|  | /* | 
|  | ** 2003 April 6 | 
|  | ** | 
|  | ** The author disclaims copyright to this source code.  In place of | 
|  | ** a legal notice, here is a blessing: | 
|  | ** | 
|  | **    May you do good and not evil. | 
|  | **    May you find forgiveness for yourself and forgive others. | 
|  | **    May you share freely, never taking more than you give. | 
|  | ** | 
|  | ************************************************************************* | 
|  | ** This file contains code used to implement the PRAGMA command. | 
|  | */ | 
|  | #include "sqliteInt.h" | 
|  |  | 
|  | #if !defined(SQLITE_ENABLE_LOCKING_STYLE) | 
|  | #  if defined(__APPLE__) | 
|  | #    define SQLITE_ENABLE_LOCKING_STYLE 1 | 
|  | #  else | 
|  | #    define SQLITE_ENABLE_LOCKING_STYLE 0 | 
|  | #  endif | 
|  | #endif | 
|  |  | 
|  | /*************************************************************************** | 
|  | ** The "pragma.h" include file is an automatically generated file that | 
|  | ** that includes the PragType_XXXX macro definitions and the aPragmaName[] | 
|  | ** object.  This ensures that the aPragmaName[] table is arranged in | 
|  | ** lexicographical order to facility a binary search of the pragma name. | 
|  | ** Do not edit pragma.h directly.  Edit and rerun the script in at | 
|  | ** ../tool/mkpragmatab.tcl. */ | 
|  | #include "pragma.h" | 
|  |  | 
|  | /* | 
|  | ** Interpret the given string as a safety level.  Return 0 for OFF, | 
|  | ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or | 
|  | ** unrecognized string argument.  The FULL and EXTRA option is disallowed | 
|  | ** if the omitFull parameter it 1. | 
|  | ** | 
|  | ** Note that the values returned are one less that the values that | 
|  | ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done | 
|  | ** to support legacy SQL code.  The safety level used to be boolean | 
|  | ** and older scripts may have used numbers 0 for OFF and 1 for ON. | 
|  | */ | 
|  | static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){ | 
|  | /* 123456789 123456789 123 */ | 
|  | static const char zText[] = "onoffalseyestruextrafull"; | 
|  | static const u8 iOffset[] = {0, 1, 2,  4,    9,  12,  15,   20}; | 
|  | static const u8 iLength[] = {2, 2, 3,  5,    3,   4,   5,    4}; | 
|  | static const u8 iValue[] =  {1, 0, 0,  0,    1,   1,   3,    2}; | 
|  | /* on no off false yes true extra full */ | 
|  | int i, n; | 
|  | if( sqlite3Isdigit(*z) ){ | 
|  | return (u8)sqlite3Atoi(z); | 
|  | } | 
|  | n = sqlite3Strlen30(z); | 
|  | for(i=0; i<ArraySize(iLength); i++){ | 
|  | if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 | 
|  | && (!omitFull || iValue[i]<=1) | 
|  | ){ | 
|  | return iValue[i]; | 
|  | } | 
|  | } | 
|  | return dflt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Interpret the given string as a boolean value. | 
|  | */ | 
|  | u8 sqlite3GetBoolean(const char *z, u8 dflt){ | 
|  | return getSafetyLevel(z,1,dflt)!=0; | 
|  | } | 
|  |  | 
|  | /* The sqlite3GetBoolean() function is used by other modules but the | 
|  | ** remainder of this file is specific to PRAGMA processing.  So omit | 
|  | ** the rest of the file if PRAGMAs are omitted from the build. | 
|  | */ | 
|  | #if !defined(SQLITE_OMIT_PRAGMA) | 
|  |  | 
|  | /* | 
|  | ** Interpret the given string as a locking mode value. | 
|  | */ | 
|  | static int getLockingMode(const char *z){ | 
|  | if( z ){ | 
|  | if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; | 
|  | if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; | 
|  | } | 
|  | return PAGER_LOCKINGMODE_QUERY; | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_AUTOVACUUM | 
|  | /* | 
|  | ** Interpret the given string as an auto-vacuum mode value. | 
|  | ** | 
|  | ** The following strings, "none", "full" and "incremental" are | 
|  | ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. | 
|  | */ | 
|  | static int getAutoVacuum(const char *z){ | 
|  | int i; | 
|  | if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; | 
|  | if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; | 
|  | if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; | 
|  | i = sqlite3Atoi(z); | 
|  | return (u8)((i>=0&&i<=2)?i:0); | 
|  | } | 
|  | #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 
|  | /* | 
|  | ** Interpret the given string as a temp db location. Return 1 for file | 
|  | ** backed temporary databases, 2 for the Red-Black tree in memory database | 
|  | ** and 0 to use the compile-time default. | 
|  | */ | 
|  | static int getTempStore(const char *z){ | 
|  | if( z[0]>='0' && z[0]<='2' ){ | 
|  | return z[0] - '0'; | 
|  | }else if( sqlite3StrICmp(z, "file")==0 ){ | 
|  | return 1; | 
|  | }else if( sqlite3StrICmp(z, "memory")==0 ){ | 
|  | return 2; | 
|  | }else{ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | #endif /* SQLITE_PAGER_PRAGMAS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 
|  | /* | 
|  | ** Invalidate temp storage, either when the temp storage is changed | 
|  | ** from default, or when 'file' and the temp_store_directory has changed | 
|  | */ | 
|  | static int invalidateTempStorage(Parse *pParse){ | 
|  | sqlite3 *db = pParse->db; | 
|  | if( db->aDb[1].pBt!=0 ){ | 
|  | if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){ | 
|  | sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " | 
|  | "from within a transaction"); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | sqlite3BtreeClose(db->aDb[1].pBt); | 
|  | db->aDb[1].pBt = 0; | 
|  | sqlite3ResetAllSchemasOfConnection(db); | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  | #endif /* SQLITE_PAGER_PRAGMAS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 
|  | /* | 
|  | ** If the TEMP database is open, close it and mark the database schema | 
|  | ** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE | 
|  | ** or DEFAULT_TEMP_STORE pragmas. | 
|  | */ | 
|  | static int changeTempStorage(Parse *pParse, const char *zStorageType){ | 
|  | int ts = getTempStore(zStorageType); | 
|  | sqlite3 *db = pParse->db; | 
|  | if( db->temp_store==ts ) return SQLITE_OK; | 
|  | if( invalidateTempStorage( pParse ) != SQLITE_OK ){ | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | db->temp_store = (u8)ts; | 
|  | return SQLITE_OK; | 
|  | } | 
|  | #endif /* SQLITE_PAGER_PRAGMAS */ | 
|  |  | 
|  | /* | 
|  | ** Set result column names for a pragma. | 
|  | */ | 
|  | static void setPragmaResultColumnNames( | 
|  | Vdbe *v,                     /* The query under construction */ | 
|  | const PragmaName *pPragma    /* The pragma */ | 
|  | ){ | 
|  | u8 n = pPragma->nPragCName; | 
|  | sqlite3VdbeSetNumCols(v, n==0 ? 1 : n); | 
|  | if( n==0 ){ | 
|  | sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC); | 
|  | }else{ | 
|  | int i, j; | 
|  | for(i=0, j=pPragma->iPragCName; i<n; i++, j++){ | 
|  | sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Generate code to return a single integer value. | 
|  | */ | 
|  | static void returnSingleInt(Vdbe *v, i64 value){ | 
|  | sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Generate code to return a single text value. | 
|  | */ | 
|  | static void returnSingleText( | 
|  | Vdbe *v,                /* Prepared statement under construction */ | 
|  | const char *zValue      /* Value to be returned */ | 
|  | ){ | 
|  | if( zValue ){ | 
|  | sqlite3VdbeLoadString(v, 1, (const char*)zValue); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Set the safety_level and pager flags for pager iDb.  Or if iDb<0 | 
|  | ** set these values for all pagers. | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 
|  | static void setAllPagerFlags(sqlite3 *db){ | 
|  | if( db->autoCommit ){ | 
|  | Db *pDb = db->aDb; | 
|  | int n = db->nDb; | 
|  | assert( SQLITE_FullFSync==PAGER_FULLFSYNC ); | 
|  | assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC ); | 
|  | assert( SQLITE_CacheSpill==PAGER_CACHESPILL ); | 
|  | assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL) | 
|  | ==  PAGER_FLAGS_MASK ); | 
|  | assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level ); | 
|  | while( (n--) > 0 ){ | 
|  | if( pDb->pBt ){ | 
|  | sqlite3BtreeSetPagerFlags(pDb->pBt, | 
|  | pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) ); | 
|  | } | 
|  | pDb++; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | # define setAllPagerFlags(X)  /* no-op */ | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Return a human-readable name for a constraint resolution action. | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_FOREIGN_KEY | 
|  | static const char *actionName(u8 action){ | 
|  | const char *zName; | 
|  | switch( action ){ | 
|  | case OE_SetNull:  zName = "SET NULL";        break; | 
|  | case OE_SetDflt:  zName = "SET DEFAULT";     break; | 
|  | case OE_Cascade:  zName = "CASCADE";         break; | 
|  | case OE_Restrict: zName = "RESTRICT";        break; | 
|  | default:          zName = "NO ACTION"; | 
|  | assert( action==OE_None ); break; | 
|  | } | 
|  | return zName; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants | 
|  | ** defined in pager.h. This function returns the associated lowercase | 
|  | ** journal-mode name. | 
|  | */ | 
|  | const char *sqlite3JournalModename(int eMode){ | 
|  | static char * const azModeName[] = { | 
|  | "delete", "persist", "off", "truncate", "memory" | 
|  | #ifndef SQLITE_OMIT_WAL | 
|  | , "wal" | 
|  | #endif | 
|  | }; | 
|  | assert( PAGER_JOURNALMODE_DELETE==0 ); | 
|  | assert( PAGER_JOURNALMODE_PERSIST==1 ); | 
|  | assert( PAGER_JOURNALMODE_OFF==2 ); | 
|  | assert( PAGER_JOURNALMODE_TRUNCATE==3 ); | 
|  | assert( PAGER_JOURNALMODE_MEMORY==4 ); | 
|  | assert( PAGER_JOURNALMODE_WAL==5 ); | 
|  | assert( eMode>=0 && eMode<=ArraySize(azModeName) ); | 
|  |  | 
|  | if( eMode==ArraySize(azModeName) ) return 0; | 
|  | return azModeName[eMode]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Locate a pragma in the aPragmaName[] array. | 
|  | */ | 
|  | static const PragmaName *pragmaLocate(const char *zName){ | 
|  | int upr, lwr, mid = 0, rc; | 
|  | lwr = 0; | 
|  | upr = ArraySize(aPragmaName)-1; | 
|  | while( lwr<=upr ){ | 
|  | mid = (lwr+upr)/2; | 
|  | rc = sqlite3_stricmp(zName, aPragmaName[mid].zName); | 
|  | if( rc==0 ) break; | 
|  | if( rc<0 ){ | 
|  | upr = mid - 1; | 
|  | }else{ | 
|  | lwr = mid + 1; | 
|  | } | 
|  | } | 
|  | return lwr>upr ? 0 : &aPragmaName[mid]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Helper subroutine for PRAGMA integrity_check: | 
|  | ** | 
|  | ** Generate code to output a single-column result row with a value of the | 
|  | ** string held in register 3.  Decrement the result count in register 1 | 
|  | ** and halt if the maximum number of result rows have been issued. | 
|  | */ | 
|  | static int integrityCheckResultRow(Vdbe *v){ | 
|  | int addr; | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1); | 
|  | addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1); | 
|  | VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp0(v, OP_Halt); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Process a pragma statement. | 
|  | ** | 
|  | ** Pragmas are of this form: | 
|  | ** | 
|  | **      PRAGMA [schema.]id [= value] | 
|  | ** | 
|  | ** The identifier might also be a string.  The value is a string, and | 
|  | ** identifier, or a number.  If minusFlag is true, then the value is | 
