|  | /* | 
|  | ** 2001 September 15 | 
|  | ** | 
|  | ** The author disclaims copyright to this source code.  In place of | 
|  | ** a legal notice, here is a blessing: | 
|  | ** | 
|  | **    May you do good and not evil. | 
|  | **    May you find forgiveness for yourself and forgive others. | 
|  | **    May you share freely, never taking more than you give. | 
|  | ** | 
|  | ************************************************************************* | 
|  | ** | 
|  | ** Memory allocation functions used throughout sqlite. | 
|  | */ | 
|  | #include "sqliteInt.h" | 
|  | #include <stdarg.h> | 
|  |  | 
|  | /* | 
|  | ** Attempt to release up to n bytes of non-essential memory currently | 
|  | ** held by SQLite. An example of non-essential memory is memory used to | 
|  | ** cache database pages that are not currently in use. | 
|  | */ | 
|  | int sqlite3_release_memory(int n){ | 
|  | #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | 
|  | return sqlite3PcacheReleaseMemory(n); | 
|  | #else | 
|  | /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine | 
|  | ** is a no-op returning zero if SQLite is not compiled with | 
|  | ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ | 
|  | UNUSED_PARAMETER(n); | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** State information local to the memory allocation subsystem. | 
|  | */ | 
|  | static SQLITE_WSD struct Mem0Global { | 
|  | sqlite3_mutex *mutex;         /* Mutex to serialize access */ | 
|  | sqlite3_int64 alarmThreshold; /* The soft heap limit */ | 
|  |  | 
|  | /* | 
|  | ** True if heap is nearly "full" where "full" is defined by the | 
|  | ** sqlite3_soft_heap_limit() setting. | 
|  | */ | 
|  | int nearlyFull; | 
|  | } mem0 = { 0, 0, 0 }; | 
|  |  | 
|  | #define mem0 GLOBAL(struct Mem0Global, mem0) | 
|  |  | 
|  | /* | 
|  | ** Return the memory allocator mutex. sqlite3_status() needs it. | 
|  | */ | 
|  | sqlite3_mutex *sqlite3MallocMutex(void){ | 
|  | return mem0.mutex; | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_DEPRECATED | 
|  | /* | 
|  | ** Deprecated external interface.  It used to set an alarm callback | 
|  | ** that was invoked when memory usage grew too large.  Now it is a | 
|  | ** no-op. | 
|  | */ | 
|  | int sqlite3_memory_alarm( | 
|  | void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | 
|  | void *pArg, | 
|  | sqlite3_int64 iThreshold | 
|  | ){ | 
|  | (void)xCallback; | 
|  | (void)pArg; | 
|  | (void)iThreshold; | 
|  | return SQLITE_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Set the soft heap-size limit for the library. Passing a zero or | 
|  | ** negative value indicates no limit. | 
|  | */ | 
|  | sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ | 
|  | sqlite3_int64 priorLimit; | 
|  | sqlite3_int64 excess; | 
|  | sqlite3_int64 nUsed; | 
|  | #ifndef SQLITE_OMIT_AUTOINIT | 
|  | int rc = sqlite3_initialize(); | 
|  | if( rc ) return -1; | 
|  | #endif | 
|  | sqlite3_mutex_enter(mem0.mutex); | 
|  | priorLimit = mem0.alarmThreshold; | 
|  | if( n<0 ){ | 
|  | sqlite3_mutex_leave(mem0.mutex); | 
|  | return priorLimit; | 
|  | } | 
|  | mem0.alarmThreshold = n; | 
|  | nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | 
|  | mem0.nearlyFull = (n>0 && n<=nUsed); | 
|  | sqlite3_mutex_leave(mem0.mutex); | 
|  | excess = sqlite3_memory_used() - n; | 
|  | if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); | 
|  | return priorLimit; | 
|  | } | 
|  | void sqlite3_soft_heap_limit(int n){ | 
|  | if( n<0 ) n = 0; | 
|  | sqlite3_soft_heap_limit64(n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Initialize the memory allocation subsystem. | 
|  | */ | 
|  | int sqlite3MallocInit(void){ | 
|  | int rc; | 
|  | if( sqlite3GlobalConfig.m.xMalloc==0 ){ | 
|  | sqlite3MemSetDefault(); | 
|  | } | 
|  | memset(&mem0, 0, sizeof(mem0)); | 
|  | mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | 
|  | if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 | 
|  | || sqlite3GlobalConfig.nPage<=0 ){ | 
|  | sqlite3GlobalConfig.pPage = 0; | 
|  | sqlite3GlobalConfig.szPage = 0; | 
|  | } | 
