|  | /* | 
|  | ** 2003 September 6 | 
|  | ** | 
|  | ** The author disclaims copyright to this source code.  In place of | 
|  | ** a legal notice, here is a blessing: | 
|  | ** | 
|  | **    May you do good and not evil. | 
|  | **    May you find forgiveness for yourself and forgive others. | 
|  | **    May you share freely, never taking more than you give. | 
|  | ** | 
|  | ************************************************************************* | 
|  | ** This file contains code used for creating, destroying, and populating | 
|  | ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) | 
|  | */ | 
|  | #include "sqliteInt.h" | 
|  | #include "vdbeInt.h" | 
|  |  | 
|  | /* | 
|  | ** Create a new virtual database engine. | 
|  | */ | 
|  | Vdbe *sqlite3VdbeCreate(Parse *pParse){ | 
|  | sqlite3 *db = pParse->db; | 
|  | Vdbe *p; | 
|  | p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); | 
|  | if( p==0 ) return 0; | 
|  | memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); | 
|  | p->db = db; | 
|  | if( db->pVdbe ){ | 
|  | db->pVdbe->pPrev = p; | 
|  | } | 
|  | p->pNext = db->pVdbe; | 
|  | p->pPrev = 0; | 
|  | db->pVdbe = p; | 
|  | p->magic = VDBE_MAGIC_INIT; | 
|  | p->pParse = pParse; | 
|  | pParse->pVdbe = p; | 
|  | assert( pParse->aLabel==0 ); | 
|  | assert( pParse->nLabel==0 ); | 
|  | assert( pParse->nOpAlloc==0 ); | 
|  | assert( pParse->szOpAlloc==0 ); | 
|  | sqlite3VdbeAddOp2(p, OP_Init, 0, 1); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the error string stored in Vdbe.zErrMsg | 
|  | */ | 
|  | void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ | 
|  | va_list ap; | 
|  | sqlite3DbFree(p->db, p->zErrMsg); | 
|  | va_start(ap, zFormat); | 
|  | p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); | 
|  | va_end(ap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Remember the SQL string for a prepared statement. | 
|  | */ | 
|  | void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ | 
|  | if( p==0 ) return; | 
|  | p->prepFlags = prepFlags; | 
|  | if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ | 
|  | p->expmask = 0; | 
|  | } | 
|  | assert( p->zSql==0 ); | 
|  | p->zSql = sqlite3DbStrNDup(p->db, z, n); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Swap all content between two VDBE structures. | 
|  | */ | 
|  | void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ | 
|  | Vdbe tmp, *pTmp; | 
|  | char *zTmp; | 
|  | assert( pA->db==pB->db ); | 
|  | tmp = *pA; | 
|  | *pA = *pB; | 
|  | *pB = tmp; | 
|  | pTmp = pA->pNext; | 
|  | pA->pNext = pB->pNext; | 
|  | pB->pNext = pTmp; | 
|  | pTmp = pA->pPrev; | 
|  | pA->pPrev = pB->pPrev; | 
|  | pB->pPrev = pTmp; | 
|  | zTmp = pA->zSql; | 
|  | pA->zSql = pB->zSql; | 
|  | pB->zSql = zTmp; | 
|  | pB->expmask = pA->expmask; | 
|  | pB->prepFlags = pA->prepFlags; | 
|  | memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); | 
|  | pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Resize the Vdbe.aOp array so that it is at least nOp elements larger | 
|  | ** than its current size. nOp is guaranteed to be less than or equal | 
|  | ** to 1024/sizeof(Op). | 
|  | ** | 
|  | ** If an out-of-memory error occurs while resizing the array, return | 
|  | ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain | 
|  | ** unchanged (this is so that any opcodes already allocated can be | 
|  | ** correctly deallocated along with the rest of the Vdbe). | 
|  | */ | 
|  | static int growOpArray(Vdbe *v, int nOp){ | 
|  | VdbeOp *pNew; | 
|  | Parse *p = v->pParse; | 
|  |  | 
|  | /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force | 
|  | ** more frequent reallocs and hence provide more opportunities for | 
|  | ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used | 
|  | ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array | 
|  | ** by the minimum* amount required until the size reaches 512.  Normal | 
|  | ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current | 
|  | ** size of the op array or add 1KB of space, whichever is smaller. */ | 
|  | #ifdef SQLITE_TEST_REALLOC_STRESS | 
|  | int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); | 
|  | #else | 
|  | int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); | 
|  | UNUSED_PARAMETER(nOp); | 
|  | #endif | 
|  |  | 
|  | /* Ensure that the size of a VDBE does not grow too large */ | 
|  | if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ | 
|  | sqlite3OomFault(p->db); | 
|  | return SQLITE_NOMEM; | 
