insert a new one. */ | 
|  | sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); | 
|  | sqlite3VdbeAppendP4(v, pTab, P4_TABLE); | 
|  | #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ | 
|  | if( pTab->pIndex ){ | 
|  | sqlite3MultiWrite(pParse); | 
|  | sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); | 
|  | } | 
|  | } | 
|  | seenReplace = 1; | 
|  | break; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UPSERT | 
|  | case OE_Update: { | 
|  | sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); | 
|  | /* no break */ deliberate_fall_through | 
|  | } | 
|  | #endif | 
|  | case OE_Ignore: { | 
|  | testcase( onError==OE_Ignore ); | 
|  | sqlite3VdbeGoto(v, ignoreDest); | 
|  | break; | 
|  | } | 
|  | } | 
|  | sqlite3VdbeResolveLabel(v, addrRowidOk); | 
|  | if( pUpsert && pUpsertClause!=pUpsert ){ | 
|  | upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); | 
|  | }else if( ipkTop ){ | 
|  | ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); | 
|  | sqlite3VdbeJumpHere(v, ipkTop-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Test all UNIQUE constraints by creating entries for each UNIQUE | 
|  | ** index and making sure that duplicate entries do not already exist. | 
|  | ** Compute the revised record entries for indices as we go. | 
|  | ** | 
|  | ** This loop also handles the case of the PRIMARY KEY index for a | 
|  | ** WITHOUT ROWID table. | 
|  | */ | 
|  | for(pIdx = indexIteratorFirst(&sIdxIter, &ix); | 
|  | pIdx; | 
|  | pIdx = indexIteratorNext(&sIdxIter, &ix) | 
|  | ){ | 
|  | int regIdx;          /* Range of registers hold conent for pIdx */ | 
|  | int regR;            /* Range of registers holding conflicting PK */ | 
|  | int iThisCur;        /* Cursor for this UNIQUE index */ | 
|  | int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */ | 
|  | int addrConflictCk;  /* First opcode in the conflict check logic */ | 
|  |  | 
|  | if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */ | 
|  | if( pUpsert ){ | 
|  | pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); | 
|  | if( upsertIpkDelay && pUpsertClause==pUpsert ){ | 
|  | sqlite3VdbeJumpHere(v, upsertIpkDelay); | 
|  | } | 
|  | } | 
|  | addrUniqueOk = sqlite3VdbeMakeLabel(pParse); | 
|  | if( bAffinityDone==0 ){ | 
|  | sqlite3TableAffinity(v, pTab, regNewData+1); | 
|  | bAffinityDone = 1; | 
|  | } | 
|  | VdbeNoopComment((v, "prep index %s", pIdx->zName)); | 
|  | iThisCur = iIdxCur+ix; | 
|  |  | 
|  |  | 
|  | /* Skip partial indices for which the WHERE clause is not true */ | 
|  | if( pIdx->pPartIdxWhere ){ | 
|  | sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); | 
|  | pParse->iSelfTab = -(regNewData+1); | 
|  | sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, | 
|  | SQLITE_JUMPIFNULL); | 
|  | pParse->iSelfTab = 0; | 
|  | } | 
|  |  | 
|  | /* Create a record for this index entry as it should appear after | 
|  | ** the insert or update.  Store that record in the aRegIdx[ix] register | 
|  | */ | 
|  | regIdx = aRegIdx[ix]+1; | 
|  | for(i=0; i<pIdx->nColumn; i++){ | 
|  | int iField = pIdx->aiColumn[i]; | 
|  | int x; | 
|  | if( iField==XN_EXPR ){ | 
|  | pParse->iSelfTab = -(regNewData+1); | 
|  | sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); | 
|  | pParse->iSelfTab = 0; | 
|  | VdbeComment((v, "%s column %d", pIdx->zName, i)); | 
|  | }else if( iField==XN_ROWID || iField==pTab->iPKey ){ | 
|  | x = regNewData; | 
|  | sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); | 
|  | VdbeComment((v, "rowid")); | 
|  | }else{ | 
|  | testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); | 
|  | x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; | 
|  | sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); | 
|  | VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); | 
|  | VdbeComment((v, "for %s", pIdx->zName)); | 
|  | #ifdef SQLITE_ENABLE_NULL_TRIM | 
|  | if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ | 
|  | sqlite3SetMakeRecordP5(v, pIdx->pTable); | 
|  | } | 
|  | #endif | 
|  | sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); | 
|  |  | 
|  | /* In an UPDATE operation, if this index is the PRIMARY KEY index | 
|  | ** of a WITHOUT ROWID table and there has been no change the | 
|  | ** primary key, then no collision is possible.  The collision detection | 
|  | ** logic below can all be skipped. */ | 
|  | if( isUpdate && pPk==pIdx && pkChng==0 ){ | 
|  | sqlite3VdbeResolveLabel(v, addrUniqueOk); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Find out what action to take in case there is a uniqueness conflict */ | 
|  | onError = pIdx->onError; | 
|  | if( onError==OE_None ){ | 
|  | sqlite3VdbeResolveLabel(v, addrUniqueOk); | 
|  | continue;  /* pIdx is not a UNIQUE index */ | 
|  | } | 
|  | if( overrideError!=OE_Default ){ | 
|  | onError = overrideError; | 
|  | }else if( onError==OE_Default ){ | 
|  | onError = OE_Abort; | 
|  | } | 
|  |  | 
|  | /* Figure out if the upsert clause applies to this index */ | 
|  | if( pUpsertClause ){ | 
|  | if( pUpsertClause->isDoUpdate==0 ){ | 
|  | onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */ | 
|  | }else{ | 
|  | onError = OE_Update;  /* DO UPDATE */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Collision detection may be omitted if all of the following are true: | 
|  | **   (1) The conflict resolution algorithm is REPLACE | 
|  | **   (2) The table is a WITHOUT ROWID table | 
|  | **   (3) There are no secondary indexes on the table | 
