|  | /* | 
|  | ** 2007 October 14 | 
|  | ** | 
|  | ** The author disclaims copyright to this source code.  In place of | 
|  | ** a legal notice, here is a blessing: | 
|  | ** | 
|  | **    May you do good and not evil. | 
|  | **    May you find forgiveness for yourself and forgive others. | 
|  | **    May you share freely, never taking more than you give. | 
|  | ** | 
|  | ************************************************************************* | 
|  | ** This file contains the C functions that implement a memory | 
|  | ** allocation subsystem for use by SQLite. | 
|  | ** | 
|  | ** This version of the memory allocation subsystem omits all | 
|  | ** use of malloc(). The SQLite user supplies a block of memory | 
|  | ** before calling sqlite3_initialize() from which allocations | 
|  | ** are made and returned by the xMalloc() and xRealloc() | 
|  | ** implementations. Once sqlite3_initialize() has been called, | 
|  | ** the amount of memory available to SQLite is fixed and cannot | 
|  | ** be changed. | 
|  | ** | 
|  | ** This version of the memory allocation subsystem is included | 
|  | ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. | 
|  | */ | 
|  | #include "sqliteInt.h" | 
|  |  | 
|  | /* | 
|  | ** This version of the memory allocator is only built into the library | 
|  | ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not | 
|  | ** mean that the library will use a memory-pool by default, just that | 
|  | ** it is available. The mempool allocator is activated by calling | 
|  | ** sqlite3_config(). | 
|  | */ | 
|  | #ifdef SQLITE_ENABLE_MEMSYS3 | 
|  |  | 
|  | /* | 
|  | ** Maximum size (in Mem3Blocks) of a "small" chunk. | 
|  | */ | 
|  | #define MX_SMALL 10 | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Number of freelist hash slots | 
|  | */ | 
|  | #define N_HASH  61 | 
|  |  | 
|  | /* | 
|  | ** A memory allocation (also called a "chunk") consists of two or | 
|  | ** more blocks where each block is 8 bytes.  The first 8 bytes are | 
|  | ** a header that is not returned to the user. | 
|  | ** | 
|  | ** A chunk is two or more blocks that is either checked out or | 
|  | ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the | 
|  | ** size of the allocation in blocks if the allocation is free. | 
|  | ** The u.hdr.size4x&1 bit is true if the chunk is checked out and | 
|  | ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit | 
|  | ** is true if the previous chunk is checked out and false if the | 
|  | ** previous chunk is free.  The u.hdr.prevSize field is the size of | 
|  | ** the previous chunk in blocks if the previous chunk is on the | 
|  | ** freelist. If the previous chunk is checked out, then | 
|  | ** u.hdr.prevSize can be part of the data for that chunk and should | 
|  | ** not be read or written. | 
|  | ** | 
|  | ** We often identify a chunk by its index in mem3.aPool[].  When | 
|  | ** this is done, the chunk index refers to the second block of | 
|  | ** the chunk.  In this way, the first chunk has an index of 1. | 
|  | ** A chunk index of 0 means "no such chunk" and is the equivalent | 
|  | ** of a NULL pointer. | 
|  | ** | 
|  | ** The second block of free chunks is of the form u.list.  The | 
|  | ** two fields form a double-linked list of chunks of related sizes. | 
|  | ** Pointers to the head of the list are stored in mem3.aiSmall[] | 
|  | ** for smaller chunks and mem3.aiHash[] for larger chunks. | 
|  | ** | 
|  | ** The second block of a chunk is user data if the chunk is checked | 
|  | ** out.  If a chunk is checked out, the user data may extend into | 
|  | ** the u.hdr.prevSize value of the following chunk. | 
|  | */ | 
|  | typedef struct Mem3Block Mem3Block; | 
|  | struct Mem3Block { | 
|  | union { | 
|  | struct { | 
|  | u32 prevSize;   /* Size of previous chunk in Mem3Block elements */ | 
|  | u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */ | 
|  | } hdr; | 
|  | struct { | 
|  | u32 next;       /* Index in mem3.aPool[] of next free chunk */ | 