|  | ** a number that was preceded by a minus sign. | 
|  | ** | 
|  | ** If the left side is "database.id" then pId1 is the database name | 
|  | ** and pId2 is the id.  If the left side is just "id" then pId1 is the | 
|  | ** id and pId2 is any empty string. | 
|  | */ | 
|  | void sqlite3Pragma( | 
|  | Parse *pParse, | 
|  | Token *pId1,        /* First part of [schema.]id field */ | 
|  | Token *pId2,        /* Second part of [schema.]id field, or NULL */ | 
|  | Token *pValue,      /* Token for <value>, or NULL */ | 
|  | int minusFlag       /* True if a '-' sign preceded <value> */ | 
|  | ){ | 
|  | char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */ | 
|  | char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */ | 
|  | const char *zDb = 0;   /* The database name */ | 
|  | Token *pId;            /* Pointer to <id> token */ | 
|  | char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */ | 
|  | int iDb;               /* Database index for <database> */ | 
|  | int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */ | 
|  | sqlite3 *db = pParse->db;    /* The database connection */ | 
|  | Db *pDb;                     /* The specific database being pragmaed */ | 
|  | Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */ | 
|  | const PragmaName *pPragma;   /* The pragma */ | 
|  |  | 
|  | if( v==0 ) return; | 
|  | sqlite3VdbeRunOnlyOnce(v); | 
|  | pParse->nMem = 2; | 
|  |  | 
|  | /* Interpret the [schema.] part of the pragma statement. iDb is the | 
|  | ** index of the database this pragma is being applied to in db.aDb[]. */ | 
|  | iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); | 
|  | if( iDb<0 ) return; | 
|  | pDb = &db->aDb[iDb]; | 
|  |  | 
|  | /* If the temp database has been explicitly named as part of the | 
|  | ** pragma, make sure it is open. | 
|  | */ | 
|  | if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ | 
|  | return; | 
|  | } | 
|  |  | 
|  | zLeft = sqlite3NameFromToken(db, pId); | 
|  | if( !zLeft ) return; | 
|  | if( minusFlag ){ | 
|  | zRight = sqlite3MPrintf(db, "-%T", pValue); | 
|  | }else{ | 
|  | zRight = sqlite3NameFromToken(db, pValue); | 
|  | } | 
|  |  | 
|  | assert( pId2 ); | 
|  | zDb = pId2->n>0 ? pDb->zDbSName : 0; | 
|  | if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ | 
|  | goto pragma_out; | 
|  | } | 
|  |  | 
|  | /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS | 
|  | ** connection.  If it returns SQLITE_OK, then assume that the VFS | 
|  | ** handled the pragma and generate a no-op prepared statement. | 
|  | ** | 
|  | ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed, | 
|  | ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file | 
|  | ** object corresponding to the database file to which the pragma | 
|  | ** statement refers. | 
|  | ** | 
|  | ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA | 
|  | ** file control is an array of pointers to strings (char**) in which the | 
|  | ** second element of the array is the name of the pragma and the third | 
|  | ** element is the argument to the pragma or NULL if the pragma has no | 
|  | ** argument. | 
|  | */ | 
|  | aFcntl[0] = 0; | 
|  | aFcntl[1] = zLeft; | 
|  | aFcntl[2] = zRight; | 
|  | aFcntl[3] = 0; | 
|  | db->busyHandler.nBusy = 0; | 
|  | rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl); | 
|  | if( rc==SQLITE_OK ){ | 
|  | sqlite3VdbeSetNumCols(v, 1); | 
|  | sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT); | 
|  | returnSingleText(v, aFcntl[0]); | 
|  | sqlite3_free(aFcntl[0]); | 
|  | goto pragma_out; | 
|  | } | 
|  | if( rc!=SQLITE_NOTFOUND ){ | 
|  | if( aFcntl[0] ){ | 
|  | sqlite3ErrorMsg(pParse, "%s", aFcntl[0]); | 
|  | sqlite3_free(aFcntl[0]); | 
|  | } | 
|  | pParse->nErr++; | 
|  | pParse->rc = rc; | 
|  | goto pragma_out; | 
|  | } | 
|  |  | 
|  | /* Locate the pragma in the lookup table */ | 
|  | pPragma = pragmaLocate(zLeft); | 
|  | if( pPragma==0 ) goto pragma_out; | 
|  |  | 
|  | /* Make sure the database schema is loaded if the pragma requires that */ | 
|  | if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){ | 
|  | if( sqlite3ReadSchema(pParse) ) goto pragma_out; | 
|  | } | 
|  |  | 
|  | /* Register the result column names for pragmas that return results */ | 
|  | if( (pPragma->mPragFlg & PragFlg_NoColumns)==0 | 
|  | && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0) | 
|  | ){ | 
|  | setPragmaResultColumnNames(v, pPragma); | 
|  | } | 
|  |  | 
|  | /* Jump to the appropriate pragma handler */ | 
|  | switch( pPragma->ePragTyp ){ | 
|  |  | 
|  | #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) | 
|  | /* | 
|  | **  PRAGMA [schema.]default_cache_size | 
|  | **  PRAGMA [schema.]default_cache_size=N | 
|  | ** | 
|  | ** The first form reports the current persistent setting for the | 
|  | ** page cache size.  The value returned is the maximum number of | 
|  | ** pages in the page cache.  The second form sets both the current | 
|  | ** page cache size value and the persistent page cache size value | 
|  | ** stored in the database file. | 
|  | ** | 
|  | ** Older versions of SQLite would set the default cache size to a | 
|  | ** negative number to indicate synchronous=OFF.  These days, synchronous | 
|  | ** is always on by default regardless of the sign of the default cache | 
|  | ** size.  But continue to take the absolute value of the default cache | 
|  | ** size of historical compatibility. | 
|  | */ | 
|  | case PragTyp_DEFAULT_CACHE_SIZE: { | 
|  | static const int iLn = VDBE_OFFSET_LINENO(2); | 
|  | static const VdbeOpList getCacheSize[] = { | 
|  | { OP_Transaction, 0, 0,        0},                         /* 0 */ | 
|  | { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */ | 
|  | { OP_IfPos,       1, 8,        0}, | 
|  | { OP_Integer,     0, 2,        0}, | 
|  | { OP_Subtract,    1, 2,        1}, | 
|  | { OP_IfPos,       1, 8,        0}, | 
|  | { OP_Integer,     0, 1,        0},                         /* 6 */ | 
|  | { OP_Noop,        0, 0,        0}, | 
|  | { OP_ResultRow,   1, 1,        0}, | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  | sqlite3VdbeUsesBtree(v, iDb); | 
|  | if( !zRight ){ | 
|  | pParse->nMem += 2; | 
|  | sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize)); | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn); | 
|  | if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; | 
|  | aOp[0].p1 = iDb; | 
|  | aOp[1].p1 = iDb; | 
|  | aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE; | 
|  | }else{ | 
|  | int size = sqlite3AbsInt32(sqlite3Atoi(zRight)); | 
|  | sqlite3BeginWriteOperation(pParse, 0, iDb); | 
|  | sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size); | 
|  | assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 
|  | pDb->pSchema->cache_size = size; | 
|  | sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */ | 
|  |  | 
|  | #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) | 
|  | /* | 
|  | **  PRAGMA [schema.]page_size | 
|  | **  PRAGMA [schema.]page_size=N | 
|  | ** | 
|  | ** The first form reports the current setting for the | 
|  | ** database page size in bytes.  The second form sets the | 
|  | ** database page size value.  The value can only be set if | 
|  | ** the database has not yet been created. | 
|  | */ | 
|  | case PragTyp_PAGE_SIZE: { | 
|  | Btree *pBt = pDb->pBt; | 
|  | assert( pBt!=0 ); | 
|  | if( !zRight ){ | 
|  | int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0; | 
|  | returnSingleInt(v, size); | 
|  | }else{ | 
|  | /* Malloc may fail when setting the page-size, as there is an internal | 
|  | ** buffer that the pager module resizes using sqlite3_realloc(). | 
|  | */ | 
|  | db->nextPagesize = sqlite3Atoi(zRight); | 
|  | if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){ | 
|  | sqlite3OomFault(db); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]secure_delete | 
|  | **  PRAGMA [schema.]secure_delete=ON/OFF/FAST | 
|  | ** | 
|  | ** The first form reports the current setting for the | 
|  | ** secure_delete flag.  The second form changes the secure_delete | 
|  | ** flag setting and reports the new value. | 
|  | */ | 
|  | case PragTyp_SECURE_DELETE: { | 
|  | Btree *pBt = pDb->pBt; | 
|  | int b = -1; | 
|  | assert( pBt!=0 ); | 
|  | if( zRight ){ | 
|  | if( sqlite3_stricmp(zRight, "fast")==0 ){ | 
|  | b = 2; | 
|  | }else{ | 
|  | b = sqlite3GetBoolean(zRight, 0); | 
|  | } | 
|  | } | 
|  | if( pId2->n==0 && b>=0 ){ | 
|  | int ii; | 
|  | for(ii=0; ii<db->nDb; ii++){ | 
|  | sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b); | 
|  | } | 
|  | } | 
|  | b = sqlite3BtreeSecureDelete(pBt, b); | 
|  | returnSingleInt(v, b); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]max_page_count | 
|  | **  PRAGMA [schema.]max_page_count=N | 
|  | ** | 
|  | ** The first form reports the current setting for the | 
|  | ** maximum number of pages in the database file.  The | 
|  | ** second form attempts to change this setting.  Both | 
|  | ** forms return the current setting. | 
|  | ** | 
|  | ** The absolute value of N is used.  This is undocumented and might | 
|  | ** change.  The only purpose is to provide an easy way to test | 
|  | ** the sqlite3AbsInt32() function. | 
|  | ** | 
|  | **  PRAGMA [schema.]page_count | 
|  | ** | 
|  | ** Return the number of pages in the specified database. | 
|  | */ | 
|  | case PragTyp_PAGE_COUNT: { | 
|  | int iReg; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | iReg = ++pParse->nMem; | 
|  | if( sqlite3Tolower(zLeft[0])=='p' ){ | 
|  | sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg); | 
|  | }else{ | 
|  | sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, | 
|  | sqlite3AbsInt32(sqlite3Atoi(zRight))); | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]locking_mode | 
|  | **  PRAGMA [schema.]locking_mode = (normal|exclusive) | 
|  | */ | 
|  | case PragTyp_LOCKING_MODE: { | 
|  | const char *zRet = "normal"; | 
|  | int eMode = getLockingMode(zRight); | 
|  |  | 
|  | if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ | 
|  | /* Simple "PRAGMA locking_mode;" statement. This is a query for | 
|  | ** the current default locking mode (which may be different to | 
|  | ** the locking-mode of the main database). | 
|  | */ | 
|  | eMode = db->dfltLockMode; | 
|  | }else{ | 
|  | Pager *pPager; | 
|  | if( pId2->n==0 ){ | 
|  | /* This indicates that no database name was specified as part | 
|  | ** of the PRAGMA command. In this case the locking-mode must be | 
|  | ** set on all attached databases, as well as the main db file. | 
|  | ** | 
|  | ** Also, the sqlite3.dfltLockMode variable is set so that | 
|  | ** any subsequently attached databases also use the specified | 
|  | ** locking mode. | 
|  | */ | 
|  | int ii; | 
|  | assert(pDb==&db->aDb[0]); | 
|  | for(ii=2; ii<db->nDb; ii++){ | 
|  | pPager = sqlite3BtreePager(db->aDb[ii].pBt); | 
|  | sqlite3PagerLockingMode(pPager, eMode); | 
|  | } | 
|  | db->dfltLockMode = (u8)eMode; | 
|  | } | 
|  | pPager = sqlite3BtreePager(pDb->pBt); | 
|  | eMode = sqlite3PagerLockingMode(pPager, eMode); | 
|  | } | 
|  |  | 
|  | assert( eMode==PAGER_LOCKINGMODE_NORMAL | 
|  | || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); | 
|  | if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ | 
|  | zRet = "exclusive"; | 
|  | } | 