|  | **   (4) No delete triggers need to be fired if there is a conflict | 
|  | **   (5) No FK constraint counters need to be updated if a conflict occurs. | 
|  | ** | 
|  | ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row | 
|  | ** must be explicitly deleted in order to ensure any pre-update hook | 
|  | ** is invoked.  */ | 
|  | assert( IsOrdinaryTable(pTab) ); | 
|  | #ifndef SQLITE_ENABLE_PREUPDATE_HOOK | 
|  | if( (ix==0 && pIdx->pNext==0)                   /* Condition 3 */ | 
|  | && pPk==pIdx                                   /* Condition 2 */ | 
|  | && onError==OE_Replace                         /* Condition 1 */ | 
|  | && ( 0==(db->flags&SQLITE_RecTriggers) ||      /* Condition 4 */ | 
|  | 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) | 
|  | && ( 0==(db->flags&SQLITE_ForeignKeys) ||      /* Condition 5 */ | 
|  | (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) | 
|  | ){ | 
|  | sqlite3VdbeResolveLabel(v, addrUniqueOk); | 
|  | continue; | 
|  | } | 
|  | #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ | 
|  |  | 
|  | /* Check to see if the new index entry will be unique */ | 
|  | sqlite3VdbeVerifyAbortable(v, onError); | 
|  | addrConflictCk = | 
|  | sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, | 
|  | regIdx, pIdx->nKeyCol); VdbeCoverage(v); | 
|  |  | 
|  | /* Generate code to handle collisions */ | 
|  | regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); | 
|  | if( isUpdate || onError==OE_Replace ){ | 
|  | if( HasRowid(pTab) ){ | 
|  | sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); | 
|  | /* Conflict only if the rowid of the existing index entry | 
|  | ** is different from old-rowid */ | 
|  | if( isUpdate ){ | 
|  | sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); | 
|  | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  | }else{ | 
|  | int x; | 
|  | /* Extract the PRIMARY KEY from the end of the index entry and | 
|  | ** store it in registers regR..regR+nPk-1 */ | 
|  | if( pIdx!=pPk ){ | 
|  | for(i=0; i<pPk->nKeyCol; i++){ | 
|  | assert( pPk->aiColumn[i]>=0 ); | 
|  | x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); | 
|  | sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); | 
|  | VdbeComment((v, "%s.%s", pTab->zName, | 
|  | pTab->aCol[pPk->aiColumn[i]].zCnName)); | 
|  | } | 
|  | } | 
|  | if( isUpdate ){ | 
|  | /* If currently processing the PRIMARY KEY of a WITHOUT ROWID | 
|  | ** table, only conflict if the new PRIMARY KEY values are actually | 
|  | ** different from the old.  See TH3 withoutrowid04.test. | 
|  | ** | 
|  | ** For a UNIQUE index, only conflict if the PRIMARY KEY values | 
|  | ** of the matched index row are different from the original PRIMARY | 
|  | ** KEY values of this row before the update.  */ | 
|  | int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; | 
|  | int op = OP_Ne; | 
|  | int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); | 
|  |  | 
|  | for(i=0; i<pPk->nKeyCol; i++){ | 
|  | char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); | 
|  | x = pPk->aiColumn[i]; | 
|  | assert( x>=0 ); | 
|  | if( i==(pPk->nKeyCol-1) ){ | 
|  | addrJump = addrUniqueOk; | 
|  | op = OP_Eq; | 
|  | } | 
|  | x = sqlite3TableColumnToStorage(pTab, x); | 
|  | sqlite3VdbeAddOp4(v, op, | 
|  | regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ | 
|  | ); | 
|  | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 
|  | VdbeCoverageIf(v, op==OP_Eq); | 
|  | VdbeCoverageIf(v, op==OP_Ne); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Generate code that executes if the new index entry is not unique */ | 
|  | assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | 
|  | || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); | 
|  | switch( onError ){ | 
|  | case OE_Rollback: | 
|  | case OE_Abort: | 
|  | case OE_Fail: { | 
|  | testcase( onError==OE_Rollback ); | 
|  | testcase( onError==OE_Abort ); | 
|  | testcase( onError==OE_Fail ); | 
|  | sqlite3UniqueConstraint(pParse, onError, pIdx); | 
|  | break; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UPSERT | 
|  | case OE_Update: { | 
|  | sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); | 
|  | /* no break */ deliberate_fall_through | 
|  | } | 
|  | #endif | 
|  | case OE_Ignore: { | 
|  | testcase( onError==OE_Ignore ); | 
|  | sqlite3VdbeGoto(v, ignoreDest); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | int nConflictCk;   /* Number of opcodes in conflict check logic */ | 
|  |  | 
|  | assert( onError==OE_Replace ); | 
|  | nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; | 
|  | assert( nConflictCk>0 || db->mallocFailed ); | 
|  | testcase( nConflictCk<=0 ); | 
|  | testcase( nConflictCk>1 ); | 
|  | if( regTrigCnt ){ | 
|  | sqlite3MultiWrite(pParse); | 
|  | nReplaceTrig++; | 
|  | } | 
|  | if( pTrigger && isUpdate ){ | 
|  | sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); | 
|  | } | 
|  | sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, | 
|  | regR, nPkField, 0, OE_Replace, | 
|  | (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); | 
|  | if( pTrigger && isUpdate ){ | 
|  | sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); | 
|  | } | 
|  | if( regTrigCnt ){ | 
|  | int addrBypass;  /* Jump destination to bypass recheck logic */ | 
|  |  | 
|  | sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ | 
|  | addrBypass = sqlite3VdbeAddOp0(v, OP_Goto);  /* Bypass recheck */ | 
|  | VdbeComment((v, "bypass recheck")); | 