|  | rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); | 
|  | if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return true if the heap is currently under memory pressure - in other | 
|  | ** words if the amount of heap used is close to the limit set by | 
|  | ** sqlite3_soft_heap_limit(). | 
|  | */ | 
|  | int sqlite3HeapNearlyFull(void){ | 
|  | return mem0.nearlyFull; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Deinitialize the memory allocation subsystem. | 
|  | */ | 
|  | void sqlite3MallocEnd(void){ | 
|  | if( sqlite3GlobalConfig.m.xShutdown ){ | 
|  | sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); | 
|  | } | 
|  | memset(&mem0, 0, sizeof(mem0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the amount of memory currently checked out. | 
|  | */ | 
|  | sqlite3_int64 sqlite3_memory_used(void){ | 
|  | sqlite3_int64 res, mx; | 
|  | sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the maximum amount of memory that has ever been | 
|  | ** checked out since either the beginning of this process | 
|  | ** or since the most recent reset. | 
|  | */ | 
|  | sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ | 
|  | sqlite3_int64 res, mx; | 
|  | sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); | 
|  | return mx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Trigger the alarm | 
|  | */ | 
|  | static void sqlite3MallocAlarm(int nByte){ | 
|  | if( mem0.alarmThreshold<=0 ) return; | 
|  | sqlite3_mutex_leave(mem0.mutex); | 
|  | sqlite3_release_memory(nByte); | 
|  | sqlite3_mutex_enter(mem0.mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Do a memory allocation with statistics and alarms.  Assume the | 
|  | ** lock is already held. | 
|  | */ | 
|  | static void mallocWithAlarm(int n, void **pp){ | 
|  | void *p; | 
|  | int nFull; | 
|  | assert( sqlite3_mutex_held(mem0.mutex) ); | 
|  | assert( n>0 ); | 
|  |  | 
|  | /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal | 
|  | ** implementation of malloc_good_size(), which must be called in debug | 
|  | ** mode and specifically when the DMD "Dark Matter Detector" is enabled | 
|  | ** or else a crash results.  Hence, do not attempt to optimize out the | 
|  | ** following xRoundup() call. */ | 
|  | nFull = sqlite3GlobalConfig.m.xRoundup(n); | 
|  |  | 
|  | #ifdef SQLITE_MAX_MEMORY | 
|  | if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nFull>SQLITE_MAX_MEMORY ){ | 
|  | *pp = 0; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); | 
|  | if( mem0.alarmThreshold>0 ){ | 
|  | sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | 
|  | if( nUsed >= mem0.alarmThreshold - nFull ){ | 
|  | mem0.nearlyFull = 1; | 
|  | sqlite3MallocAlarm(nFull); | 
|  | }else{ | 
|  | mem0.nearlyFull = 0; | 
|  | } | 
|  | } | 
|  | p = sqlite3GlobalConfig.m.xMalloc(nFull); | 
|  | #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | 
|  | if( p==0 && mem0.alarmThreshold>0 ){ | 
|  | sqlite3MallocAlarm(nFull); | 
|  | p = sqlite3GlobalConfig.m.xMalloc(nFull); | 
|  | } | 
|  | #endif | 
|  | if( p ){ | 
|  | nFull = sqlite3MallocSize(p); | 
|  | sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); | 
|  | sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); | 
|  | } | 
|  | *pp = p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Allocate memory.  This routine is like sqlite3_malloc() except that it | 
|  | ** assumes the memory subsystem has already been initialized. | 
|  | */ | 
|  | void *sqlite3Malloc(u64 n){ | 
|  | void *p; | 
|  | if( n==0 || n>=0x7fffff00 ){ | 
|  | /* A memory allocation of a number of bytes which is near the maximum | 
|  | ** signed integer value might cause an integer overflow inside of the | 
|  | ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving | 
|  | ** 255 bytes of overhead.  SQLite itself will never use anything near | 
|  | ** this amount.  The only way to reach the limit is with sqlite3_malloc() */ | 
|  | p = 0; | 
|  | }else if( sqlite3GlobalConfig.bMemstat ){ | 
|  | sqlite3_mutex_enter(mem0.mutex); | 
|  | mallocWithAlarm((int)n, &p); | 
|  | sqlite3_mutex_leave(mem0.mutex); | 
|  | }else{ | 