|  | returnSingleText(v, zRet); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]journal_mode | 
|  | **  PRAGMA [schema.]journal_mode = | 
|  | **                      (delete|persist|off|truncate|memory|wal|off) | 
|  | */ | 
|  | case PragTyp_JOURNAL_MODE: { | 
|  | int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */ | 
|  | int ii;           /* Loop counter */ | 
|  |  | 
|  | if( zRight==0 ){ | 
|  | /* If there is no "=MODE" part of the pragma, do a query for the | 
|  | ** current mode */ | 
|  | eMode = PAGER_JOURNALMODE_QUERY; | 
|  | }else{ | 
|  | const char *zMode; | 
|  | int n = sqlite3Strlen30(zRight); | 
|  | for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){ | 
|  | if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break; | 
|  | } | 
|  | if( !zMode ){ | 
|  | /* If the "=MODE" part does not match any known journal mode, | 
|  | ** then do a query */ | 
|  | eMode = PAGER_JOURNALMODE_QUERY; | 
|  | } | 
|  | } | 
|  | if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){ | 
|  | /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */ | 
|  | iDb = 0; | 
|  | pId2->n = 1; | 
|  | } | 
|  | for(ii=db->nDb-1; ii>=0; ii--){ | 
|  | if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ | 
|  | sqlite3VdbeUsesBtree(v, ii); | 
|  | sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode); | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]journal_size_limit | 
|  | **  PRAGMA [schema.]journal_size_limit=N | 
|  | ** | 
|  | ** Get or set the size limit on rollback journal files. | 
|  | */ | 
|  | case PragTyp_JOURNAL_SIZE_LIMIT: { | 
|  | Pager *pPager = sqlite3BtreePager(pDb->pBt); | 
|  | i64 iLimit = -2; | 
|  | if( zRight ){ | 
|  | sqlite3DecOrHexToI64(zRight, &iLimit); | 
|  | if( iLimit<-1 ) iLimit = -1; | 
|  | } | 
|  | iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit); | 
|  | returnSingleInt(v, iLimit); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]auto_vacuum | 
|  | **  PRAGMA [schema.]auto_vacuum=N | 
|  | ** | 
|  | ** Get or set the value of the database 'auto-vacuum' parameter. | 
|  | ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_AUTOVACUUM | 
|  | case PragTyp_AUTO_VACUUM: { | 
|  | Btree *pBt = pDb->pBt; | 
|  | assert( pBt!=0 ); | 
|  | if( !zRight ){ | 
|  | returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt)); | 
|  | }else{ | 
|  | int eAuto = getAutoVacuum(zRight); | 
|  | assert( eAuto>=0 && eAuto<=2 ); | 
|  | db->nextAutovac = (u8)eAuto; | 
|  | /* Call SetAutoVacuum() to set initialize the internal auto and | 
|  | ** incr-vacuum flags. This is required in case this connection | 
|  | ** creates the database file. It is important that it is created | 
|  | ** as an auto-vacuum capable db. | 
|  | */ | 
|  | rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); | 
|  | if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ | 
|  | /* When setting the auto_vacuum mode to either "full" or | 
|  | ** "incremental", write the value of meta[6] in the database | 
|  | ** file. Before writing to meta[6], check that meta[3] indicates | 
|  | ** that this really is an auto-vacuum capable database. | 
|  | */ | 
|  | static const int iLn = VDBE_OFFSET_LINENO(2); | 
|  | static const VdbeOpList setMeta6[] = { | 
|  | { OP_Transaction,    0,         1,                 0},    /* 0 */ | 
|  | { OP_ReadCookie,     0,         1,         BTREE_LARGEST_ROOT_PAGE}, | 
|  | { OP_If,             1,         0,                 0},    /* 2 */ | 
|  | { OP_Halt,           SQLITE_OK, OE_Abort,          0},    /* 3 */ | 
|  | { OP_SetCookie,      0,         BTREE_INCR_VACUUM, 0},    /* 4 */ | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  | int iAddr = sqlite3VdbeCurrentAddr(v); | 
|  | sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6)); | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn); | 
|  | if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; | 
|  | aOp[0].p1 = iDb; | 
|  | aOp[1].p1 = iDb; | 
|  | aOp[2].p2 = iAddr+4; | 
|  | aOp[4].p1 = iDb; | 
|  | aOp[4].p3 = eAuto - 1; | 
|  | sqlite3VdbeUsesBtree(v, iDb); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]incremental_vacuum(N) | 
|  | ** | 
|  | ** Do N steps of incremental vacuuming on a database. | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_AUTOVACUUM | 
|  | case PragTyp_INCREMENTAL_VACUUM: { | 
|  | int iLimit, addr; | 
|  | if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ | 
|  | iLimit = 0x7fffffff; | 
|  | } | 
|  | sqlite3BeginWriteOperation(pParse, 0, iDb); | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); | 
|  | addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp1(v, OP_ResultRow, 1); | 
|  | sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); | 
|  | sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v); | 
|  | sqlite3VdbeJumpHere(v, addr); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef SQLITE_OMIT_PAGER_PRAGMAS | 
|  | /* | 
|  | **  PRAGMA [schema.]cache_size | 
|  | **  PRAGMA [schema.]cache_size=N | 
|  | ** | 
|  | ** The first form reports the current local setting for the | 
|  | ** page cache size. The second form sets the local | 
|  | ** page cache size value.  If N is positive then that is the | 
|  | ** number of pages in the cache.  If N is negative, then the | 
|  | ** number of pages is adjusted so that the cache uses -N kibibytes | 
|  | ** of memory. | 
|  | */ | 
|  | case PragTyp_CACHE_SIZE: { | 
|  | assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 
|  | if( !zRight ){ | 
|  | returnSingleInt(v, pDb->pSchema->cache_size); | 
|  | }else{ | 
|  | int size = sqlite3Atoi(zRight); | 
|  | pDb->pSchema->cache_size = size; | 
|  | sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]cache_spill | 
|  | **  PRAGMA cache_spill=BOOLEAN | 
|  | **  PRAGMA [schema.]cache_spill=N | 
|  | ** | 
|  | ** The first form reports the current local setting for the | 
|  | ** page cache spill size. The second form turns cache spill on | 
|  | ** or off.  When turnning cache spill on, the size is set to the | 
|  | ** current cache_size.  The third form sets a spill size that | 
|  | ** may be different form the cache size. | 
|  | ** If N is positive then that is the | 
|  | ** number of pages in the cache.  If N is negative, then the | 
|  | ** number of pages is adjusted so that the cache uses -N kibibytes | 
|  | ** of memory. | 
|  | ** | 
|  | ** If the number of cache_spill pages is less then the number of | 
|  | ** cache_size pages, no spilling occurs until the page count exceeds | 
|  | ** the number of cache_size pages. | 
|  | ** | 
|  | ** The cache_spill=BOOLEAN setting applies to all attached schemas, | 
|  | ** not just the schema specified. | 
|  | */ | 
|  | case PragTyp_CACHE_SPILL: { | 
|  | assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 
|  | if( !zRight ){ | 
|  | returnSingleInt(v, | 
|  | (db->flags & SQLITE_CacheSpill)==0 ? 0 : | 
|  | sqlite3BtreeSetSpillSize(pDb->pBt,0)); | 
|  | }else{ | 
|  | int size = 1; | 
|  | if( sqlite3GetInt32(zRight, &size) ){ | 
|  | sqlite3BtreeSetSpillSize(pDb->pBt, size); | 
|  | } | 
|  | if( sqlite3GetBoolean(zRight, size!=0) ){ | 
|  | db->flags |= SQLITE_CacheSpill; | 
|  | }else{ | 
|  | db->flags &= ~SQLITE_CacheSpill; | 
|  | } | 
|  | setAllPagerFlags(db); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA [schema.]mmap_size(N) | 
|  | ** | 
|  | ** Used to set mapping size limit. The mapping size limit is | 
|  | ** used to limit the aggregate size of all memory mapped regions of the | 
|  | ** database file. If this parameter is set to zero, then memory mapping | 
|  | ** is not used at all.  If N is negative, then the default memory map | 
|  | ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set. | 
|  | ** The parameter N is measured in bytes. | 
|  | ** | 
|  | ** This value is advisory.  The underlying VFS is free to memory map | 
|  | ** as little or as much as it wants.  Except, if N is set to 0 then the | 
|  | ** upper layers will never invoke the xFetch interfaces to the VFS. | 
|  | */ | 
|  | case PragTyp_MMAP_SIZE: { | 
|  | sqlite3_int64 sz; | 
|  | #if SQLITE_MAX_MMAP_SIZE>0 | 
|  | assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); | 
|  | if( zRight ){ | 
|  | int ii; | 
|  | sqlite3DecOrHexToI64(zRight, &sz); | 
|  | if( sz<0 ) sz = sqlite3GlobalConfig.szMmap; | 
|  | if( pId2->n==0 ) db->szMmap = sz; | 
|  | for(ii=db->nDb-1; ii>=0; ii--){ | 
|  | if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ | 
|  | sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); | 
|  | } | 
|  | } | 
|  | } | 
|  | sz = -1; | 
|  | rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz); | 
|  | #else | 
|  | sz = 0; | 
|  | rc = SQLITE_OK; | 
|  | #endif | 
|  | if( rc==SQLITE_OK ){ | 
|  | returnSingleInt(v, sz); | 
|  | }else if( rc!=SQLITE_NOTFOUND ){ | 
|  | pParse->nErr++; | 
|  | pParse->rc = rc; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **   PRAGMA temp_store | 
|  | **   PRAGMA temp_store = "default"|"memory"|"file" | 
|  | ** | 
|  | ** Return or set the local value of the temp_store flag.  Changing | 
|  | ** the local value does not make changes to the disk file and the default | 
|  | ** value will be restored the next time the database is opened. | 
|  | ** | 
|  | ** Note that it is possible for the library compile-time options to | 
|  | ** override this setting | 
|  | */ | 
|  | case PragTyp_TEMP_STORE: { | 
|  | if( !zRight ){ | 
|  | returnSingleInt(v, db->temp_store); | 
|  | }else{ | 
|  | changeTempStorage(pParse, zRight); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **   PRAGMA temp_store_directory | 
|  | **   PRAGMA temp_store_directory = ""|"directory_name" | 
|  | ** | 
|  | ** Return or set the local value of the temp_store_directory flag.  Changing | 
|  | ** the value sets a specific directory to be used for temporary files. | 
|  | ** Setting to a null string reverts to the default temporary directory search. | 
|  | ** If temporary directory is changed, then invalidateTempStorage. | 
|  | ** | 
|  | */ | 
|  | case PragTyp_TEMP_STORE_DIRECTORY: { | 
|  | if( !zRight ){ | 
|  | returnSingleText(v, sqlite3_temp_directory); | 
|  | }else{ | 
|  | #ifndef SQLITE_OMIT_WSD | 
|  | if( zRight[0] ){ | 
|  | int res; | 
|  | rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); | 
|  | if( rc!=SQLITE_OK || res==0 ){ | 
|  | sqlite3ErrorMsg(pParse, "not a writable directory"); | 
|  | goto pragma_out; | 
|  | } | 
|  | } | 
|  | if( SQLITE_TEMP_STORE==0 | 
|  | || (SQLITE_TEMP_STORE==1 && db->temp_store<=1) | 
|  | || (SQLITE_TEMP_STORE==2 && db->temp_store==1) | 
|  | ){ | 
|  | invalidateTempStorage(pParse); | 
|  | } | 
|  | sqlite3_free(sqlite3_temp_directory); | 
|  | if( zRight[0] ){ | 
|  | sqlite3_temp_directory = sqlite3_mprintf("%s", zRight); | 
|  | }else{ | 
|  | sqlite3_temp_directory = 0; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_WSD */ | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if SQLITE_OS_WIN | 
|  | /* | 
|  | **   PRAGMA data_store_directory | 
|  | **   PRAGMA data_store_directory = ""|"directory_name" | 
|  | ** | 
|  | ** Return or set the local value of the data_store_directory flag.  Changing | 
|  | ** the value sets a specific directory to be used for database files that | 
|  | ** were specified with a relative pathname.  Setting to a null string reverts | 
|  | ** to the default database directory, which for database files specified with | 