|  |  | 
|  | /* Here we insert code that will be invoked after all constraint | 
|  | ** checks have run, if and only if one or more replace triggers | 
|  | ** fired. */ | 
|  | sqlite3VdbeResolveLabel(v, lblRecheckOk); | 
|  | lblRecheckOk = sqlite3VdbeMakeLabel(pParse); | 
|  | if( pIdx->pPartIdxWhere ){ | 
|  | /* Bypass the recheck if this partial index is not defined | 
|  | ** for the current row */ | 
|  | sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  | /* Copy the constraint check code from above, except change | 
|  | ** the constraint-ok jump destination to be the address of | 
|  | ** the next retest block */ | 
|  | while( nConflictCk>0 ){ | 
|  | VdbeOp x;    /* Conflict check opcode to copy */ | 
|  | /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. | 
|  | ** Hence, make a complete copy of the opcode, rather than using | 
|  | ** a pointer to the opcode. */ | 
|  | x = *sqlite3VdbeGetOp(v, addrConflictCk); | 
|  | if( x.opcode!=OP_IdxRowid ){ | 
|  | int p2;      /* New P2 value for copied conflict check opcode */ | 
|  | const char *zP4; | 
|  | if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ | 
|  | p2 = lblRecheckOk; | 
|  | }else{ | 
|  | p2 = x.p2; | 
|  | } | 
|  | zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; | 
|  | sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); | 
|  | sqlite3VdbeChangeP5(v, x.p5); | 
|  | VdbeCoverageIf(v, p2!=x.p2); | 
|  | } | 
|  | nConflictCk--; | 
|  | addrConflictCk++; | 
|  | } | 
|  | /* If the retest fails, issue an abort */ | 
|  | sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); | 
|  |  | 
|  | sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ | 
|  | } | 
|  | seenReplace = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | sqlite3VdbeResolveLabel(v, addrUniqueOk); | 
|  | if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); | 
|  | if( pUpsertClause | 
|  | && upsertIpkReturn | 
|  | && sqlite3UpsertNextIsIPK(pUpsertClause) | 
|  | ){ | 
|  | sqlite3VdbeGoto(v, upsertIpkDelay+1); | 
|  | sqlite3VdbeJumpHere(v, upsertIpkReturn); | 
|  | upsertIpkReturn = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the IPK constraint is a REPLACE, run it last */ | 
|  | if( ipkTop ){ | 
|  | sqlite3VdbeGoto(v, ipkTop); | 
|  | VdbeComment((v, "Do IPK REPLACE")); | 
|  | assert( ipkBottom>0 ); | 
|  | sqlite3VdbeJumpHere(v, ipkBottom); | 
|  | } | 
|  |  | 
|  | /* Recheck all uniqueness constraints after replace triggers have run */ | 
|  | testcase( regTrigCnt!=0 && nReplaceTrig==0 ); | 
|  | assert( regTrigCnt!=0 || nReplaceTrig==0 ); | 
|  | if( nReplaceTrig ){ | 
|  | sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); | 
|  | if( !pPk ){ | 
|  | if( isUpdate ){ | 
|  | sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); | 
|  | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  | sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); | 
|  | VdbeCoverage(v); | 
|  | sqlite3RowidConstraint(pParse, OE_Abort, pTab); | 
|  | }else{ | 
|  | sqlite3VdbeGoto(v, addrRecheck); | 
|  | } | 
|  | sqlite3VdbeResolveLabel(v, lblRecheckOk); | 
|  | } | 
|  |  | 
|  | /* Generate the table record */ | 
|  | if( HasRowid(pTab) ){ | 
|  | int regRec = aRegIdx[ix]; | 
|  | sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); | 
|  | sqlite3SetMakeRecordP5(v, pTab); | 
|  | if( !bAffinityDone ){ | 
|  | sqlite3TableAffinity(v, pTab, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | *pbMayReplace = seenReplace; | 
|  | VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_NULL_TRIM | 
|  | /* | 
|  | ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) | 
|  | ** to be the number of columns in table pTab that must not be NULL-trimmed. | 
|  | ** | 
|  | ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. | 
|  | */ | 
|  | void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ | 
|  | u16 i; | 
|  |  | 
|  | /* Records with omitted columns are only allowed for schema format | 
|  | ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ | 
|  | if( pTab->pSchema->file_format<2 ) return; | 
|  |  | 
|  | for(i=pTab->nCol-1; i>0; i--){ | 
|  | if( pTab->aCol[i].iDflt!=0 ) break; | 
|  | if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; | 
|  | } | 
|  | sqlite3VdbeChangeP5(v, i+1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor | 
|  | ** number is iCur, and register regData contains the new record for the | 
|  | ** PK index. This function adds code to invoke the pre-update hook, | 
|  | ** if one is registered. | 
|  | */ | 
|  | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK | 
|  | static void codeWithoutRowidPreupdate( | 
|  | Parse *pParse,                  /* Parse context */ | 
|  | Table *pTab,                    /* Table being updated */ | 
|  | int iCur,                       /* Cursor number for table */ | 
|  | int regData                     /* Data containing new record */ | 
|  | ){ | 
|  | Vdbe *v = pParse->pVdbe; | 
|  | int r = sqlite3GetTempReg(pParse); | 
|  | assert( !HasRowid(pTab) ); | 
|  | assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, 0, r); | 
|  | sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); | 
|  | sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); | 
|  | sqlite3ReleaseTempReg(pParse, r); | 
|  | } | 
|  | #else | 
|  | # define codeWithoutRowidPreupdate(a,b,c,d) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** This routine generates code to finish the INSERT or UPDATE operation | 