|  | p = sqlite3GlobalConfig.m.xMalloc((int)n); | 
|  | } | 
|  | assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */ | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This version of the memory allocation is for use by the application. | 
|  | ** First make sure the memory subsystem is initialized, then do the | 
|  | ** allocation. | 
|  | */ | 
|  | void *sqlite3_malloc(int n){ | 
|  | #ifndef SQLITE_OMIT_AUTOINIT | 
|  | if( sqlite3_initialize() ) return 0; | 
|  | #endif | 
|  | return n<=0 ? 0 : sqlite3Malloc(n); | 
|  | } | 
|  | void *sqlite3_malloc64(sqlite3_uint64 n){ | 
|  | #ifndef SQLITE_OMIT_AUTOINIT | 
|  | if( sqlite3_initialize() ) return 0; | 
|  | #endif | 
|  | return sqlite3Malloc(n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** TRUE if p is a lookaside memory allocation from db | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_LOOKASIDE | 
|  | static int isLookaside(sqlite3 *db, void *p){ | 
|  | return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); | 
|  | } | 
|  | #else | 
|  | #define isLookaside(A,B) 0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Return the size of a memory allocation previously obtained from | 
|  | ** sqlite3Malloc() or sqlite3_malloc(). | 
|  | */ | 
|  | int sqlite3MallocSize(void *p){ | 
|  | assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 
|  | return sqlite3GlobalConfig.m.xSize(p); | 
|  | } | 
|  | int sqlite3DbMallocSize(sqlite3 *db, void *p){ | 
|  | assert( p!=0 ); | 
|  | if( db==0 || !isLookaside(db,p) ){ | 
|  | #ifdef SQLITE_DEBUG | 
|  | if( db==0 ){ | 
|  | assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | 
|  | assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 
|  | }else{ | 
|  | assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 
|  | assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 
|  | } | 
|  | #endif | 
|  | return sqlite3GlobalConfig.m.xSize(p); | 
|  | }else{ | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | return db->lookaside.sz; | 
|  | } | 
|  | } | 
|  | sqlite3_uint64 sqlite3_msize(void *p){ | 
|  | assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | 
|  | assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 
|  | return p ? sqlite3GlobalConfig.m.xSize(p) : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free memory previously obtained from sqlite3Malloc(). | 
|  | */ | 
|  | void sqlite3_free(void *p){ | 
|  | if( p==0 ) return;  /* IMP: R-49053-54554 */ | 
|  | assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | 
|  | assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | 
|  | if( sqlite3GlobalConfig.bMemstat ){ | 
|  | sqlite3_mutex_enter(mem0.mutex); | 
|  | sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); | 
|  | sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); | 
|  | sqlite3GlobalConfig.m.xFree(p); | 
|  | sqlite3_mutex_leave(mem0.mutex); | 
|  | }else{ | 
|  | sqlite3GlobalConfig.m.xFree(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Add the size of memory allocation "p" to the count in | 
|  | ** *db->pnBytesFreed. | 
|  | */ | 
|  | static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ | 
|  | *db->pnBytesFreed += sqlite3DbMallocSize(db,p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free memory that might be associated with a particular database | 
|  | ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. | 
|  | ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. | 
|  | */ | 
|  | void sqlite3DbFreeNN(sqlite3 *db, void *p){ | 
|  | assert( db==0 || sqlite3_mutex_held(db->mutex) ); | 
|  | assert( p!=0 ); | 
|  | if( db ){ | 
|  | if( db->pnBytesFreed ){ | 
|  | measureAllocationSize(db, p); | 
|  | return; | 
|  | } | 
|  | if( isLookaside(db, p) ){ | 
|  | LookasideSlot *pBuf = (LookasideSlot*)p; | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* Trash all content in the buffer being freed */ | 
|  | memset(p, 0xaa, db->lookaside.sz); | 
|  | #endif | 
|  | pBuf->pNext = db->lookaside.pFree; | 
|  | db->lookaside.pFree = pBuf; | 
|  | return; | 
|  | } | 
|  | } | 
|  | assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 