|  | u32 prev;       /* Index in mem3.aPool[] of previous free chunk */ | 
|  | } list; | 
|  | } u; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** All of the static variables used by this module are collected | 
|  | ** into a single structure named "mem3".  This is to keep the | 
|  | ** static variables organized and to reduce namespace pollution | 
|  | ** when this module is combined with other in the amalgamation. | 
|  | */ | 
|  | static SQLITE_WSD struct Mem3Global { | 
|  | /* | 
|  | ** Memory available for allocation. nPool is the size of the array | 
|  | ** (in Mem3Blocks) pointed to by aPool less 2. | 
|  | */ | 
|  | u32 nPool; | 
|  | Mem3Block *aPool; | 
|  |  | 
|  | /* | 
|  | ** True if we are evaluating an out-of-memory callback. | 
|  | */ | 
|  | int alarmBusy; | 
|  |  | 
|  | /* | 
|  | ** Mutex to control access to the memory allocation subsystem. | 
|  | */ | 
|  | sqlite3_mutex *mutex; | 
|  |  | 
|  | /* | 
|  | ** The minimum amount of free space that we have seen. | 
|  | */ | 
|  | u32 mnMaster; | 
|  |  | 
|  | /* | 
|  | ** iMaster is the index of the master chunk.  Most new allocations | 
|  | ** occur off of this chunk.  szMaster is the size (in Mem3Blocks) | 
|  | ** of the current master.  iMaster is 0 if there is not master chunk. | 
|  | ** The master chunk is not in either the aiHash[] or aiSmall[]. | 
|  | */ | 
|  | u32 iMaster; | 
|  | u32 szMaster; | 
|  |  | 
|  | /* | 
|  | ** Array of lists of free blocks according to the block size | 
|  | ** for smaller chunks, or a hash on the block size for larger | 
|  | ** chunks. | 
|  | */ | 
|  | u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */ | 
|  | u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */ | 
|  | } mem3 = { 97535575 }; | 
|  |  | 
|  | #define mem3 GLOBAL(struct Mem3Global, mem3) | 
|  |  | 
|  | /* | 
|  | ** Unlink the chunk at mem3.aPool[i] from list it is currently | 
|  | ** on.  *pRoot is the list that i is a member of. | 
|  | */ | 
|  | static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ | 
|  | u32 next = mem3.aPool[i].u.list.next; | 
|  | u32 prev = mem3.aPool[i].u.list.prev; | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | if( prev==0 ){ | 
|  | *pRoot = next; | 
|  | }else{ | 
|  | mem3.aPool[prev].u.list.next = next; | 
|  | } | 
|  | if( next ){ | 
|  | mem3.aPool[next].u.list.prev = prev; | 
|  | } | 
|  | mem3.aPool[i].u.list.next = 0; | 
|  | mem3.aPool[i].u.list.prev = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Unlink the chunk at index i from | 
|  | ** whatever list is currently a member of. | 
|  | */ | 
|  | static void memsys3Unlink(u32 i){ | 
|  | u32 size, hash; | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); | 
|  | assert( i>=1 ); | 
|  | size = mem3.aPool[i-1].u.hdr.size4x/4; | 
|  | assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); | 
|  | assert( size>=2 ); | 
|  | if( size <= MX_SMALL ){ | 
|  | memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); | 
|  | }else{ | 
|  | hash = size % N_HASH; | 
|  | memsys3UnlinkFromList(i, &mem3.aiHash[hash]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Link the chunk at mem3.aPool[i] so that is on the list rooted | 
|  | ** at *pRoot. | 
|  | */ | 
|  | static void memsys3LinkIntoList(u32 i, u32 *pRoot){ | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | mem3.aPool[i].u.list.next = *pRoot; | 
|  | mem3.aPool[i].u.list.prev = 0; | 
|  | if( *pRoot ){ | 
|  | mem3.aPool[*pRoot].u.list.prev = i; | 
|  | } | 
|  | *pRoot = i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Link the chunk at index i into either the appropriate | 
|  | ** small chunk list, or into the large chunk hash table. | 
|  | */ | 
|  | static void memsys3Link(u32 i){ | 
|  | u32 size, hash; | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | assert( i>=1 ); | 
|  | assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); | 
|  | size = mem3.aPool[i-1].u.hdr.size4x/4; | 