|  | ** that was started by a prior call to sqlite3GenerateConstraintChecks. | 
|  | ** A consecutive range of registers starting at regNewData contains the | 
|  | ** rowid and the content to be inserted. | 
|  | ** | 
|  | ** The arguments to this routine should be the same as the first six | 
|  | ** arguments to sqlite3GenerateConstraintChecks. | 
|  | */ | 
|  | void sqlite3CompleteInsertion( | 
|  | Parse *pParse,      /* The parser context */ | 
|  | Table *pTab,        /* the table into which we are inserting */ | 
|  | int iDataCur,       /* Cursor of the canonical data source */ | 
|  | int iIdxCur,        /* First index cursor */ | 
|  | int regNewData,     /* Range of content */ | 
|  | int *aRegIdx,       /* Register used by each index.  0 for unused indices */ | 
|  | int update_flags,   /* True for UPDATE, False for INSERT */ | 
|  | int appendBias,     /* True if this is likely to be an append */ | 
|  | int useSeekResult   /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ | 
|  | ){ | 
|  | Vdbe *v;            /* Prepared statements under construction */ | 
|  | Index *pIdx;        /* An index being inserted or updated */ | 
|  | u8 pik_flags;       /* flag values passed to the btree insert */ | 
|  | int i;              /* Loop counter */ | 
|  |  | 
|  | assert( update_flags==0 | 
|  | || update_flags==OPFLAG_ISUPDATE | 
|  | || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) | 
|  | ); | 
|  |  | 
|  | v = pParse->pVdbe; | 
|  | assert( v!=0 ); | 
|  | assert( !IsView(pTab) );  /* This table is not a VIEW */ | 
|  | for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ | 
|  | /* All REPLACE indexes are at the end of the list */ | 
|  | assert( pIdx->onError!=OE_Replace | 
|  | || pIdx->pNext==0 | 
|  | || pIdx->pNext->onError==OE_Replace ); | 
|  | if( aRegIdx[i]==0 ) continue; | 
|  | if( pIdx->pPartIdxWhere ){ | 
|  | sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  | pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); | 
|  | if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ | 
|  | pik_flags |= OPFLAG_NCHANGE; | 
|  | pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); | 
|  | if( update_flags==0 ){ | 
|  | codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], | 
|  | aRegIdx[i]+1, | 
|  | pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); | 
|  | sqlite3VdbeChangeP5(v, pik_flags); | 
|  | } | 
|  | if( !HasRowid(pTab) ) return; | 
|  | if( pParse->nested ){ | 
|  | pik_flags = 0; | 
|  | }else{ | 
|  | pik_flags = OPFLAG_NCHANGE; | 
|  | pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); | 
|  | } | 
|  | if( appendBias ){ | 
|  | pik_flags |= OPFLAG_APPEND; | 
|  | } | 
|  | if( useSeekResult ){ | 
|  | pik_flags |= OPFLAG_USESEEKRESULT; | 
|  | } | 
|  | sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); | 
|  | if( !pParse->nested ){ | 
|  | sqlite3VdbeAppendP4(v, pTab, P4_TABLE); | 
|  | } | 
|  | sqlite3VdbeChangeP5(v, pik_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Allocate cursors for the pTab table and all its indices and generate | 
|  | ** code to open and initialized those cursors. | 
|  | ** | 
|  | ** The cursor for the object that contains the complete data (normally | 
|  | ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT | 
|  | ** ROWID table) is returned in *piDataCur.  The first index cursor is | 
|  | ** returned in *piIdxCur.  The number of indices is returned. | 
|  | ** | 
|  | ** Use iBase as the first cursor (either the *piDataCur for rowid tables | 
|  | ** or the first index for WITHOUT ROWID tables) if it is non-negative. | 
|  | ** If iBase is negative, then allocate the next available cursor. | 
|  | ** | 
|  | ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. | 
|  | ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range | 
|  | ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the | 
|  | ** pTab->pIndex list. | 
|  | ** | 
|  | ** If pTab is a virtual table, then this routine is a no-op and the | 
|  | ** *piDataCur and *piIdxCur values are left uninitialized. | 
|  | */ | 
|  | int sqlite3OpenTableAndIndices( | 
|  | Parse *pParse,   /* Parsing context */ | 
|  | Table *pTab,     /* Table to be opened */ | 
|  | int op,          /* OP_OpenRead or OP_OpenWrite */ | 
|  | u8 p5,           /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ | 
|  | int iBase,       /* Use this for the table cursor, if there is one */ | 
|  | u8 *aToOpen,     /* If not NULL: boolean for each table and index */ | 
|  | int *piDataCur,  /* Write the database source cursor number here */ | 
|  | int *piIdxCur    /* Write the first index cursor number here */ | 
|  | ){ | 
|  | int i; | 
|  | int iDb; | 
|  | int iDataCur; | 
|  | Index *pIdx; | 
|  | Vdbe *v; | 
|  |  | 
|  | assert( op==OP_OpenRead || op==OP_OpenWrite ); | 
|  | assert( op==OP_OpenWrite || p5==0 ); | 
|  | if( IsVirtual(pTab) ){ | 
|  | /* This routine is a no-op for virtual tables. Leave the output | 
|  | ** variables *piDataCur and *piIdxCur set to illegal cursor numbers | 
|  | ** for improved error detection. */ | 
|  | *piDataCur = *piIdxCur = -999; | 
|  | return 0; | 
|  | } | 
|  | iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | 
|  | v = pParse->pVdbe; | 
|  | assert( v!=0 ); | 
|  | if( iBase<0 ) iBase = pParse->nTab; | 
|  | iDataCur = iBase++; | 
|  | if( piDataCur ) *piDataCur = iDataCur; | 
|  | if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ | 
|  | sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); | 