|  | ** a relative path will probably be based on the current directory for the | 
|  | ** process.  Database file specified with an absolute path are not impacted | 
|  | ** by this setting, regardless of its value. | 
|  | ** | 
|  | */ | 
|  | case PragTyp_DATA_STORE_DIRECTORY: { | 
|  | if( !zRight ){ | 
|  | returnSingleText(v, sqlite3_data_directory); | 
|  | }else{ | 
|  | #ifndef SQLITE_OMIT_WSD | 
|  | if( zRight[0] ){ | 
|  | int res; | 
|  | rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res); | 
|  | if( rc!=SQLITE_OK || res==0 ){ | 
|  | sqlite3ErrorMsg(pParse, "not a writable directory"); | 
|  | goto pragma_out; | 
|  | } | 
|  | } | 
|  | sqlite3_free(sqlite3_data_directory); | 
|  | if( zRight[0] ){ | 
|  | sqlite3_data_directory = sqlite3_mprintf("%s", zRight); | 
|  | }else{ | 
|  | sqlite3_data_directory = 0; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_WSD */ | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if SQLITE_ENABLE_LOCKING_STYLE | 
|  | /* | 
|  | **   PRAGMA [schema.]lock_proxy_file | 
|  | **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path" | 
|  | ** | 
|  | ** Return or set the value of the lock_proxy_file flag.  Changing | 
|  | ** the value sets a specific file to be used for database access locks. | 
|  | ** | 
|  | */ | 
|  | case PragTyp_LOCK_PROXY_FILE: { | 
|  | if( !zRight ){ | 
|  | Pager *pPager = sqlite3BtreePager(pDb->pBt); | 
|  | char *proxy_file_path = NULL; | 
|  | sqlite3_file *pFile = sqlite3PagerFile(pPager); | 
|  | sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, | 
|  | &proxy_file_path); | 
|  | returnSingleText(v, proxy_file_path); | 
|  | }else{ | 
|  | Pager *pPager = sqlite3BtreePager(pDb->pBt); | 
|  | sqlite3_file *pFile = sqlite3PagerFile(pPager); | 
|  | int res; | 
|  | if( zRight[0] ){ | 
|  | res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, | 
|  | zRight); | 
|  | } else { | 
|  | res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, | 
|  | NULL); | 
|  | } | 
|  | if( res!=SQLITE_OK ){ | 
|  | sqlite3ErrorMsg(pParse, "failed to set lock proxy file"); | 
|  | goto pragma_out; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif /* SQLITE_ENABLE_LOCKING_STYLE */ | 
|  |  | 
|  | /* | 
|  | **   PRAGMA [schema.]synchronous | 
|  | **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA | 
|  | ** | 
|  | ** Return or set the local value of the synchronous flag.  Changing | 
|  | ** the local value does not make changes to the disk file and the | 
|  | ** default value will be restored the next time the database is | 
|  | ** opened. | 
|  | */ | 
|  | case PragTyp_SYNCHRONOUS: { | 
|  | if( !zRight ){ | 
|  | returnSingleInt(v, pDb->safety_level-1); | 
|  | }else{ | 
|  | if( !db->autoCommit ){ | 
|  | sqlite3ErrorMsg(pParse, | 
|  | "Safety level may not be changed inside a transaction"); | 
|  | }else if( iDb!=1 ){ | 
|  | int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK; | 
|  | if( iLevel==0 ) iLevel = 1; | 
|  | pDb->safety_level = iLevel; | 
|  | pDb->bSyncSet = 1; | 
|  | setAllPagerFlags(db); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_FLAG_PRAGMAS | 
|  | case PragTyp_FLAG: { | 
|  | if( zRight==0 ){ | 
|  | setPragmaResultColumnNames(v, pPragma); | 
|  | returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); | 
|  | }else{ | 
|  | int mask = pPragma->iArg;    /* Mask of bits to set or clear. */ | 
|  | if( db->autoCommit==0 ){ | 
|  | /* Foreign key support may not be enabled or disabled while not | 
|  | ** in auto-commit mode.  */ | 
|  | mask &= ~(SQLITE_ForeignKeys); | 
|  | } | 
|  | #if SQLITE_USER_AUTHENTICATION | 
|  | if( db->auth.authLevel==UAUTH_User ){ | 
|  | /* Do not allow non-admin users to modify the schema arbitrarily */ | 
|  | mask &= ~(SQLITE_WriteSchema); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if( sqlite3GetBoolean(zRight, 0) ){ | 
|  | db->flags |= mask; | 
|  | }else{ | 
|  | db->flags &= ~mask; | 
|  | if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0; | 
|  | } | 
|  |  | 
|  | /* Many of the flag-pragmas modify the code generated by the SQL | 
|  | ** compiler (eg. count_changes). So add an opcode to expire all | 
|  | ** compiled SQL statements after modifying a pragma value. | 
|  | */ | 
|  | sqlite3VdbeAddOp0(v, OP_Expire); | 
|  | setAllPagerFlags(db); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS | 
|  | /* | 
|  | **   PRAGMA table_info(<table>) | 
|  | ** | 
|  | ** Return a single row for each column of the named table. The columns of | 
|  | ** the returned data set are: | 
|  | ** | 
|  | ** cid:        Column id (numbered from left to right, starting at 0) | 
|  | ** name:       Column name | 
|  | ** type:       Column declaration type. | 
|  | ** notnull:    True if 'NOT NULL' is part of column declaration | 
|  | ** dflt_value: The default value for the column, if any. | 
|  | ** pk:         Non-zero for PK fields. | 
|  | */ | 
|  | case PragTyp_TABLE_INFO: if( zRight ){ | 
|  | Table *pTab; | 
|  | pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); | 
|  | if( pTab ){ | 
|  | int i, k; | 
|  | int nHidden = 0; | 
|  | Column *pCol; | 
|  | Index *pPk = sqlite3PrimaryKeyIndex(pTab); | 
|  | pParse->nMem = 6; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | sqlite3ViewGetColumnNames(pParse, pTab); | 
|  | for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ | 
|  | if( IsHiddenColumn(pCol) ){ | 
|  | nHidden++; | 
|  | continue; | 
|  | } | 
|  | if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ | 
|  | k = 0; | 
|  | }else if( pPk==0 ){ | 
|  | k = 1; | 
|  | }else{ | 
|  | for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} | 
|  | } | 
|  | assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN ); | 
|  | sqlite3VdbeMultiLoad(v, 1, "issisi", | 
|  | i-nHidden, | 
|  | pCol->zName, | 
|  | sqlite3ColumnType(pCol,""), | 
|  | pCol->notNull ? 1 : 0, | 
|  | pCol->pDflt ? pCol->pDflt->u.zToken : 0, | 
|  | k); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | #ifdef SQLITE_DEBUG | 
|  | case PragTyp_STATS: { | 
|  | Index *pIdx; | 
|  | HashElem *i; | 
|  | pParse->nMem = 5; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){ | 
|  | Table *pTab = sqliteHashData(i); | 
|  | sqlite3VdbeMultiLoad(v, 1, "ssiii", | 
|  | pTab->zName, | 
|  | 0, | 
|  | pTab->szTabRow, | 
|  | pTab->nRowLogEst, | 
|  | pTab->tabFlags); | 
|  | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 
|  | sqlite3VdbeMultiLoad(v, 2, "siiiX", | 
|  | pIdx->zName, | 
|  | pIdx->szIdxRow, | 
|  | pIdx->aiRowLogEst[0], | 
|  | pIdx->hasStat1); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case PragTyp_INDEX_INFO: if( zRight ){ | 
|  | Index *pIdx; | 
|  | Table *pTab; | 
|  | pIdx = sqlite3FindIndex(db, zRight, zDb); | 
|  | if( pIdx ){ | 
|  | int i; | 
|  | int mx; | 
|  | if( pPragma->iArg ){ | 
|  | /* PRAGMA index_xinfo (newer version with more rows and columns) */ | 
|  | mx = pIdx->nColumn; | 
|  | pParse->nMem = 6; | 
|  | }else{ | 
|  | /* PRAGMA index_info (legacy version) */ | 
|  | mx = pIdx->nKeyCol; | 
|  | pParse->nMem = 3; | 
|  | } | 
|  | pTab = pIdx->pTable; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | assert( pParse->nMem<=pPragma->nPragCName ); | 
|  | for(i=0; i<mx; i++){ | 
|  | i16 cnum = pIdx->aiColumn[i]; | 
|  | sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, | 
|  | cnum<0 ? 0 : pTab->aCol[cnum].zName); | 
|  | if( pPragma->iArg ){ | 
|  | sqlite3VdbeMultiLoad(v, 4, "isiX", | 
|  | pIdx->aSortOrder[i], | 
|  | pIdx->azColl[i], | 
|  | i<pIdx->nKeyCol); | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PragTyp_INDEX_LIST: if( zRight ){ | 
|  | Index *pIdx; | 
|  | Table *pTab; | 
|  | int i; | 
|  | pTab = sqlite3FindTable(db, zRight, zDb); | 
|  | if( pTab ){ | 
|  | pParse->nMem = 5; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ | 
|  | const char *azOrigin[] = { "c", "u", "pk" }; | 
|  | sqlite3VdbeMultiLoad(v, 1, "isisi", | 
|  | i, | 
|  | pIdx->zName, | 
|  | IsUniqueIndex(pIdx), | 
|  | azOrigin[pIdx->idxType], | 
|  | pIdx->pPartIdxWhere!=0); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PragTyp_DATABASE_LIST: { | 
|  | int i; | 
|  | pParse->nMem = 3; | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | if( db->aDb[i].pBt==0 ) continue; | 
|  | assert( db->aDb[i].zDbSName!=0 ); | 
|  | sqlite3VdbeMultiLoad(v, 1, "iss", | 
|  | i, | 
|  | db->aDb[i].zDbSName, | 
|  | sqlite3BtreeGetFilename(db->aDb[i].pBt)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PragTyp_COLLATION_LIST: { | 
|  | int i = 0; | 
|  | HashElem *p; | 
|  | pParse->nMem = 2; | 
|  | for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ | 
|  | CollSeq *pColl = (CollSeq *)sqliteHashData(p); | 
|  | sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | #ifdef SQLITE_INTROSPECTION_PRAGMAS | 
|  | case PragTyp_FUNCTION_LIST: { | 
|  | int i; | 
|  | HashElem *j; | 
|  | FuncDef *p; | 
|  | pParse->nMem = 2; | 
|  | for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ | 
|  | for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ | 
|  | sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1); | 
|  | } | 
|  | } | 
|  | for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ | 
|  | p = (FuncDef*)sqliteHashData(j); | 
|  | sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | case PragTyp_MODULE_LIST: { | 
|  | HashElem *j; | 
|  | pParse->nMem = 1; | 
|  | for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){ | 
|  | Module *pMod = (Module*)sqliteHashData(j); | 
|  | sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  |  | 
|  | case PragTyp_PRAGMA_LIST: { | 
|  | int i; | 
|  | for(i=0; i<ArraySize(aPragmaName); i++){ | 
|  | sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* SQLITE_INTROSPECTION_PRAGMAS */ | 
|  |  | 
|  | #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_FOREIGN_KEY | 
|  | case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ | 
|  | FKey *pFK; | 
|  | Table *pTab; | 
|  | pTab = sqlite3FindTable(db, zRight, zDb); | 
|  | if( pTab ){ | 
|  | pFK = pTab->pFKey; | 
|  | if( pFK ){ | 
|  | int i = 0; | 
|  | pParse->nMem = 8; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | while(pFK){ | 
|  | int j; | 
|  | for(j=0; j<pFK->nCol; j++){ | 
|  | sqlite3VdbeMultiLoad(v, 1, "iissssss", | 
|  | i, | 
|  | j, | 
|  | pFK->zTo, | 
|  | pTab->aCol[pFK->aCol[j].iFrom].zName, | 
|  | pFK->aCol[j].zCol, | 
|  | actionName(pFK->aAction[1]),  /* ON UPDATE */ | 
|  | actionName(pFK->aAction[0]),  /* ON DELETE */ | 
|  | "NONE"); | 
|  | } | 
|  | ++i; | 
|  | pFK = pFK->pNextFrom; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_FOREIGN_KEY | 
|  | #ifndef SQLITE_OMIT_TRIGGER | 
|  | case PragTyp_FOREIGN_KEY_CHECK: { | 
|  | FKey *pFK;             /* A foreign key constraint */ | 
|  | Table *pTab;           /* Child table contain "REFERENCES" keyword */ | 
|  | Table *pParent;        /* Parent table that child points to */ | 
|  | Index *pIdx;           /* Index in the parent table */ | 
|  | int i;                 /* Loop counter:  Foreign key number for pTab */ | 
|  | int j;                 /* Loop counter:  Field of the foreign key */ | 
|  | HashElem *k;           /* Loop counter:  Next table in schema */ | 
|  | int x;                 /* result variable */ | 
|  | int regResult;         /* 3 registers to hold a result row */ | 