|  | assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 
|  | assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); | 
|  | sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | 
|  | sqlite3_free(p); | 
|  | } | 
|  | void sqlite3DbFree(sqlite3 *db, void *p){ | 
|  | assert( db==0 || sqlite3_mutex_held(db->mutex) ); | 
|  | if( p ) sqlite3DbFreeNN(db, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the size of an existing memory allocation | 
|  | */ | 
|  | void *sqlite3Realloc(void *pOld, u64 nBytes){ | 
|  | int nOld, nNew, nDiff; | 
|  | void *pNew; | 
|  | assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); | 
|  | assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); | 
|  | if( pOld==0 ){ | 
|  | return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ | 
|  | } | 
|  | if( nBytes==0 ){ | 
|  | sqlite3_free(pOld); /* IMP: R-26507-47431 */ | 
|  | return 0; | 
|  | } | 
|  | if( nBytes>=0x7fffff00 ){ | 
|  | /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ | 
|  | return 0; | 
|  | } | 
|  | nOld = sqlite3MallocSize(pOld); | 
|  | /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second | 
|  | ** argument to xRealloc is always a value returned by a prior call to | 
|  | ** xRoundup. */ | 
|  | nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); | 
|  | if( nOld==nNew ){ | 
|  | pNew = pOld; | 
|  | }else if( sqlite3GlobalConfig.bMemstat ){ | 
|  | sqlite3_mutex_enter(mem0.mutex); | 
|  | sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); | 
|  | nDiff = nNew - nOld; | 
|  | if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= | 
|  | mem0.alarmThreshold-nDiff ){ | 
|  | sqlite3MallocAlarm(nDiff); | 
|  | } | 
|  | pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | 
|  | if( pNew==0 && mem0.alarmThreshold>0 ){ | 
|  | sqlite3MallocAlarm((int)nBytes); | 
|  | pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | 
|  | } | 
|  | if( pNew ){ | 
|  | nNew = sqlite3MallocSize(pNew); | 
|  | sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); | 
|  | } | 
|  | sqlite3_mutex_leave(mem0.mutex); | 
|  | }else{ | 
|  | pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | 
|  | } | 
|  | assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ | 
|  | return pNew; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The public interface to sqlite3Realloc.  Make sure that the memory | 
|  | ** subsystem is initialized prior to invoking sqliteRealloc. | 
|  | */ | 
|  | void *sqlite3_realloc(void *pOld, int n){ | 
|  | #ifndef SQLITE_OMIT_AUTOINIT | 
|  | if( sqlite3_initialize() ) return 0; | 
|  | #endif | 
|  | if( n<0 ) n = 0;  /* IMP: R-26507-47431 */ | 
|  | return sqlite3Realloc(pOld, n); | 
|  | } | 
|  | void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ | 
|  | #ifndef SQLITE_OMIT_AUTOINIT | 
|  | if( sqlite3_initialize() ) return 0; | 
|  | #endif | 
|  | return sqlite3Realloc(pOld, n); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Allocate and zero memory. | 
|  | */ | 
|  | void *sqlite3MallocZero(u64 n){ | 
|  | void *p = sqlite3Malloc(n); | 
|  | if( p ){ | 
|  | memset(p, 0, (size_t)n); | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Allocate and zero memory.  If the allocation fails, make | 
|  | ** the mallocFailed flag in the connection pointer. | 
|  | */ | 
|  | void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ | 
|  | void *p; | 
|  | testcase( db==0 ); | 
|  | p = sqlite3DbMallocRaw(db, n); | 
|  | if( p ) memset(p, 0, (size_t)n); | 
|  | return p; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Finish the work of sqlite3DbMallocRawNN for the unusual and | 
|  | ** slower case when the allocation cannot be fulfilled using lookaside. | 
|  | */ | 
|  | static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ | 
|  | void *p; | 
|  | assert( db!=0 ); | 
|  | p = sqlite3Malloc(n); | 
|  | if( !p ) sqlite3OomFault(db); | 
|  | sqlite3MemdebugSetType(p, | 
|  | (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Allocate memory, either lookaside (if possible) or heap. | 
|  | ** If the allocation fails, set the mallocFailed flag in | 
|  | ** the connection pointer. | 