|  | }else{ | 
|  | sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); | 
|  | } | 
|  | if( piIdxCur ) *piIdxCur = iBase; | 
|  | for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ | 
|  | int iIdxCur = iBase++; | 
|  | assert( pIdx->pSchema==pTab->pSchema ); | 
|  | if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ | 
|  | if( piDataCur ) *piDataCur = iIdxCur; | 
|  | p5 = 0; | 
|  | } | 
|  | if( aToOpen==0 || aToOpen[i+1] ){ | 
|  | sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); | 
|  | sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | 
|  | sqlite3VdbeChangeP5(v, p5); | 
|  | VdbeComment((v, "%s", pIdx->zName)); | 
|  | } | 
|  | } | 
|  | if( iBase>pParse->nTab ) pParse->nTab = iBase; | 
|  | return i; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef SQLITE_TEST | 
|  | /* | 
|  | ** The following global variable is incremented whenever the | 
|  | ** transfer optimization is used.  This is used for testing | 
|  | ** purposes only - to make sure the transfer optimization really | 
|  | ** is happening when it is supposed to. | 
|  | */ | 
|  | int sqlite3_xferopt_count; | 
|  | #endif /* SQLITE_TEST */ | 
|  |  | 
|  |  | 
|  | #ifndef SQLITE_OMIT_XFER_OPT | 
|  | /* | 
|  | ** Check to see if index pSrc is compatible as a source of data | 
|  | ** for index pDest in an insert transfer optimization.  The rules | 
|  | ** for a compatible index: | 
|  | ** | 
|  | **    *   The index is over the same set of columns | 
|  | **    *   The same DESC and ASC markings occurs on all columns | 
|  | **    *   The same onError processing (OE_Abort, OE_Ignore, etc) | 
|  | **    *   The same collating sequence on each column | 
|  | **    *   The index has the exact same WHERE clause | 
|  | */ | 
|  | static int xferCompatibleIndex(Index *pDest, Index *pSrc){ | 
|  | int i; | 
|  | assert( pDest && pSrc ); | 
|  | assert( pDest->pTable!=pSrc->pTable ); | 
|  | if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ | 
|  | return 0;   /* Different number of columns */ | 
|  | } | 
|  | if( pDest->onError!=pSrc->onError ){ | 
|  | return 0;   /* Different conflict resolution strategies */ | 
|  | } | 
|  | for(i=0; i<pSrc->nKeyCol; i++){ | 
|  | if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ | 
|  | return 0;   /* Different columns indexed */ | 
|  | } | 
|  | if( pSrc->aiColumn[i]==XN_EXPR ){ | 
|  | assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); | 
|  | if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, | 
|  | pDest->aColExpr->a[i].pExpr, -1)!=0 ){ | 
|  | return 0;   /* Different expressions in the index */ | 
|  | } | 
|  | } | 
|  | if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ | 
|  | return 0;   /* Different sort orders */ | 
|  | } | 
|  | if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ | 
|  | return 0;   /* Different collating sequences */ | 
|  | } | 
|  | } | 
|  | if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ | 
|  | return 0;     /* Different WHERE clauses */ | 
|  | } | 
|  |  | 
|  | /* If no test above fails then the indices must be compatible */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Attempt the transfer optimization on INSERTs of the form | 
|  | ** | 
|  | **     INSERT INTO tab1 SELECT * FROM tab2; | 
|  | ** | 
|  | ** The xfer optimization transfers raw records from tab2 over to tab1. | 
|  | ** Columns are not decoded and reassembled, which greatly improves | 
|  | ** performance.  Raw index records are transferred in the same way. | 
|  | ** | 
|  | ** The xfer optimization is only attempted if tab1 and tab2 are compatible. | 
|  | ** There are lots of rules for determining compatibility - see comments | 
|  | ** embedded in the code for details. | 
|  | ** | 
|  | ** This routine returns TRUE if the optimization is guaranteed to be used. | 
|  | ** Sometimes the xfer optimization will only work if the destination table | 
|  | ** is empty - a factor that can only be determined at run-time.  In that | 
|  | ** case, this routine generates code for the xfer optimization but also | 
|  | ** does a test to see if the destination table is empty and jumps over the | 
|  | ** xfer optimization code if the test fails.  In that case, this routine | 
|  | ** returns FALSE so that the caller will know to go ahead and generate | 
|  | ** an unoptimized transfer.  This routine also returns FALSE if there | 
|  | ** is no chance that the xfer optimization can be applied. | 
|  | ** | 
|  | ** This optimization is particularly useful at making VACUUM run faster. | 
|  | */ | 
|  | static int xferOptimization( | 
|  | Parse *pParse,        /* Parser context */ | 
|  | Table *pDest,         /* The table we are inserting into */ | 
|  | Select *pSelect,      /* A SELECT statement to use as the data source */ | 
|  | int onError,          /* How to handle constraint errors */ | 
|  | int iDbDest           /* The database of pDest */ | 
|  | ){ | 
|  | sqlite3 *db = pParse->db; | 
|  | ExprList *pEList;                /* The result set of the SELECT */ | 
|  | Table *pSrc;                     /* The table in the FROM clause of SELECT */ | 
|  | Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */ | 
|  | SrcItem *pItem;                  /* An element of pSelect->pSrc */ | 
|  | int i;                           /* Loop counter */ | 
|  | int iDbSrc;                      /* The database of pSrc */ | 
|  | int iSrc, iDest;                 /* Cursors from source and destination */ | 