|  | int regKey;            /* Register to hold key for checking the FK */ | 
|  | int regRow;            /* Registers to hold a row from pTab */ | 
|  | int addrTop;           /* Top of a loop checking foreign keys */ | 
|  | int addrOk;            /* Jump here if the key is OK */ | 
|  | int *aiCols;           /* child to parent column mapping */ | 
|  |  | 
|  | regResult = pParse->nMem+1; | 
|  | pParse->nMem += 4; | 
|  | regKey = ++pParse->nMem; | 
|  | regRow = ++pParse->nMem; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); | 
|  | while( k ){ | 
|  | if( zRight ){ | 
|  | pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); | 
|  | k = 0; | 
|  | }else{ | 
|  | pTab = (Table*)sqliteHashData(k); | 
|  | k = sqliteHashNext(k); | 
|  | } | 
|  | if( pTab==0 || pTab->pFKey==0 ) continue; | 
|  | sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | 
|  | if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; | 
|  | sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead); | 
|  | sqlite3VdbeLoadString(v, regResult, pTab->zName); | 
|  | for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ | 
|  | pParent = sqlite3FindTable(db, pFK->zTo, zDb); | 
|  | if( pParent==0 ) continue; | 
|  | pIdx = 0; | 
|  | sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName); | 
|  | x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); | 
|  | if( x==0 ){ | 
|  | if( pIdx==0 ){ | 
|  | sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead); | 
|  | }else{ | 
|  | sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb); | 
|  | sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | 
|  | } | 
|  | }else{ | 
|  | k = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert( pParse->nErr>0 || pFK==0 ); | 
|  | if( pFK ) break; | 
|  | if( pParse->nTab<i ) pParse->nTab = i; | 
|  | addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v); | 
|  | for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ | 
|  | pParent = sqlite3FindTable(db, pFK->zTo, zDb); | 
|  | pIdx = 0; | 
|  | aiCols = 0; | 
|  | if( pParent ){ | 
|  | x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols); | 
|  | assert( x==0 ); | 
|  | } | 
|  | addrOk = sqlite3VdbeMakeLabel(v); | 
|  |  | 
|  | /* Generate code to read the child key values into registers | 
|  | ** regRow..regRow+n. If any of the child key values are NULL, this | 
|  | ** row cannot cause an FK violation. Jump directly to addrOk in | 
|  | ** this case. */ | 
|  | for(j=0; j<pFK->nCol; j++){ | 
|  | int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom; | 
|  | sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j); | 
|  | sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v); | 
|  | } | 
|  |  | 
|  | /* Generate code to query the parent index for a matching parent | 
|  | ** key. If a match is found, jump to addrOk. */ | 
|  | if( pIdx ){ | 
|  | sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey, | 
|  | sqlite3IndexAffinityStr(db,pIdx), pFK->nCol); | 
|  | sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0); | 
|  | VdbeCoverage(v); | 
|  | }else if( pParent ){ | 
|  | int jmp = sqlite3VdbeCurrentAddr(v)+2; | 
|  | sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v); | 
|  | sqlite3VdbeGoto(v, addrOk); | 
|  | assert( pFK->nCol==1 ); | 
|  | } | 
|  |  | 
|  | /* Generate code to report an FK violation to the caller. */ | 
|  | if( HasRowid(pTab) ){ | 
|  | sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1); | 
|  | }else{ | 
|  | sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1); | 
|  | } | 
|  | sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4); | 
|  | sqlite3VdbeResolveLabel(v, addrOk); | 
|  | sqlite3DbFree(db, aiCols); | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v); | 
|  | sqlite3VdbeJumpHere(v, addrTop); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* !defined(SQLITE_OMIT_TRIGGER) */ | 
|  | #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | case PragTyp_PARSER_TRACE: { | 
|  | if( zRight ){ | 
|  | if( sqlite3GetBoolean(zRight, 0) ){ | 
|  | sqlite3ParserTrace(stdout, "parser: "); | 
|  | }else{ | 
|  | sqlite3ParserTrace(0, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | /* Reinstall the LIKE and GLOB functions.  The variant of LIKE | 
|  | ** used will be case sensitive or not depending on the RHS. | 
|  | */ | 
|  | case PragTyp_CASE_SENSITIVE_LIKE: { | 
|  | if( zRight ){ | 
|  | sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX | 
|  | # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 | 
|  | #endif | 
|  |  | 
|  | #ifndef SQLITE_OMIT_INTEGRITY_CHECK | 
|  | /*    PRAGMA integrity_check | 
|  | **    PRAGMA integrity_check(N) | 
|  | **    PRAGMA quick_check | 
|  | **    PRAGMA quick_check(N) | 
|  | ** | 
|  | ** Verify the integrity of the database. | 
|  | ** | 
|  | ** The "quick_check" is reduced version of | 
|  | ** integrity_check designed to detect most database corruption | 
|  | ** without the overhead of cross-checking indexes.  Quick_check | 
|  | ** is linear time wherease integrity_check is O(NlogN). | 
|  | */ | 
|  | case PragTyp_INTEGRITY_CHECK: { | 
|  | int i, j, addr, mxErr; | 
|  |  | 
|  | int isQuick = (sqlite3Tolower(zLeft[0])=='q'); | 
|  |  | 
|  | /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", | 
|  | ** then iDb is set to the index of the database identified by <db>. | 
|  | ** In this case, the integrity of database iDb only is verified by | 
|  | ** the VDBE created below. | 
|  | ** | 
|  | ** Otherwise, if the command was simply "PRAGMA integrity_check" (or | 
|  | ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb | 
|  | ** to -1 here, to indicate that the VDBE should verify the integrity | 
|  | ** of all attached databases.  */ | 
|  | assert( iDb>=0 ); | 
|  | assert( iDb==0 || pId2->z ); | 
|  | if( pId2->z==0 ) iDb = -1; | 
|  |  | 
|  | /* Initialize the VDBE program */ | 
|  | pParse->nMem = 6; | 
|  |  | 
|  | /* Set the maximum error count */ | 
|  | mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; | 
|  | if( zRight ){ | 
|  | sqlite3GetInt32(zRight, &mxErr); | 
|  | if( mxErr<=0 ){ | 
|  | mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */ | 
|  |  | 
|  | /* Do an integrity check on each database file */ | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | HashElem *x;     /* For looping over tables in the schema */ | 
|  | Hash *pTbls;     /* Set of all tables in the schema */ | 
|  | int *aRoot;      /* Array of root page numbers of all btrees */ | 
|  | int cnt = 0;     /* Number of entries in aRoot[] */ | 
|  | int mxIdx = 0;   /* Maximum number of indexes for any table */ | 
|  |  | 
|  | if( OMIT_TEMPDB && i==1 ) continue; | 
|  | if( iDb>=0 && i!=iDb ) continue; | 
|  |  | 
|  | sqlite3CodeVerifySchema(pParse, i); | 
|  |  | 
|  | /* Do an integrity check of the B-Tree | 
|  | ** | 
|  | ** Begin by finding the root pages numbers | 
|  | ** for all tables and indices in the database. | 
|  | */ | 
|  | assert( sqlite3SchemaMutexHeld(db, i, 0) ); | 
|  | pTbls = &db->aDb[i].pSchema->tblHash; | 
|  | for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ | 
|  | Table *pTab = sqliteHashData(x);  /* Current table */ | 
|  | Index *pIdx;                      /* An index on pTab */ | 
|  | int nIdx;                         /* Number of indexes on pTab */ | 
|  | if( HasRowid(pTab) ) cnt++; | 
|  | for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; } | 
|  | if( nIdx>mxIdx ) mxIdx = nIdx; | 
|  | } | 
|  | aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1)); | 
|  | if( aRoot==0 ) break; | 
|  | for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ | 
|  | Table *pTab = sqliteHashData(x); | 
|  | Index *pIdx; | 
|  | if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum; | 
|  | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 
|  | aRoot[++cnt] = pIdx->tnum; | 
|  | } | 
|  | } | 
|  | aRoot[0] = cnt; | 
|  |  | 
|  | /* Make sure sufficient number of registers have been allocated */ | 
|  | pParse->nMem = MAX( pParse->nMem, 8+mxIdx ); | 
|  | sqlite3ClearTempRegCache(pParse); | 
|  |  | 
|  | /* Do the b-tree integrity checks */ | 
|  | sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY); | 
|  | sqlite3VdbeChangeP5(v, (u8)i); | 
|  | addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v); | 
|  | sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, | 
|  | sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName), | 
|  | P4_DYNAMIC); | 
|  | sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3); | 
|  | integrityCheckResultRow(v); | 
|  | sqlite3VdbeJumpHere(v, addr); | 
|  |  | 
|  | /* Make sure all the indices are constructed correctly. | 
|  | */ | 
|  | for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ | 
|  | Table *pTab = sqliteHashData(x); | 
|  | Index *pIdx, *pPk; | 
|  | Index *pPrior = 0; | 
|  | int loopTop; | 
|  | int iDataCur, iIdxCur; | 
|  | int r1 = -1; | 
|  |  | 
|  | if( pTab->tnum<1 ) continue;  /* Skip VIEWs or VIRTUAL TABLEs */ | 
|  | pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); | 
|  | sqlite3ExprCacheClear(pParse); | 
|  | sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0, | 
|  | 1, 0, &iDataCur, &iIdxCur); | 
|  | /* reg[7] counts the number of entries in the table. | 
|  | ** reg[8+i] counts the number of entries in the i-th index | 
|  | */ | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, 0, 7); | 
|  | for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ | 
|  | sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */ | 
|  | } | 
|  | assert( pParse->nMem>=8+j ); | 
|  | assert( sqlite3NoTempsInRange(pParse,1,7+j) ); | 
|  | sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v); | 
|  | loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1); | 
|  | /* Verify that all NOT NULL columns really are NOT NULL */ | 
|  | for(j=0; j<pTab->nCol; j++){ | 
|  | char *zErr; | 
|  | int jmp2; | 
|  | if( j==pTab->iPKey ) continue; | 
|  | if( pTab->aCol[j].notNull==0 ) continue; | 
|  | sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3); | 
|  | sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); | 
|  | jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v); | 
|  | zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName, | 
|  | pTab->aCol[j].zName); | 
|  | sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); | 
|  | integrityCheckResultRow(v); | 
|  | sqlite3VdbeJumpHere(v, jmp2); | 
|  | } | 
|  | /* Verify CHECK constraints */ | 
|  | if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ | 
|  | ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0); | 
|  | if( db->mallocFailed==0 ){ | 
|  | int addrCkFault = sqlite3VdbeMakeLabel(v); | 
|  | int addrCkOk = sqlite3VdbeMakeLabel(v); | 
|  | char *zErr; | 
|  | int k; | 
|  | pParse->iSelfTab = iDataCur + 1; | 
|  | sqlite3ExprCachePush(pParse); | 
|  | for(k=pCheck->nExpr-1; k>0; k--){ | 
|  | sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0); | 
|  | } | 
|  | sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk, | 
|  | SQLITE_JUMPIFNULL); | 
|  | sqlite3VdbeResolveLabel(v, addrCkFault); | 
|  | pParse->iSelfTab = 0; | 
|  | zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s", | 
|  | pTab->zName); | 
|  | sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC); | 
|  | integrityCheckResultRow(v); | 
|  | sqlite3VdbeResolveLabel(v, addrCkOk); | 
|  | sqlite3ExprCachePop(pParse); | 
|  | } | 