|  | assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); | 
|  | assert( size>=2 ); | 
|  | if( size <= MX_SMALL ){ | 
|  | memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); | 
|  | }else{ | 
|  | hash = size % N_HASH; | 
|  | memsys3LinkIntoList(i, &mem3.aiHash[hash]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex | 
|  | ** will already be held (obtained by code in malloc.c) if | 
|  | ** sqlite3GlobalConfig.bMemStat is true. | 
|  | */ | 
|  | static void memsys3Enter(void){ | 
|  | if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ | 
|  | mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | 
|  | } | 
|  | sqlite3_mutex_enter(mem3.mutex); | 
|  | } | 
|  | static void memsys3Leave(void){ | 
|  | sqlite3_mutex_leave(mem3.mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Called when we are unable to satisfy an allocation of nBytes. | 
|  | */ | 
|  | static void memsys3OutOfMemory(int nByte){ | 
|  | if( !mem3.alarmBusy ){ | 
|  | mem3.alarmBusy = 1; | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | sqlite3_mutex_leave(mem3.mutex); | 
|  | sqlite3_release_memory(nByte); | 
|  | sqlite3_mutex_enter(mem3.mutex); | 
|  | mem3.alarmBusy = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Chunk i is a free chunk that has been unlinked.  Adjust its | 
|  | ** size parameters for check-out and return a pointer to the | 
|  | ** user portion of the chunk. | 
|  | */ | 
|  | static void *memsys3Checkout(u32 i, u32 nBlock){ | 
|  | u32 x; | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | assert( i>=1 ); | 
|  | assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); | 
|  | assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); | 
|  | x = mem3.aPool[i-1].u.hdr.size4x; | 
|  | mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); | 
|  | mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; | 
|  | mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; | 
|  | return &mem3.aPool[i]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Carve a piece off of the end of the mem3.iMaster free chunk. | 
|  | ** Return a pointer to the new allocation.  Or, if the master chunk | 
|  | ** is not large enough, return 0. | 
|  | */ | 
|  | static void *memsys3FromMaster(u32 nBlock){ | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | assert( mem3.szMaster>=nBlock ); | 
|  | if( nBlock>=mem3.szMaster-1 ){ | 
|  | /* Use the entire master */ | 
|  | void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); | 
|  | mem3.iMaster = 0; | 
|  | mem3.szMaster = 0; | 
|  | mem3.mnMaster = 0; | 
|  | return p; | 
|  | }else{ | 
|  | /* Split the master block.  Return the tail. */ | 
|  | u32 newi, x; | 
|  | newi = mem3.iMaster + mem3.szMaster - nBlock; | 
|  | assert( newi > mem3.iMaster+1 ); | 
|  | mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; | 
|  | mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; | 
|  | mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; | 
|  | mem3.szMaster -= nBlock; | 
|  | mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; | 
|  | x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; | 
|  | mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; | 
|  | if( mem3.szMaster < mem3.mnMaster ){ | 
|  | mem3.mnMaster = mem3.szMaster; | 
|  | } | 
|  | return (void*)&mem3.aPool[newi]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** *pRoot is the head of a list of free chunks of the same size | 
|  | ** or same size hash.  In other words, *pRoot is an entry in either | 
|  | ** mem3.aiSmall[] or mem3.aiHash[]. | 
|  | ** | 
|  | ** This routine examines all entries on the given list and tries | 
|  | ** to coalesce each entries with adjacent free chunks. | 
|  | ** | 
|  | ** If it sees a chunk that is larger than mem3.iMaster, it replaces | 
|  | ** the current mem3.iMaster with the new larger chunk.  In order for | 
|  | ** this mem3.iMaster replacement to work, the master chunk must be | 
|  | ** linked into the hash tables.  That is not the normal state of | 