|  | int addr1, addr2;                /* Loop addresses */ | 
|  | int emptyDestTest = 0;           /* Address of test for empty pDest */ | 
|  | int emptySrcTest = 0;            /* Address of test for empty pSrc */ | 
|  | Vdbe *v;                         /* The VDBE we are building */ | 
|  | int regAutoinc;                  /* Memory register used by AUTOINC */ | 
|  | int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */ | 
|  | int regData, regRowid;           /* Registers holding data and rowid */ | 
|  |  | 
|  | assert( pSelect!=0 ); | 
|  | if( pParse->pWith || pSelect->pWith ){ | 
|  | /* Do not attempt to process this query if there are an WITH clauses | 
|  | ** attached to it. Proceeding may generate a false "no such table: xxx" | 
|  | ** error if pSelect reads from a CTE named "xxx".  */ | 
|  | return 0; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | if( IsVirtual(pDest) ){ | 
|  | return 0;   /* tab1 must not be a virtual table */ | 
|  | } | 
|  | #endif | 
|  | if( onError==OE_Default ){ | 
|  | if( pDest->iPKey>=0 ) onError = pDest->keyConf; | 
|  | if( onError==OE_Default ) onError = OE_Abort; | 
|  | } | 
|  | assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */ | 
|  | if( pSelect->pSrc->nSrc!=1 ){ | 
|  | return 0;   /* FROM clause must have exactly one term */ | 
|  | } | 
|  | if( pSelect->pSrc->a[0].pSelect ){ | 
|  | return 0;   /* FROM clause cannot contain a subquery */ | 
|  | } | 
|  | if( pSelect->pWhere ){ | 
|  | return 0;   /* SELECT may not have a WHERE clause */ | 
|  | } | 
|  | if( pSelect->pOrderBy ){ | 
|  | return 0;   /* SELECT may not have an ORDER BY clause */ | 
|  | } | 
|  | /* Do not need to test for a HAVING clause.  If HAVING is present but | 
|  | ** there is no ORDER BY, we will get an error. */ | 
|  | if( pSelect->pGroupBy ){ | 
|  | return 0;   /* SELECT may not have a GROUP BY clause */ | 
|  | } | 
|  | if( pSelect->pLimit ){ | 
|  | return 0;   /* SELECT may not have a LIMIT clause */ | 
|  | } | 
|  | if( pSelect->pPrior ){ | 
|  | return 0;   /* SELECT may not be a compound query */ | 
|  | } | 
|  | if( pSelect->selFlags & SF_Distinct ){ | 
|  | return 0;   /* SELECT may not be DISTINCT */ | 
|  | } | 
|  | pEList = pSelect->pEList; | 
|  | assert( pEList!=0 ); | 
|  | if( pEList->nExpr!=1 ){ | 
|  | return 0;   /* The result set must have exactly one column */ | 
|  | } | 
|  | assert( pEList->a[0].pExpr ); | 
|  | if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ | 
|  | return 0;   /* The result set must be the special operator "*" */ | 
|  | } | 
|  |  | 
|  | /* At this point we have established that the statement is of the | 
|  | ** correct syntactic form to participate in this optimization.  Now | 
|  | ** we have to check the semantics. | 
|  | */ | 
|  | pItem = pSelect->pSrc->a; | 
|  | pSrc = sqlite3LocateTableItem(pParse, 0, pItem); | 
|  | if( pSrc==0 ){ | 
|  | return 0;   /* FROM clause does not contain a real table */ | 
|  | } | 
|  | if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ | 
|  | testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ | 
|  | return 0;   /* tab1 and tab2 may not be the same table */ | 
|  | } | 
|  | if( HasRowid(pDest)!=HasRowid(pSrc) ){ | 
|  | return 0;   /* source and destination must both be WITHOUT ROWID or not */ | 
|  | } | 
|  | if( !IsOrdinaryTable(pSrc) ){ | 
|  | return 0;   /* tab2 may not be a view or virtual table */ | 
|  | } | 
|  | if( pDest->nCol!=pSrc->nCol ){ | 
|  | return 0;   /* Number of columns must be the same in tab1 and tab2 */ | 
|  | } | 
|  | if( pDest->iPKey!=pSrc->iPKey ){ | 
|  | return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */ | 
|  | } | 
|  | if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ | 
|  | return 0;   /* Cannot feed from a non-strict into a strict table */ | 
|  | } | 
|  | for(i=0; i<pDest->nCol; i++){ | 
|  | Column *pDestCol = &pDest->aCol[i]; | 
|  | Column *pSrcCol = &pSrc->aCol[i]; | 
|  | #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS | 
|  | if( (db->mDbFlags & DBFLAG_Vacuum)==0 | 
|  | && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN | 
|  | ){ | 
|  | return 0;    /* Neither table may have __hidden__ columns */ | 
|  | } | 
|  | #endif | 
|  | #ifndef SQLITE_OMIT_GENERATED_COLUMNS | 
|  | /* Even if tables t1 and t2 have identical schemas, if they contain | 
|  | ** generated columns, then this statement is semantically incorrect: | 
|  | ** | 
|  | **     INSERT INTO t2 SELECT * FROM t1; | 
|  | ** | 
|  | ** The reason is that generated column values are returned by the | 
|  | ** the SELECT statement on the right but the INSERT statement on the | 
|  | ** left wants them to be omitted. | 
|  | ** | 
|  | ** Nevertheless, this is a useful notational shorthand to tell SQLite | 
|  | ** to do a bulk transfer all of the content from t1 over to t2. | 
|  | ** | 
|  | ** We could, in theory, disable this (except for internal use by the | 
|  | ** VACUUM command where it is actually needed).  But why do that?  It | 
|  | ** seems harmless enough, and provides a useful service. | 
|  | */ | 
|  | if( (pDestCol->colFlags & COLFLAG_GENERATED) != | 
|  | (pSrcCol->colFlags & COLFLAG_GENERATED) ){ | 
|  | return 0;    /* Both columns have the same generated-column type */ | 
|  | } | 
|  | /* But the transfer is only allowed if both the source and destination | 
|  | ** tables have the exact same expressions for generated columns. | 
|  | ** This requirement could be relaxed for VIRTUAL columns, I suppose. | 