|  | sqlite3ExprListDelete(db, pCheck); | 
|  | } | 
|  | if( !isQuick ){ /* Omit the remaining tests for quick_check */ | 
|  | /* Sanity check on record header decoding */ | 
|  | sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nCol-1, 3); | 
|  | sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); | 
|  | /* Validate index entries for the current row */ | 
|  | for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ | 
|  | int jmp2, jmp3, jmp4, jmp5; | 
|  | int ckUniq = sqlite3VdbeMakeLabel(v); | 
|  | if( pPk==pIdx ) continue; | 
|  | r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3, | 
|  | pPrior, r1); | 
|  | pPrior = pIdx; | 
|  | sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */ | 
|  | /* Verify that an index entry exists for the current table row */ | 
|  | jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1, | 
|  | pIdx->nColumn); VdbeCoverage(v); | 
|  | sqlite3VdbeLoadString(v, 3, "row "); | 
|  | sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3); | 
|  | sqlite3VdbeLoadString(v, 4, " missing from index "); | 
|  | sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); | 
|  | jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName); | 
|  | sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3); | 
|  | jmp4 = integrityCheckResultRow(v); | 
|  | sqlite3VdbeJumpHere(v, jmp2); | 
|  | /* For UNIQUE indexes, verify that only one entry exists with the | 
|  | ** current key.  The entry is unique if (1) any column is NULL | 
|  | ** or (2) the next entry has a different key */ | 
|  | if( IsUniqueIndex(pIdx) ){ | 
|  | int uniqOk = sqlite3VdbeMakeLabel(v); | 
|  | int jmp6; | 
|  | int kk; | 
|  | for(kk=0; kk<pIdx->nKeyCol; kk++){ | 
|  | int iCol = pIdx->aiColumn[kk]; | 
|  | assert( iCol!=XN_ROWID && iCol<pTab->nCol ); | 
|  | if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; | 
|  | sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  | jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); | 
|  | sqlite3VdbeGoto(v, uniqOk); | 
|  | sqlite3VdbeJumpHere(v, jmp6); | 
|  | sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1, | 
|  | pIdx->nKeyCol); VdbeCoverage(v); | 
|  | sqlite3VdbeLoadString(v, 3, "non-unique entry in index "); | 
|  | sqlite3VdbeGoto(v, jmp5); | 
|  | sqlite3VdbeResolveLabel(v, uniqOk); | 
|  | } | 
|  | sqlite3VdbeJumpHere(v, jmp4); | 
|  | sqlite3ResolvePartIdxLabel(pParse, jmp3); | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v); | 
|  | sqlite3VdbeJumpHere(v, loopTop-1); | 
|  | #ifndef SQLITE_OMIT_BTREECOUNT | 
|  | if( !isQuick ){ | 
|  | sqlite3VdbeLoadString(v, 2, "wrong # of entries in index "); | 
|  | for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ | 
|  | if( pPk==pIdx ) continue; | 
|  | sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3); | 
|  | addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v); | 
|  | sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | 
|  | sqlite3VdbeLoadString(v, 4, pIdx->zName); | 
|  | sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3); | 
|  | integrityCheckResultRow(v); | 
|  | sqlite3VdbeJumpHere(v, addr); | 
|  | } | 
|  | } | 
|  | #endif /* SQLITE_OMIT_BTREECOUNT */ | 
|  | } | 
|  | } | 
|  | { | 
|  | static const int iLn = VDBE_OFFSET_LINENO(2); | 
|  | static const VdbeOpList endCode[] = { | 
|  | { OP_AddImm,      1, 0,        0},    /* 0 */ | 
|  | { OP_IfNotZero,   1, 4,        0},    /* 1 */ | 
|  | { OP_String8,     0, 3,        0},    /* 2 */ | 
|  | { OP_ResultRow,   3, 1,        0},    /* 3 */ | 
|  | { OP_Halt,        0, 0,        0},    /* 4 */ | 
|  | { OP_String8,     0, 3,        0},    /* 5 */ | 
|  | { OP_Goto,        0, 3,        0},    /* 6 */ | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  |  | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); | 
|  | if( aOp ){ | 
|  | aOp[0].p2 = 1-mxErr; | 
|  | aOp[2].p4type = P4_STATIC; | 
|  | aOp[2].p4.z = "ok"; | 
|  | aOp[5].p4type = P4_STATIC; | 
|  | aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT); | 
|  | } | 
|  | sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | /* | 
|  | **   PRAGMA encoding | 
|  | **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" | 
|  | ** | 
|  | ** In its first form, this pragma returns the encoding of the main | 
|  | ** database. If the database is not initialized, it is initialized now. | 
|  | ** | 
|  | ** The second form of this pragma is a no-op if the main database file | 
|  | ** has not already been initialized. In this case it sets the default | 
|  | ** encoding that will be used for the main database file if a new file | 
|  | ** is created. If an existing main database file is opened, then the | 
|  | ** default text encoding for the existing database is used. | 
|  | ** | 
|  | ** In all cases new databases created using the ATTACH command are | 
|  | ** created to use the same default text encoding as the main database. If | 
|  | ** the main database has not been initialized and/or created when ATTACH | 
|  | ** is executed, this is done before the ATTACH operation. | 
|  | ** | 
|  | ** In the second form this pragma sets the text encoding to be used in | 
|  | ** new database files created using this database handle. It is only | 
|  | ** useful if invoked immediately after the main database i | 
|  | */ | 
|  | case PragTyp_ENCODING: { | 
|  | static const struct EncName { | 
|  | char *zName; | 
|  | u8 enc; | 
|  | } encnames[] = { | 
|  | { "UTF8",     SQLITE_UTF8        }, | 
|  | { "UTF-8",    SQLITE_UTF8        },  /* Must be element [1] */ | 
|  | { "UTF-16le", SQLITE_UTF16LE     },  /* Must be element [2] */ | 
|  | { "UTF-16be", SQLITE_UTF16BE     },  /* Must be element [3] */ | 
|  | { "UTF16le",  SQLITE_UTF16LE     }, | 
|  | { "UTF16be",  SQLITE_UTF16BE     }, | 
|  | { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */ | 
|  | { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */ | 
|  | { 0, 0 } | 
|  | }; | 
|  | const struct EncName *pEnc; | 
|  | if( !zRight ){    /* "PRAGMA encoding" */ | 
|  | if( sqlite3ReadSchema(pParse) ) goto pragma_out; | 
|  | assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 ); | 
|  | assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE ); | 
|  | assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE ); | 
|  | returnSingleText(v, encnames[ENC(pParse->db)].zName); | 
|  | }else{                        /* "PRAGMA encoding = XXX" */ | 
|  | /* Only change the value of sqlite.enc if the database handle is not | 
|  | ** initialized. If the main database exists, the new sqlite.enc value | 
|  | ** will be overwritten when the schema is next loaded. If it does not | 
|  | ** already exists, it will be created to use the new encoding value. | 
|  | */ | 
|  | if( | 
|  | !(DbHasProperty(db, 0, DB_SchemaLoaded)) || | 
|  | DbHasProperty(db, 0, DB_Empty) | 
|  | ){ | 
|  | for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ | 
|  | if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ | 
|  | SCHEMA_ENC(db) = ENC(db) = | 
|  | pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if( !pEnc->zName ){ | 
|  | sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS | 
|  | /* | 
|  | **   PRAGMA [schema.]schema_version | 
|  | **   PRAGMA [schema.]schema_version = <integer> | 
|  | ** | 
|  | **   PRAGMA [schema.]user_version | 
|  | **   PRAGMA [schema.]user_version = <integer> | 
|  | ** | 
|  | **   PRAGMA [schema.]freelist_count | 
|  | ** | 
|  | **   PRAGMA [schema.]data_version | 
|  | ** | 
|  | **   PRAGMA [schema.]application_id | 
|  | **   PRAGMA [schema.]application_id = <integer> | 
|  | ** | 
|  | ** The pragma's schema_version and user_version are used to set or get | 
|  | ** the value of the schema-version and user-version, respectively. Both | 
|  | ** the schema-version and the user-version are 32-bit signed integers | 
|  | ** stored in the database header. | 
|  | ** | 
|  | ** The schema-cookie is usually only manipulated internally by SQLite. It | 
|  | ** is incremented by SQLite whenever the database schema is modified (by | 
|  | ** creating or dropping a table or index). The schema version is used by | 
|  | ** SQLite each time a query is executed to ensure that the internal cache | 
|  | ** of the schema used when compiling the SQL query matches the schema of | 
|  | ** the database against which the compiled query is actually executed. | 
|  | ** Subverting this mechanism by using "PRAGMA schema_version" to modify | 
|  | ** the schema-version is potentially dangerous and may lead to program | 
|  | ** crashes or database corruption. Use with caution! | 
|  | ** | 
|  | ** The user-version is not used internally by SQLite. It may be used by | 
|  | ** applications for any purpose. | 
|  | */ | 
|  | case PragTyp_HEADER_VALUE: { | 
|  | int iCookie = pPragma->iArg;  /* Which cookie to read or write */ | 
|  | sqlite3VdbeUsesBtree(v, iDb); | 
|  | if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){ | 
|  | /* Write the specified cookie value */ | 
|  | static const VdbeOpList setCookie[] = { | 
|  | { OP_Transaction,    0,  1,  0},    /* 0 */ | 
|  | { OP_SetCookie,      0,  0,  0},    /* 1 */ | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  | sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie)); | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0); | 
|  | if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; | 
|  | aOp[0].p1 = iDb; | 
|  | aOp[1].p1 = iDb; | 
|  | aOp[1].p2 = iCookie; | 
|  | aOp[1].p3 = sqlite3Atoi(zRight); | 
|  | }else{ | 
|  | /* Read the specified cookie value */ | 
|  | static const VdbeOpList readCookie[] = { | 
|  | { OP_Transaction,     0,  0,  0},    /* 0 */ | 
|  | { OP_ReadCookie,      0,  1,  0},    /* 1 */ | 
|  | { OP_ResultRow,       1,  1,  0} | 
|  | }; | 
|  | VdbeOp *aOp; | 
|  | sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie)); | 
|  | aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0); | 
|  | if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break; | 
|  | aOp[0].p1 = iDb; | 
|  | aOp[1].p1 = iDb; | 
|  | aOp[1].p3 = iCookie; | 
|  | sqlite3VdbeReusable(v); | 
|  | } | 
|  | } | 
|  | break; | 
|  | #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | 
|  | /* | 
|  | **   PRAGMA compile_options | 
|  | ** | 
|  | ** Return the names of all compile-time options used in this build, | 
|  | ** one option per row. | 
|  | */ | 
|  | case PragTyp_COMPILE_OPTIONS: { | 
|  | int i = 0; | 
|  | const char *zOpt; | 
|  | pParse->nMem = 1; | 
|  | while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){ | 
|  | sqlite3VdbeLoadString(v, 1, zOpt); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); | 
|  | } | 
|  | sqlite3VdbeReusable(v); | 
|  | } | 
|  | break; | 
|  | #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | 
|  |  | 
|  | #ifndef SQLITE_OMIT_WAL | 
|  | /* | 
|  | **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate | 
|  | ** | 
|  | ** Checkpoint the database. | 
|  | */ | 
|  | case PragTyp_WAL_CHECKPOINT: { | 
|  | int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED); | 
|  | int eMode = SQLITE_CHECKPOINT_PASSIVE; | 
|  | if( zRight ){ | 
|  | if( sqlite3StrICmp(zRight, "full")==0 ){ | 
|  | eMode = SQLITE_CHECKPOINT_FULL; | 
|  | }else if( sqlite3StrICmp(zRight, "restart")==0 ){ | 
|  | eMode = SQLITE_CHECKPOINT_RESTART; | 
|  | }else if( sqlite3StrICmp(zRight, "truncate")==0 ){ | 