|  | ** affairs, of course.  The calling routine must link the master | 
|  | ** chunk before invoking this routine, then must unlink the (possibly | 
|  | ** changed) master chunk once this routine has finished. | 
|  | */ | 
|  | static void memsys3Merge(u32 *pRoot){ | 
|  | u32 iNext, prev, size, i, x; | 
|  |  | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | for(i=*pRoot; i>0; i=iNext){ | 
|  | iNext = mem3.aPool[i].u.list.next; | 
|  | size = mem3.aPool[i-1].u.hdr.size4x; | 
|  | assert( (size&1)==0 ); | 
|  | if( (size&2)==0 ){ | 
|  | memsys3UnlinkFromList(i, pRoot); | 
|  | assert( i > mem3.aPool[i-1].u.hdr.prevSize ); | 
|  | prev = i - mem3.aPool[i-1].u.hdr.prevSize; | 
|  | if( prev==iNext ){ | 
|  | iNext = mem3.aPool[prev].u.list.next; | 
|  | } | 
|  | memsys3Unlink(prev); | 
|  | size = i + size/4 - prev; | 
|  | x = mem3.aPool[prev-1].u.hdr.size4x & 2; | 
|  | mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; | 
|  | mem3.aPool[prev+size-1].u.hdr.prevSize = size; | 
|  | memsys3Link(prev); | 
|  | i = prev; | 
|  | }else{ | 
|  | size /= 4; | 
|  | } | 
|  | if( size>mem3.szMaster ){ | 
|  | mem3.iMaster = i; | 
|  | mem3.szMaster = size; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return a block of memory of at least nBytes in size. | 
|  | ** Return NULL if unable. | 
|  | ** | 
|  | ** This function assumes that the necessary mutexes, if any, are | 
|  | ** already held by the caller. Hence "Unsafe". | 
|  | */ | 
|  | static void *memsys3MallocUnsafe(int nByte){ | 
|  | u32 i; | 
|  | u32 nBlock; | 
|  | u32 toFree; | 
|  |  | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | assert( sizeof(Mem3Block)==8 ); | 
|  | if( nByte<=12 ){ | 
|  | nBlock = 2; | 
|  | }else{ | 
|  | nBlock = (nByte + 11)/8; | 
|  | } | 
|  | assert( nBlock>=2 ); | 
|  |  | 
|  | /* STEP 1: | 
|  | ** Look for an entry of the correct size in either the small | 
|  | ** chunk table or in the large chunk hash table.  This is | 
|  | ** successful most of the time (about 9 times out of 10). | 
|  | */ | 
|  | if( nBlock <= MX_SMALL ){ | 
|  | i = mem3.aiSmall[nBlock-2]; | 
|  | if( i>0 ){ | 
|  | memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); | 
|  | return memsys3Checkout(i, nBlock); | 
|  | } | 
|  | }else{ | 
|  | int hash = nBlock % N_HASH; | 
|  | for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ | 
|  | if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ | 
|  | memsys3UnlinkFromList(i, &mem3.aiHash[hash]); | 
|  | return memsys3Checkout(i, nBlock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* STEP 2: | 
|  | ** Try to satisfy the allocation by carving a piece off of the end | 
|  | ** of the master chunk.  This step usually works if step 1 fails. | 
|  | */ | 
|  | if( mem3.szMaster>=nBlock ){ | 
|  | return memsys3FromMaster(nBlock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* STEP 3: | 
|  | ** Loop through the entire memory pool.  Coalesce adjacent free | 
|  | ** chunks.  Recompute the master chunk as the largest free chunk. | 
|  | ** Then try again to satisfy the allocation by carving a piece off | 
|  | ** of the end of the master chunk.  This step happens very | 
|  | ** rarely (we hope!) | 
|  | */ | 
|  | for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ | 
|  | memsys3OutOfMemory(toFree); | 
|  | if( mem3.iMaster ){ | 
|  | memsys3Link(mem3.iMaster); | 
|  | mem3.iMaster = 0; | 
|  | mem3.szMaster = 0; | 
|  | } | 
|  | for(i=0; i<N_HASH; i++){ | 
|  | memsys3Merge(&mem3.aiHash[i]); | 
|  | } | 
|  | for(i=0; i<MX_SMALL-1; i++){ | 
|  | memsys3Merge(&mem3.aiSmall[i]); | 
|  | } | 
|  | if( mem3.szMaster ){ | 
|  | memsys3Unlink(mem3.iMaster); | 
|  | if( mem3.szMaster>=nBlock ){ | 
|  | return memsys3FromMaster(nBlock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If none of the above worked, then we fail. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free an outstanding memory allocation. | 
|  | ** | 
|  | ** This function assumes that the necessary mutexes, if any, are | 