|  | ** | 
|  | ** If db!=0 and db->mallocFailed is true (indicating a prior malloc | 
|  | ** failure on the same database connection) then always return 0. | 
|  | ** Hence for a particular database connection, once malloc starts | 
|  | ** failing, it fails consistently until mallocFailed is reset. | 
|  | ** This is an important assumption.  There are many places in the | 
|  | ** code that do things like this: | 
|  | ** | 
|  | **         int *a = (int*)sqlite3DbMallocRaw(db, 100); | 
|  | **         int *b = (int*)sqlite3DbMallocRaw(db, 200); | 
|  | **         if( b ) a[10] = 9; | 
|  | ** | 
|  | ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed | 
|  | ** that all prior mallocs (ex: "a") worked too. | 
|  | ** | 
|  | ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is | 
|  | ** not a NULL pointer. | 
|  | */ | 
|  | void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ | 
|  | void *p; | 
|  | if( db ) return sqlite3DbMallocRawNN(db, n); | 
|  | p = sqlite3Malloc(n); | 
|  | sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | 
|  | return p; | 
|  | } | 
|  | void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ | 
|  | #ifndef SQLITE_OMIT_LOOKASIDE | 
|  | LookasideSlot *pBuf; | 
|  | assert( db!=0 ); | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | assert( db->pnBytesFreed==0 ); | 
|  | if( db->lookaside.bDisable==0 ){ | 
|  | assert( db->mallocFailed==0 ); | 
|  | if( n>db->lookaside.sz ){ | 
|  | db->lookaside.anStat[1]++; | 
|  | }else if( (pBuf = db->lookaside.pFree)!=0 ){ | 
|  | db->lookaside.pFree = pBuf->pNext; | 
|  | db->lookaside.anStat[0]++; | 
|  | return (void*)pBuf; | 
|  | }else if( (pBuf = db->lookaside.pInit)!=0 ){ | 
|  | db->lookaside.pInit = pBuf->pNext; | 
|  | db->lookaside.anStat[0]++; | 
|  | return (void*)pBuf; | 
|  | }else{ | 
|  | db->lookaside.anStat[2]++; | 
|  | } | 
|  | }else if( db->mallocFailed ){ | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | assert( db!=0 ); | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | assert( db->pnBytesFreed==0 ); | 
|  | if( db->mallocFailed ){ | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | return dbMallocRawFinish(db, n); | 
|  | } | 
|  |  | 
|  | /* Forward declaration */ | 
|  | static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); | 
|  |  | 
|  | /* | 
|  | ** Resize the block of memory pointed to by p to n bytes. If the | 
|  | ** resize fails, set the mallocFailed flag in the connection object. | 
|  | */ | 
|  | void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ | 
|  | assert( db!=0 ); | 
|  | if( p==0 ) return sqlite3DbMallocRawNN(db, n); | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | if( isLookaside(db,p) && n<=db->lookaside.sz ) return p; | 
|  | return dbReallocFinish(db, p, n); | 
|  | } | 
|  | static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ | 
|  | void *pNew = 0; | 
|  | assert( db!=0 ); | 
|  | assert( p!=0 ); | 
|  | if( db->mallocFailed==0 ){ | 
|  | if( isLookaside(db, p) ){ | 
|  | pNew = sqlite3DbMallocRawNN(db, n); | 
|  | if( pNew ){ | 
|  | memcpy(pNew, p, db->lookaside.sz); | 
|  | sqlite3DbFree(db, p); | 
|  | } | 
|  | }else{ | 
|  | assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 
|  | assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | 
|  | sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | 
|  | pNew = sqlite3_realloc64(p, n); | 
|  | if( !pNew ){ | 
|  | sqlite3OomFault(db); | 
|  | } | 
|  | sqlite3MemdebugSetType(pNew, | 
|  | (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); | 
|  | } | 
|  | } | 
|  | return pNew; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Attempt to reallocate p.  If the reallocation fails, then free p | 
|  | ** and set the mallocFailed flag in the database connection. | 
|  | */ | 
|  | void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ | 
|  | void *pNew; | 
|  | pNew = sqlite3DbRealloc(db, p, n); | 
|  | if( !pNew ){ | 
|  | sqlite3DbFree(db, p); | 
|  | } | 
|  | return pNew; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Make a copy of a string in memory obtained from sqliteMalloc(). These | 