|  | eMode = SQLITE_CHECKPOINT_TRUNCATE; | 
|  | } | 
|  | } | 
|  | pParse->nMem = 3; | 
|  | sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* | 
|  | **   PRAGMA wal_autocheckpoint | 
|  | **   PRAGMA wal_autocheckpoint = N | 
|  | ** | 
|  | ** Configure a database connection to automatically checkpoint a database | 
|  | ** after accumulating N frames in the log. Or query for the current value | 
|  | ** of N. | 
|  | */ | 
|  | case PragTyp_WAL_AUTOCHECKPOINT: { | 
|  | if( zRight ){ | 
|  | sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight)); | 
|  | } | 
|  | returnSingleInt(v, | 
|  | db->xWalCallback==sqlite3WalDefaultHook ? | 
|  | SQLITE_PTR_TO_INT(db->pWalArg) : 0); | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | **  PRAGMA shrink_memory | 
|  | ** | 
|  | ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database | 
|  | ** connection on which it is invoked to free up as much memory as it | 
|  | ** can, by calling sqlite3_db_release_memory(). | 
|  | */ | 
|  | case PragTyp_SHRINK_MEMORY: { | 
|  | sqlite3_db_release_memory(db); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **  PRAGMA optimize | 
|  | **  PRAGMA optimize(MASK) | 
|  | **  PRAGMA schema.optimize | 
|  | **  PRAGMA schema.optimize(MASK) | 
|  | ** | 
|  | ** Attempt to optimize the database.  All schemas are optimized in the first | 
|  | ** two forms, and only the specified schema is optimized in the latter two. | 
|  | ** | 
|  | ** The details of optimizations performed by this pragma are expected | 
|  | ** to change and improve over time.  Applications should anticipate that | 
|  | ** this pragma will perform new optimizations in future releases. | 
|  | ** | 
|  | ** The optional argument is a bitmask of optimizations to perform: | 
|  | ** | 
|  | **    0x0001    Debugging mode.  Do not actually perform any optimizations | 
|  | **              but instead return one line of text for each optimization | 
|  | **              that would have been done.  Off by default. | 
|  | ** | 
|  | **    0x0002    Run ANALYZE on tables that might benefit.  On by default. | 
|  | **              See below for additional information. | 
|  | ** | 
|  | **    0x0004    (Not yet implemented) Record usage and performance | 
|  | **              information from the current session in the | 
|  | **              database file so that it will be available to "optimize" | 
|  | **              pragmas run by future database connections. | 
|  | ** | 
|  | **    0x0008    (Not yet implemented) Create indexes that might have | 
|  | **              been helpful to recent queries | 
|  | ** | 
|  | ** The default MASK is and always shall be 0xfffe.  0xfffe means perform all | 
|  | ** of the optimizations listed above except Debug Mode, including new | 
|  | ** optimizations that have not yet been invented.  If new optimizations are | 
|  | ** ever added that should be off by default, those off-by-default | 
|  | ** optimizations will have bitmasks of 0x10000 or larger. | 
|  | ** | 
|  | ** DETERMINATION OF WHEN TO RUN ANALYZE | 
|  | ** | 
|  | ** In the current implementation, a table is analyzed if only if all of | 
|  | ** the following are true: | 
|  | ** | 
|  | ** (1) MASK bit 0x02 is set. | 
|  | ** | 
|  | ** (2) The query planner used sqlite_stat1-style statistics for one or | 
|  | **     more indexes of the table at some point during the lifetime of | 
|  | **     the current connection. | 
|  | ** | 
|  | ** (3) One or more indexes of the table are currently unanalyzed OR | 
|  | **     the number of rows in the table has increased by 25 times or more | 
|  | **     since the last time ANALYZE was run. | 
|  | ** | 
|  | ** The rules for when tables are analyzed are likely to change in | 
|  | ** future releases. | 
|  | */ | 
|  | case PragTyp_OPTIMIZE: { | 
|  | int iDbLast;           /* Loop termination point for the schema loop */ | 
|  | int iTabCur;           /* Cursor for a table whose size needs checking */ | 
|  | HashElem *k;           /* Loop over tables of a schema */ | 
|  | Schema *pSchema;       /* The current schema */ | 
|  | Table *pTab;           /* A table in the schema */ | 
|  | Index *pIdx;           /* An index of the table */ | 
|  | LogEst szThreshold;    /* Size threshold above which reanalysis is needd */ | 
|  | char *zSubSql;         /* SQL statement for the OP_SqlExec opcode */ | 
|  | u32 opMask;            /* Mask of operations to perform */ | 
|  |  | 
|  | if( zRight ){ | 
|  | opMask = (u32)sqlite3Atoi(zRight); | 
|  | if( (opMask & 0x02)==0 ) break; | 
|  | }else{ | 
|  | opMask = 0xfffe; | 
|  | } | 
|  | iTabCur = pParse->nTab++; | 
|  | for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){ | 
|  | if( iDb==1 ) continue; | 
|  | sqlite3CodeVerifySchema(pParse, iDb); | 
|  | pSchema = db->aDb[iDb].pSchema; | 
|  | for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ | 
|  | pTab = (Table*)sqliteHashData(k); | 
|  |  | 
|  | /* If table pTab has not been used in a way that would benefit from | 
|  | ** having analysis statistics during the current session, then skip it. | 
|  | ** This also has the effect of skipping virtual tables and views */ | 
|  | if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue; | 
|  |  | 
|  | /* Reanalyze if the table is 25 times larger than the last analysis */ | 
|  | szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 ); | 
|  | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | 
|  | if( !pIdx->hasStat1 ){ | 
|  | szThreshold = 0; /* Always analyze if any index lacks statistics */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | if( szThreshold ){ | 
|  | sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); | 
|  | sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur, | 
|  | sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold); | 
|  | VdbeCoverage(v); | 
|  | } | 
|  | zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"", | 
|  | db->aDb[iDb].zDbSName, pTab->zName); | 
|  | if( opMask & 0x01 ){ | 
|  | int r1 = sqlite3GetTempReg(pParse); | 
|  | sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC); | 
|  | sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1); | 
|  | }else{ | 
|  | sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC); | 
|  | } | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp0(v, OP_Expire); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **   PRAGMA busy_timeout | 
|  | **   PRAGMA busy_timeout = N | 
|  | ** | 
|  | ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value | 
|  | ** if one is set.  If no busy handler or a different busy handler is set | 
|  | ** then 0 is returned.  Setting the busy_timeout to 0 or negative | 
|  | ** disables the timeout. | 
|  | */ | 
|  | /*case PragTyp_BUSY_TIMEOUT*/ default: { | 
|  | assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT ); | 
|  | if( zRight ){ | 
|  | sqlite3_busy_timeout(db, sqlite3Atoi(zRight)); | 
|  | } | 
|  | returnSingleInt(v, db->busyTimeout); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **   PRAGMA soft_heap_limit | 
|  | **   PRAGMA soft_heap_limit = N | 
|  | ** | 
|  | ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the | 
|  | ** sqlite3_soft_heap_limit64() interface with the argument N, if N is | 
|  | ** specified and is a non-negative integer. | 
|  | ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always | 
|  | ** returns the same integer that would be returned by the | 
|  | ** sqlite3_soft_heap_limit64(-1) C-language function. | 
|  | */ | 
|  | case PragTyp_SOFT_HEAP_LIMIT: { | 
|  | sqlite3_int64 N; | 
|  | if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){ | 
|  | sqlite3_soft_heap_limit64(N); | 
|  | } | 
|  | returnSingleInt(v, sqlite3_soft_heap_limit64(-1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | **   PRAGMA threads | 
|  | **   PRAGMA threads = N | 
|  | ** | 
|  | ** Configure the maximum number of worker threads.  Return the new | 
|  | ** maximum, which might be less than requested. | 
|  | */ | 
|  | case PragTyp_THREADS: { | 
|  | sqlite3_int64 N; | 
|  | if( zRight | 
|  | && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK | 
|  | && N>=0 | 
|  | ){ | 
|  | sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff)); | 
|  | } | 
|  | returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) | 
|  | /* | 
|  | ** Report the current state of file logs for all databases | 
|  | */ | 
|  | case PragTyp_LOCK_STATUS: { | 
|  | static const char *const azLockName[] = { | 
|  | "unlocked", "shared", "reserved", "pending", "exclusive" | 
|  | }; | 
|  | int i; | 
|  | pParse->nMem = 2; | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | Btree *pBt; | 
|  | const char *zState = "unknown"; | 
|  | int j; | 
|  | if( db->aDb[i].zDbSName==0 ) continue; | 
|  | pBt = db->aDb[i].pBt; | 
|  | if( pBt==0 || sqlite3BtreePager(pBt)==0 ){ | 
|  | zState = "closed"; | 
|  | }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0, | 
|  | SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ | 
|  | zState = azLockName[j]; | 
|  | } | 
|  | sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef SQLITE_HAS_CODEC | 
|  | case PragTyp_KEY: { | 
|  | if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); | 
|  | break; | 
|  | } | 
|  | case PragTyp_REKEY: { | 
|  | if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight)); | 
|  | break; | 
|  | } | 
|  | case PragTyp_HEXKEY: { | 
|  | if( zRight ){ | 
|  | u8 iByte; | 
|  | int i; | 
|  | char zKey[40]; | 
|  | for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){ | 
|  | iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]); | 
|  | if( (i&1)!=0 ) zKey[i/2] = iByte; | 
|  | } | 
|  | if( (zLeft[3] & 0xf)==0xb ){ | 
|  | sqlite3_key_v2(db, zDb, zKey, i/2); | 
|  | }else{ | 
|  | sqlite3_rekey_v2(db, zDb, zKey, i/2); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) | 
|  | case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){ | 
|  | #ifdef SQLITE_HAS_CODEC | 
|  | if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ | 
|  | sqlite3_activate_see(&zRight[4]); | 
|  | } | 
|  | #endif | 
|  | #ifdef SQLITE_ENABLE_CEROD | 
|  | if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ | 
|  | sqlite3_activate_cerod(&zRight[6]); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | } /* End of the PRAGMA switch */ | 
|  |  | 
|  | /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only | 
|  | ** purpose is to execute assert() statements to verify that if the | 
|  | ** PragFlg_NoColumns1 flag is set and the caller specified an argument | 
|  | ** to the PRAGMA, the implementation has not added any OP_ResultRow | 
|  | ** instructions to the VM.  */ | 
|  | if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){ | 
|  | sqlite3VdbeVerifyNoResultRow(v); | 
|  | } | 
|  |  | 
|  | pragma_out: | 
|  | sqlite3DbFree(db, zLeft); | 
|  | sqlite3DbFree(db, zRight); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | /***************************************************************************** | 
|  | ** Implementation of an eponymous virtual table that runs a pragma. | 
|  | ** | 
|  | */ | 
|  | typedef struct PragmaVtab PragmaVtab; | 
|  | typedef struct PragmaVtabCursor PragmaVtabCursor; | 
|  | struct PragmaVtab { | 
|  | sqlite3_vtab base;        /* Base class.  Must be first */ | 
|  | sqlite3 *db;              /* The database connection to which it belongs */ | 