|  | ** already held by the caller. Hence "Unsafe". | 
|  | */ | 
|  | static void memsys3FreeUnsafe(void *pOld){ | 
|  | Mem3Block *p = (Mem3Block*)pOld; | 
|  | int i; | 
|  | u32 size, x; | 
|  | assert( sqlite3_mutex_held(mem3.mutex) ); | 
|  | assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); | 
|  | i = p - mem3.aPool; | 
|  | assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); | 
|  | size = mem3.aPool[i-1].u.hdr.size4x/4; | 
|  | assert( i+size<=mem3.nPool+1 ); | 
|  | mem3.aPool[i-1].u.hdr.size4x &= ~1; | 
|  | mem3.aPool[i+size-1].u.hdr.prevSize = size; | 
|  | mem3.aPool[i+size-1].u.hdr.size4x &= ~2; | 
|  | memsys3Link(i); | 
|  |  | 
|  | /* Try to expand the master using the newly freed chunk */ | 
|  | if( mem3.iMaster ){ | 
|  | while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ | 
|  | size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; | 
|  | mem3.iMaster -= size; | 
|  | mem3.szMaster += size; | 
|  | memsys3Unlink(mem3.iMaster); | 
|  | x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; | 
|  | mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; | 
|  | mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; | 
|  | } | 
|  | x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; | 
|  | while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ | 
|  | memsys3Unlink(mem3.iMaster+mem3.szMaster); | 
|  | mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; | 
|  | mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; | 
|  | mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the size of an outstanding allocation, in bytes.  The | 
|  | ** size returned omits the 8-byte header overhead.  This only | 
|  | ** works for chunks that are currently checked out. | 
|  | */ | 
|  | static int memsys3Size(void *p){ | 
|  | Mem3Block *pBlock; | 
|  | assert( p!=0 ); | 
|  | pBlock = (Mem3Block*)p; | 
|  | assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); | 
|  | return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Round up a request size to the next valid allocation size. | 
|  | */ | 
|  | static int memsys3Roundup(int n){ | 
|  | if( n<=12 ){ | 
|  | return 12; | 
|  | }else{ | 
|  | return ((n+11)&~7) - 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Allocate nBytes of memory. | 
|  | */ | 
|  | static void *memsys3Malloc(int nBytes){ | 
|  | sqlite3_int64 *p; | 
|  | assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */ | 
|  | memsys3Enter(); | 
|  | p = memsys3MallocUnsafe(nBytes); | 
|  | memsys3Leave(); | 
|  | return (void*)p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free memory. | 
|  | */ | 
|  | static void memsys3Free(void *pPrior){ | 
|  | assert( pPrior ); | 
|  | memsys3Enter(); | 
|  | memsys3FreeUnsafe(pPrior); | 
|  | memsys3Leave(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the size of an existing memory allocation | 
|  | */ | 
|  | static void *memsys3Realloc(void *pPrior, int nBytes){ | 
|  | int nOld; | 
|  | void *p; | 
|  | if( pPrior==0 ){ | 
|  | return sqlite3_malloc(nBytes); | 
|  | } | 
|  | if( nBytes<=0 ){ | 
|  | sqlite3_free(pPrior); | 
|  | return 0; | 
|  | } | 
|  | nOld = memsys3Size(pPrior); | 
|  | if( nBytes<=nOld && nBytes>=nOld-128 ){ | 
|  | return pPrior; | 
|  | } | 
|  | memsys3Enter(); | 
|  | p = memsys3MallocUnsafe(nBytes); | 
|  | if( p ){ | 
|  | if( nOld<nBytes ){ | 
|  | memcpy(p, pPrior, nOld); | 
|  | }else{ | 
|  | memcpy(p, pPrior, nBytes); | 
|  | } | 
|  | memsys3FreeUnsafe(pPrior); | 
|  | } | 
|  | memsys3Leave(); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Initialize this module. | 
|  | */ | 
|  | static int memsys3Init(void *NotUsed){ | 
|  | UNUSED_PARAMETER(NotUsed); | 
|  | if( !sqlite3GlobalConfig.pHeap ){ | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  |  | 
|  | /* Store a pointer to the memory block in global structure mem3. */ | 
|  | assert( sizeof(Mem3Block)==8 ); | 
|  | mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; | 