|  | */ | 
|  | if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ | 
|  | if( sqlite3ExprCompare(0, | 
|  | sqlite3ColumnExpr(pSrc, pSrcCol), | 
|  | sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ | 
|  | testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); | 
|  | testcase( pDestCol->colFlags & COLFLAG_STORED ); | 
|  | return 0;  /* Different generator expressions */ | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if( pDestCol->affinity!=pSrcCol->affinity ){ | 
|  | return 0;    /* Affinity must be the same on all columns */ | 
|  | } | 
|  | if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), | 
|  | sqlite3ColumnColl(pSrcCol))!=0 ){ | 
|  | return 0;    /* Collating sequence must be the same on all columns */ | 
|  | } | 
|  | if( pDestCol->notNull && !pSrcCol->notNull ){ | 
|  | return 0;    /* tab2 must be NOT NULL if tab1 is */ | 
|  | } | 
|  | /* Default values for second and subsequent columns need to match. */ | 
|  | if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ | 
|  | Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); | 
|  | Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); | 
|  | assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); | 
|  | assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); | 
|  | assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); | 
|  | assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); | 
|  | if( (pDestExpr==0)!=(pSrcExpr==0) | 
|  | || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, | 
|  | pSrcExpr->u.zToken)!=0) | 
|  | ){ | 
|  | return 0;    /* Default values must be the same for all columns */ | 
|  | } | 
|  | } | 
|  | } | 
|  | for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ | 
|  | if( IsUniqueIndex(pDestIdx) ){ | 
|  | destHasUniqueIdx = 1; | 
|  | } | 
|  | for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ | 
|  | if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; | 
|  | } | 
|  | if( pSrcIdx==0 ){ | 
|  | return 0;    /* pDestIdx has no corresponding index in pSrc */ | 
|  | } | 
|  | if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema | 
|  | && sqlite3FaultSim(411)==SQLITE_OK ){ | 
|  | /* The sqlite3FaultSim() call allows this corruption test to be | 
|  | ** bypassed during testing, in order to exercise other corruption tests | 
|  | ** further downstream. */ | 
|  | return 0;   /* Corrupt schema - two indexes on the same btree */ | 
|  | } | 
|  | } | 
|  | #ifndef SQLITE_OMIT_CHECK | 
|  | if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ | 
|  | return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */ | 
|  | } | 
|  | #endif | 
|  | #ifndef SQLITE_OMIT_FOREIGN_KEY | 
|  | /* Disallow the transfer optimization if the destination table constains | 
|  | ** any foreign key constraints.  This is more restrictive than necessary. | 
|  | ** But the main beneficiary of the transfer optimization is the VACUUM | 
|  | ** command, and the VACUUM command disables foreign key constraints.  So | 
|  | ** the extra complication to make this rule less restrictive is probably | 
|  | ** not worth the effort.  Ticket [6284df89debdfa61db8073e062908af0c9b6118e] | 
|  | */ | 
|  | assert( IsOrdinaryTable(pDest) ); | 
|  | if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | if( (db->flags & SQLITE_CountRows)!=0 ){ | 
|  | return 0;  /* xfer opt does not play well with PRAGMA count_changes */ | 
|  | } | 
|  |  | 
|  | /* If we get this far, it means that the xfer optimization is at | 
|  | ** least a possibility, though it might only work if the destination | 
|  | ** table (tab1) is initially empty. | 
|  | */ | 
|  | #ifdef SQLITE_TEST | 
|  | sqlite3_xferopt_count++; | 
|  | #endif | 
|  | iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); | 
|  | v = sqlite3GetVdbe(pParse); | 
|  | sqlite3CodeVerifySchema(pParse, iDbSrc); | 
|  | iSrc = pParse->nTab++; | 
|  | iDest = pParse->nTab++; | 
|  | regAutoinc = autoIncBegin(pParse, iDbDest, pDest); | 
|  | regData = sqlite3GetTempReg(pParse); | 
|  | sqlite3VdbeAddOp2(v, OP_Null, 0, regData); | 
|  | regRowid = sqlite3GetTempReg(pParse); | 
|  | sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); | 
|  | assert( HasRowid(pDest) || destHasUniqueIdx ); | 
|  | if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( | 
|  | (pDest->iPKey<0 && pDest->pIndex!=0)          /* (1) */ | 
|  | || destHasUniqueIdx                              /* (2) */ | 
|  | || (onError!=OE_Abort && onError!=OE_Rollback)   /* (3) */ | 
|  | )){ | 
|  | /* In some circumstances, we are able to run the xfer optimization | 
|  | ** only if the destination table is initially empty. Unless the | 
|  | ** DBFLAG_Vacuum flag is set, this block generates code to make | 
|  | ** that determination. If DBFLAG_Vacuum is set, then the destination | 
|  | ** table is always empty. | 
|  | ** | 
|  | ** Conditions under which the destination must be empty: | 
|  | ** | 
|  | ** (1) There is no INTEGER PRIMARY KEY but there are indices. | 
|  | **     (If the destination is not initially empty, the rowid fields | 
|  | **     of index entries might need to change.) | 
|  | ** | 
|  | ** (2) The destination has a unique index.  (The xfer optimization | 
|  | **     is unable to test uniqueness.) | 
|  | ** | 
|  | ** (3) onError is something other than OE_Abort and OE_Rollback. | 
|  | */ | 
|  | addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); | 
|  | emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); | 