|  | ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This | 
|  | ** is because when memory debugging is turned on, these two functions are | 
|  | ** called via macros that record the current file and line number in the | 
|  | ** ThreadData structure. | 
|  | */ | 
|  | char *sqlite3DbStrDup(sqlite3 *db, const char *z){ | 
|  | char *zNew; | 
|  | size_t n; | 
|  | if( z==0 ){ | 
|  | return 0; | 
|  | } | 
|  | n = strlen(z) + 1; | 
|  | zNew = sqlite3DbMallocRaw(db, n); | 
|  | if( zNew ){ | 
|  | memcpy(zNew, z, n); | 
|  | } | 
|  | return zNew; | 
|  | } | 
|  | char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ | 
|  | char *zNew; | 
|  | assert( db!=0 ); | 
|  | if( z==0 ){ | 
|  | return 0; | 
|  | } | 
|  | assert( (n&0x7fffffff)==n ); | 
|  | zNew = sqlite3DbMallocRawNN(db, n+1); | 
|  | if( zNew ){ | 
|  | memcpy(zNew, z, (size_t)n); | 
|  | zNew[n] = 0; | 
|  | } | 
|  | return zNew; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The text between zStart and zEnd represents a phrase within a larger | 
|  | ** SQL statement.  Make a copy of this phrase in space obtained form | 
|  | ** sqlite3DbMalloc().  Omit leading and trailing whitespace. | 
|  | */ | 
|  | char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ | 
|  | int n; | 
|  | while( sqlite3Isspace(zStart[0]) ) zStart++; | 
|  | n = (int)(zEnd - zStart); | 
|  | while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--; | 
|  | return sqlite3DbStrNDup(db, zStart, n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free any prior content in *pz and replace it with a copy of zNew. | 
|  | */ | 
|  | void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ | 
|  | sqlite3DbFree(db, *pz); | 
|  | *pz = sqlite3DbStrDup(db, zNew); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Call this routine to record the fact that an OOM (out-of-memory) error | 
|  | ** has happened.  This routine will set db->mallocFailed, and also | 
|  | ** temporarily disable the lookaside memory allocator and interrupt | 
|  | ** any running VDBEs. | 
|  | */ | 
|  | void sqlite3OomFault(sqlite3 *db){ | 
|  | if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ | 
|  | db->mallocFailed = 1; | 
|  | if( db->nVdbeExec>0 ){ | 
|  | db->u1.isInterrupted = 1; | 
|  | } | 
|  | db->lookaside.bDisable++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This routine reactivates the memory allocator and clears the | 
|  | ** db->mallocFailed flag as necessary. | 
|  | ** | 
|  | ** The memory allocator is not restarted if there are running | 
|  | ** VDBEs. | 
|  | */ | 
|  | void sqlite3OomClear(sqlite3 *db){ | 
|  | if( db->mallocFailed && db->nVdbeExec==0 ){ | 
|  | db->mallocFailed = 0; | 
|  | db->u1.isInterrupted = 0; | 
|  | assert( db->lookaside.bDisable>0 ); | 
|  | db->lookaside.bDisable--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Take actions at the end of an API call to indicate an OOM error | 
|  | */ | 
|  | static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ | 
|  | sqlite3OomClear(db); | 
|  | sqlite3Error(db, SQLITE_NOMEM); | 
|  | return SQLITE_NOMEM_BKPT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This function must be called before exiting any API function (i.e. | 
|  | ** returning control to the user) that has called sqlite3_malloc or | 
|  | ** sqlite3_realloc. | 
|  | ** | 
|  | ** The returned value is normally a copy of the second argument to this | 
|  | ** function. However, if a malloc() failure has occurred since the previous | 
|  | ** invocation SQLITE_NOMEM is returned instead. | 
|  | ** | 
|  | ** If an OOM as occurred, then the connection error-code (the value | 
|  | ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. | 
|  | */ | 
|  | int sqlite3ApiExit(sqlite3* db, int rc){ | 
|  | /* If the db handle must hold the connection handle mutex here. | 
|  | ** Otherwise the read (and possible write) of db->mallocFailed | 
|  | ** is unsafe, as is the call to sqlite3Error(). | 
|  | */ | 
|  | assert( db!=0 ); | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ | 
|  | return apiOomError(db); | 
|  | } | 
|  | return rc & db->errMask; | 
|  | } |