|  | mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; | 
|  |  | 
|  | /* Initialize the master block. */ | 
|  | mem3.szMaster = mem3.nPool; | 
|  | mem3.mnMaster = mem3.szMaster; | 
|  | mem3.iMaster = 1; | 
|  | mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; | 
|  | mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; | 
|  | mem3.aPool[mem3.nPool].u.hdr.size4x = 1; | 
|  |  | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Deinitialize this module. | 
|  | */ | 
|  | static void memsys3Shutdown(void *NotUsed){ | 
|  | UNUSED_PARAMETER(NotUsed); | 
|  | mem3.mutex = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Open the file indicated and write a log of all unfreed memory | 
|  | ** allocations into that log. | 
|  | */ | 
|  | void sqlite3Memsys3Dump(const char *zFilename){ | 
|  | #ifdef SQLITE_DEBUG | 
|  | FILE *out; | 
|  | u32 i, j; | 
|  | u32 size; | 
|  | if( zFilename==0 || zFilename[0]==0 ){ | 
|  | out = stdout; | 
|  | }else{ | 
|  | out = fopen(zFilename, "w"); | 
|  | if( out==0 ){ | 
|  | fprintf(stderr, "** Unable to output memory debug output log: %s **\n", | 
|  | zFilename); | 
|  | return; | 
|  | } | 
|  | } | 
|  | memsys3Enter(); | 
|  | fprintf(out, "CHUNKS:\n"); | 
|  | for(i=1; i<=mem3.nPool; i+=size/4){ | 
|  | size = mem3.aPool[i-1].u.hdr.size4x; | 
|  | if( size/4<=1 ){ | 
|  | fprintf(out, "%p size error\n", &mem3.aPool[i]); | 
|  | assert( 0 ); | 
|  | break; | 
|  | } | 
|  | if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ | 
|  | fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); | 
|  | assert( 0 ); | 
|  | break; | 
|  | } | 
|  | if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ | 
|  | fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); | 
|  | assert( 0 ); | 
|  | break; | 
|  | } | 
|  | if( size&1 ){ | 
|  | fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); | 
|  | }else{ | 
|  | fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, | 
|  | i==mem3.iMaster ? " **master**" : ""); | 
|  | } | 
|  | } | 
|  | for(i=0; i<MX_SMALL-1; i++){ | 
|  | if( mem3.aiSmall[i]==0 ) continue; | 
|  | fprintf(out, "small(%2d):", i); | 
|  | for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ | 
|  | fprintf(out, " %p(%d)", &mem3.aPool[j], | 
|  | (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); | 
|  | } | 
|  | fprintf(out, "\n"); | 
|  | } | 
|  | for(i=0; i<N_HASH; i++){ | 
|  | if( mem3.aiHash[i]==0 ) continue; | 
|  | fprintf(out, "hash(%2d):", i); | 
|  | for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ | 
|  | fprintf(out, " %p(%d)", &mem3.aPool[j], | 
|  | (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); | 
|  | } | 
|  | fprintf(out, "\n"); | 
|  | } | 
|  | fprintf(out, "master=%d\n", mem3.iMaster); | 
|  | fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); | 
|  | fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); | 
|  | sqlite3_mutex_leave(mem3.mutex); | 
|  | if( out==stdout ){ | 
|  | fflush(stdout); | 
|  | }else{ | 
|  | fclose(out); | 
|  | } | 
|  | #else | 
|  | UNUSED_PARAMETER(zFilename); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This routine is the only routine in this file with external | 
|  | ** linkage. | 
|  | ** | 
|  | ** Populate the low-level memory allocation function pointers in | 
|  | ** sqlite3GlobalConfig.m with pointers to the routines in this file. The | 
|  | ** arguments specify the block of memory to manage. | 
|  | ** | 
|  | ** This routine is only called by sqlite3_config(), and therefore | 
|  | ** is not required to be threadsafe (it is not). | 
|  | */ | 
|  | const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ | 
|  | static const sqlite3_mem_methods mempoolMethods = { | 
|  | memsys3Malloc, | 
|  | memsys3Free, | 
|  | memsys3Realloc, | 
|  | memsys3Size, | 
|  | memsys3Roundup, | 
|  | memsys3Init, | 
|  | memsys3Shutdown, | 
|  | 0 | 
|  | }; | 
|  | return &mempoolMethods; | 
|  | } | 
|  |  | 
|  | #endif /* SQLITE_ENABLE_MEMSYS3 */ |