|  | const PragmaName *pName;  /* Name of the pragma */ | 
|  | u8 nHidden;               /* Number of hidden columns */ | 
|  | u8 iHidden;               /* Index of the first hidden column */ | 
|  | }; | 
|  | struct PragmaVtabCursor { | 
|  | sqlite3_vtab_cursor base; /* Base class.  Must be first */ | 
|  | sqlite3_stmt *pPragma;    /* The pragma statement to run */ | 
|  | sqlite_int64 iRowid;      /* Current rowid */ | 
|  | char *azArg[2];           /* Value of the argument and schema */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** Pragma virtual table module xConnect method. | 
|  | */ | 
|  | static int pragmaVtabConnect( | 
|  | sqlite3 *db, | 
|  | void *pAux, | 
|  | int argc, const char *const*argv, | 
|  | sqlite3_vtab **ppVtab, | 
|  | char **pzErr | 
|  | ){ | 
|  | const PragmaName *pPragma = (const PragmaName*)pAux; | 
|  | PragmaVtab *pTab = 0; | 
|  | int rc; | 
|  | int i, j; | 
|  | char cSep = '('; | 
|  | StrAccum acc; | 
|  | char zBuf[200]; | 
|  |  | 
|  | UNUSED_PARAMETER(argc); | 
|  | UNUSED_PARAMETER(argv); | 
|  | sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); | 
|  | sqlite3StrAccumAppendAll(&acc, "CREATE TABLE x"); | 
|  | for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){ | 
|  | sqlite3XPrintf(&acc, "%c\"%s\"", cSep, pragCName[j]); | 
|  | cSep = ','; | 
|  | } | 
|  | if( i==0 ){ | 
|  | sqlite3XPrintf(&acc, "(\"%s\"", pPragma->zName); | 
|  | cSep = ','; | 
|  | i++; | 
|  | } | 
|  | j = 0; | 
|  | if( pPragma->mPragFlg & PragFlg_Result1 ){ | 
|  | sqlite3StrAccumAppendAll(&acc, ",arg HIDDEN"); | 
|  | j++; | 
|  | } | 
|  | if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){ | 
|  | sqlite3StrAccumAppendAll(&acc, ",schema HIDDEN"); | 
|  | j++; | 
|  | } | 
|  | sqlite3StrAccumAppend(&acc, ")", 1); | 
|  | sqlite3StrAccumFinish(&acc); | 
|  | assert( strlen(zBuf) < sizeof(zBuf)-1 ); | 
|  | rc = sqlite3_declare_vtab(db, zBuf); | 
|  | if( rc==SQLITE_OK ){ | 
|  | pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab)); | 
|  | if( pTab==0 ){ | 
|  | rc = SQLITE_NOMEM; | 
|  | }else{ | 
|  | memset(pTab, 0, sizeof(PragmaVtab)); | 
|  | pTab->pName = pPragma; | 
|  | pTab->db = db; | 
|  | pTab->iHidden = i; | 
|  | pTab->nHidden = j; | 
|  | } | 
|  | }else{ | 
|  | *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); | 
|  | } | 
|  |  | 
|  | *ppVtab = (sqlite3_vtab*)pTab; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Pragma virtual table module xDisconnect method. | 
|  | */ | 
|  | static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){ | 
|  | PragmaVtab *pTab = (PragmaVtab*)pVtab; | 
|  | sqlite3_free(pTab); | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* Figure out the best index to use to search a pragma virtual table. | 
|  | ** | 
|  | ** There are not really any index choices.  But we want to encourage the | 
|  | ** query planner to give == constraints on as many hidden parameters as | 
|  | ** possible, and especially on the first hidden parameter.  So return a | 
|  | ** high cost if hidden parameters are unconstrained. | 
|  | */ | 
|  | static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ | 
|  | PragmaVtab *pTab = (PragmaVtab*)tab; | 
|  | const struct sqlite3_index_constraint *pConstraint; | 
|  | int i, j; | 
|  | int seen[2]; | 
|  |  | 
|  | pIdxInfo->estimatedCost = (double)1; | 
|  | if( pTab->nHidden==0 ){ return SQLITE_OK; } | 
|  | pConstraint = pIdxInfo->aConstraint; | 
|  | seen[0] = 0; | 
|  | seen[1] = 0; | 
|  | for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ | 
|  | if( pConstraint->usable==0 ) continue; | 
|  | if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; | 
|  | if( pConstraint->iColumn < pTab->iHidden ) continue; | 
|  | j = pConstraint->iColumn - pTab->iHidden; | 
|  | assert( j < 2 ); | 
|  | seen[j] = i+1; | 
|  | } | 
|  | if( seen[0]==0 ){ | 
|  | pIdxInfo->estimatedCost = (double)2147483647; | 
|  | pIdxInfo->estimatedRows = 2147483647; | 
|  | return SQLITE_OK; | 
|  | } | 
|  | j = seen[0]-1; | 
|  | pIdxInfo->aConstraintUsage[j].argvIndex = 1; | 
|  | pIdxInfo->aConstraintUsage[j].omit = 1; | 
|  | if( seen[1]==0 ) return SQLITE_OK; | 
|  | pIdxInfo->estimatedCost = (double)20; | 
|  | pIdxInfo->estimatedRows = 20; | 
|  | j = seen[1]-1; | 
|  | pIdxInfo->aConstraintUsage[j].argvIndex = 2; | 
|  | pIdxInfo->aConstraintUsage[j].omit = 1; | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* Create a new cursor for the pragma virtual table */ | 
|  | static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){ | 
|  | PragmaVtabCursor *pCsr; | 
|  | pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr)); | 
|  | if( pCsr==0 ) return SQLITE_NOMEM; | 
|  | memset(pCsr, 0, sizeof(PragmaVtabCursor)); | 
|  | pCsr->base.pVtab = pVtab; | 
|  | *ppCursor = &pCsr->base; | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* Clear all content from pragma virtual table cursor. */ | 
|  | static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){ | 
|  | int i; | 
|  | sqlite3_finalize(pCsr->pPragma); | 
|  | pCsr->pPragma = 0; | 
|  | for(i=0; i<ArraySize(pCsr->azArg); i++){ | 
|  | sqlite3_free(pCsr->azArg[i]); | 
|  | pCsr->azArg[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Close a pragma virtual table cursor */ | 
|  | static int pragmaVtabClose(sqlite3_vtab_cursor *cur){ | 
|  | PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur; | 
|  | pragmaVtabCursorClear(pCsr); | 
|  | sqlite3_free(pCsr); | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* Advance the pragma virtual table cursor to the next row */ | 
|  | static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){ | 
|  | PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; | 
|  | int rc = SQLITE_OK; | 
|  |  | 
|  | /* Increment the xRowid value */ | 
|  | pCsr->iRowid++; | 
|  | assert( pCsr->pPragma ); | 
|  | if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){ | 
|  | rc = sqlite3_finalize(pCsr->pPragma); | 
|  | pCsr->pPragma = 0; | 
|  | pragmaVtabCursorClear(pCsr); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Pragma virtual table module xFilter method. | 
|  | */ | 
|  | static int pragmaVtabFilter( | 
|  | sqlite3_vtab_cursor *pVtabCursor, | 
|  | int idxNum, const char *idxStr, | 
|  | int argc, sqlite3_value **argv | 
|  | ){ | 
|  | PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; | 
|  | PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); | 
|  | int rc; | 
|  | int i, j; | 
|  | StrAccum acc; | 
|  | char *zSql; | 
|  |  | 
|  | UNUSED_PARAMETER(idxNum); | 
|  | UNUSED_PARAMETER(idxStr); | 
|  | pragmaVtabCursorClear(pCsr); | 
|  | j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1; | 
|  | for(i=0; i<argc; i++, j++){ | 
|  | const char *zText = (const char*)sqlite3_value_text(argv[i]); | 
|  | assert( j<ArraySize(pCsr->azArg) ); | 
|  | assert( pCsr->azArg[j]==0 ); | 
|  | if( zText ){ | 
|  | pCsr->azArg[j] = sqlite3_mprintf("%s", zText); | 
|  | if( pCsr->azArg[j]==0 ){ | 
|  | return SQLITE_NOMEM; | 
|  | } | 
|  | } | 
|  | } | 
|  | sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]); | 
|  | sqlite3StrAccumAppendAll(&acc, "PRAGMA "); | 
|  | if( pCsr->azArg[1] ){ | 
|  | sqlite3XPrintf(&acc, "%Q.", pCsr->azArg[1]); | 
|  | } | 
|  | sqlite3StrAccumAppendAll(&acc, pTab->pName->zName); | 
|  | if( pCsr->azArg[0] ){ | 
|  | sqlite3XPrintf(&acc, "=%Q", pCsr->azArg[0]); | 
|  | } | 
|  | zSql = sqlite3StrAccumFinish(&acc); | 
|  | if( zSql==0 ) return SQLITE_NOMEM; | 
|  | rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0); | 
|  | sqlite3_free(zSql); | 
|  | if( rc!=SQLITE_OK ){ | 
|  | pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db)); | 
|  | return rc; | 
|  | } | 
|  | return pragmaVtabNext(pVtabCursor); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Pragma virtual table module xEof method. | 
|  | */ | 
|  | static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){ | 
|  | PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; | 
|  | return (pCsr->pPragma==0); | 
|  | } | 
|  |  | 
|  | /* The xColumn method simply returns the corresponding column from | 
|  | ** the PRAGMA. | 
|  | */ | 
|  | static int pragmaVtabColumn( | 
|  | sqlite3_vtab_cursor *pVtabCursor, | 
|  | sqlite3_context *ctx, | 
|  | int i | 
|  | ){ | 
|  | PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; | 
|  | PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab); | 
|  | if( i<pTab->iHidden ){ | 
|  | sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i)); | 
|  | }else{ | 
|  | sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT); | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Pragma virtual table module xRowid method. | 
|  | */ | 
|  | static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){ | 
|  | PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor; | 
|  | *p = pCsr->iRowid; | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* The pragma virtual table object */ | 
|  | static const sqlite3_module pragmaVtabModule = { | 
|  | 0,                           /* iVersion */ | 
|  | 0,                           /* xCreate - create a table */ | 
|  | pragmaVtabConnect,           /* xConnect - connect to an existing table */ | 
|  | pragmaVtabBestIndex,         /* xBestIndex - Determine search strategy */ | 
|  | pragmaVtabDisconnect,        /* xDisconnect - Disconnect from a table */ | 
|  | 0,                           /* xDestroy - Drop a table */ | 
|  | pragmaVtabOpen,              /* xOpen - open a cursor */ | 
|  | pragmaVtabClose,             /* xClose - close a cursor */ | 
|  | pragmaVtabFilter,            /* xFilter - configure scan constraints */ | 
|  | pragmaVtabNext,              /* xNext - advance a cursor */ | 
|  | pragmaVtabEof,               /* xEof */ | 
|  | pragmaVtabColumn,            /* xColumn - read data */ | 
|  | pragmaVtabRowid,             /* xRowid - read data */ | 
|  | 0,                           /* xUpdate - write data */ | 
|  | 0,                           /* xBegin - begin transaction */ | 
|  | 0,                           /* xSync - sync transaction */ | 
|  | 0,                           /* xCommit - commit transaction */ | 
|  | 0,                           /* xRollback - rollback transaction */ | 
|  | 0,                           /* xFindFunction - function overloading */ | 
|  | 0,                           /* xRename - rename the table */ | 
|  | 0,                           /* xSavepoint */ | 
|  | 0,                           /* xRelease */ | 
|  | 0                            /* xRollbackTo */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** Check to see if zTabName is really the name of a pragma.  If it is, | 
|  | ** then register an eponymous virtual table for that pragma and return | 
|  | ** a pointer to the Module object for the new virtual table. | 
|  | */ | 
|  | Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){ | 
|  | const PragmaName *pName; | 
|  | assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 ); | 
|  | pName = pragmaLocate(zName+7); | 
|  | if( pName==0 ) return 0; | 
|  | if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0; | 
|  | assert( sqlite3HashFind(&db->aModule, zName)==0 ); | 
|  | return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0); | 
|  | } | 
|  |  | 
|  | #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  |  | 
|  | #endif /* SQLITE_OMIT_PRAGMA */ |