|  | sqlite3VdbeJumpHere(v, addr1); | 
|  | } | 
|  | if( HasRowid(pSrc) ){ | 
|  | u8 insFlags; | 
|  | sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); | 
|  | emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | 
|  | if( pDest->iPKey>=0 ){ | 
|  | addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); | 
|  | if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ | 
|  | sqlite3VdbeVerifyAbortable(v, onError); | 
|  | addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); | 
|  | VdbeCoverage(v); | 
|  | sqlite3RowidConstraint(pParse, onError, pDest); | 
|  | sqlite3VdbeJumpHere(v, addr2); | 
|  | } | 
|  | autoIncStep(pParse, regAutoinc, regRowid); | 
|  | }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ | 
|  | addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); | 
|  | }else{ | 
|  | addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); | 
|  | assert( (pDest->tabFlags & TF_Autoincrement)==0 ); | 
|  | } | 
|  |  | 
|  | if( db->mDbFlags & DBFLAG_Vacuum ){ | 
|  | sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); | 
|  | insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; | 
|  | }else{ | 
|  | insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; | 
|  | } | 
|  | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK | 
|  | if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ | 
|  | sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); | 
|  | insFlags &= ~OPFLAG_PREFORMAT; | 
|  | }else | 
|  | #endif | 
|  | { | 
|  | sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); | 
|  | } | 
|  | sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); | 
|  | if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ | 
|  | sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); | 
|  | } | 
|  | sqlite3VdbeChangeP5(v, insFlags); | 
|  |  | 
|  | sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); | 
|  | sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | 
|  | }else{ | 
|  | sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); | 
|  | sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); | 
|  | } | 
|  | for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ | 
|  | u8 idxInsFlags = 0; | 
|  | for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ | 
|  | if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; | 
|  | } | 
|  | assert( pSrcIdx ); | 
|  | sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); | 
|  | sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); | 
|  | VdbeComment((v, "%s", pSrcIdx->zName)); | 
|  | sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); | 
|  | sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); | 
|  | sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); | 
|  | VdbeComment((v, "%s", pDestIdx->zName)); | 
|  | addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | 
|  | if( db->mDbFlags & DBFLAG_Vacuum ){ | 
|  | /* This INSERT command is part of a VACUUM operation, which guarantees | 
|  | ** that the destination table is empty. If all indexed columns use | 
|  | ** collation sequence BINARY, then it can also be assumed that the | 
|  | ** index will be populated by inserting keys in strictly sorted | 
|  | ** order. In this case, instead of seeking within the b-tree as part | 
|  | ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the | 
|  | ** OP_IdxInsert to seek to the point within the b-tree where each key | 
|  | ** should be inserted. This is faster. | 
|  | ** | 
|  | ** If any of the indexed columns use a collation sequence other than | 
|  | ** BINARY, this optimization is disabled. This is because the user | 
|  | ** might change the definition of a collation sequence and then run | 
|  | ** a VACUUM command. In that case keys may not be written in strictly | 
|  | ** sorted order.  */ | 
|  | for(i=0; i<pSrcIdx->nColumn; i++){ | 
|  | const char *zColl = pSrcIdx->azColl[i]; | 
|  | if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; | 
|  | } | 
|  | if( i==pSrcIdx->nColumn ){ | 
|  | idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; | 
|  | sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); | 
|  | sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); | 
|  | } | 
|  | }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ | 
|  | idxInsFlags |= OPFLAG_NCHANGE; | 
|  | } | 
|  | if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ | 
|  | sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); | 
|  | if( (db->mDbFlags & DBFLAG_Vacuum)==0 | 
|  | && !HasRowid(pDest) | 
|  | && IsPrimaryKeyIndex(pDestIdx) | 
|  | ){ | 
|  | codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); | 
|  | sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); | 
|  | sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); | 
|  | sqlite3VdbeJumpHere(v, addr1); | 
|  | sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); | 
|  | sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | 
|  | } | 
|  | if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); | 
|  | sqlite3ReleaseTempReg(pParse, regRowid); | 
|  | sqlite3ReleaseTempReg(pParse, regData); | 
|  | if( emptyDestTest ){ | 
|  | sqlite3AutoincrementEnd(pParse); | 
|  | sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); | 
|  | sqlite3VdbeJumpHere(v, emptyDestTest); | 
|  | sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | 
|  | return 0; | 
|  | }else{ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #endif /* SQLITE_OMIT_XFER_OPT */ |