|  | } | 
|  |  | 
|  | assert( nOp<=(1024/sizeof(Op)) ); | 
|  | assert( nNew>=(p->nOpAlloc+nOp) ); | 
|  | pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); | 
|  | if( pNew ){ | 
|  | p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); | 
|  | p->nOpAlloc = p->szOpAlloc/sizeof(Op); | 
|  | v->aOp = pNew; | 
|  | } | 
|  | return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* This routine is just a convenient place to set a breakpoint that will | 
|  | ** fire after each opcode is inserted and displayed using | 
|  | ** "PRAGMA vdbe_addoptrace=on". | 
|  | */ | 
|  | static void test_addop_breakpoint(void){ | 
|  | static int n = 0; | 
|  | n++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Add a new instruction to the list of instructions current in the | 
|  | ** VDBE.  Return the address of the new instruction. | 
|  | ** | 
|  | ** Parameters: | 
|  | ** | 
|  | **    p               Pointer to the VDBE | 
|  | ** | 
|  | **    op              The opcode for this instruction | 
|  | ** | 
|  | **    p1, p2, p3      Operands | 
|  | ** | 
|  | ** Use the sqlite3VdbeResolveLabel() function to fix an address and | 
|  | ** the sqlite3VdbeChangeP4() function to change the value of the P4 | 
|  | ** operand. | 
|  | */ | 
|  | static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ | 
|  | assert( p->pParse->nOpAlloc<=p->nOp ); | 
|  | if( growOpArray(p, 1) ) return 1; | 
|  | assert( p->pParse->nOpAlloc>p->nOp ); | 
|  | return sqlite3VdbeAddOp3(p, op, p1, p2, p3); | 
|  | } | 
|  | int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ | 
|  | int i; | 
|  | VdbeOp *pOp; | 
|  |  | 
|  | i = p->nOp; | 
|  | assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | assert( op>=0 && op<0xff ); | 
|  | if( p->pParse->nOpAlloc<=i ){ | 
|  | return growOp3(p, op, p1, p2, p3); | 
|  | } | 
|  | p->nOp++; | 
|  | pOp = &p->aOp[i]; | 
|  | pOp->opcode = (u8)op; | 
|  | pOp->p5 = 0; | 
|  | pOp->p1 = p1; | 
|  | pOp->p2 = p2; | 
|  | pOp->p3 = p3; | 
|  | pOp->p4.p = 0; | 
|  | pOp->p4type = P4_NOTUSED; | 
|  | #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
|  | pOp->zComment = 0; | 
|  | #endif | 
|  | #ifdef SQLITE_DEBUG | 
|  | if( p->db->flags & SQLITE_VdbeAddopTrace ){ | 
|  | int jj, kk; | 
|  | Parse *pParse = p->pParse; | 
|  | for(jj=kk=0; jj<pParse->nColCache; jj++){ | 
|  | struct yColCache *x = pParse->aColCache + jj; | 
|  | printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); | 
|  | kk++; | 
|  | } | 
|  | if( kk ) printf("\n"); | 
|  | sqlite3VdbePrintOp(0, i, &p->aOp[i]); | 
|  | test_addop_breakpoint(); | 
|  | } | 
|  | #endif | 
|  | #ifdef VDBE_PROFILE | 
|  | pOp->cycles = 0; | 
|  | pOp->cnt = 0; | 
|  | #endif | 
|  | #ifdef SQLITE_VDBE_COVERAGE | 
|  | pOp->iSrcLine = 0; | 
|  | #endif | 
|  | return i; | 
|  | } | 
|  | int sqlite3VdbeAddOp0(Vdbe *p, int op){ | 
|  | return sqlite3VdbeAddOp3(p, op, 0, 0, 0); | 
|  | } | 
|  | int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ | 
|  | return sqlite3VdbeAddOp3(p, op, p1, 0, 0); | 
|  | } | 
|  | int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ | 
|  | return sqlite3VdbeAddOp3(p, op, p1, p2, 0); | 
|  | } | 
|  |  | 
|  | /* Generate code for an unconditional jump to instruction iDest | 
|  | */ | 
|  | int sqlite3VdbeGoto(Vdbe *p, int iDest){ | 
|  | return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); | 
|  | } | 
|  |  | 
|  | /* Generate code to cause the string zStr to be loaded into | 
|  | ** register iDest | 
|  | */ | 
|  | int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ | 
|  | return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Generate code that initializes multiple registers to string or integer | 
|  | ** constants.  The registers begin with iDest and increase consecutively. | 
|  | ** One register is initialized for each characgter in zTypes[].  For each | 
|  | ** "s" character in zTypes[], the register is a string if the argument is | 
|  | ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character | 
|  | ** in zTypes[], the register is initialized to an integer. | 
|  | ** | 
|  | ** If the input string does not end with "X" then an OP_ResultRow instruction | 
|  | ** is generated for the values inserted. | 
|  | */ | 
|  | void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ | 
|  | va_list ap; | 
|  | int i; | 
|  | char c; | 
|  | va_start(ap, zTypes); | 
|  | for(i=0; (c = zTypes[i])!=0; i++){ | 
|  | if( c=='s' ){ | 
|  | const char *z = va_arg(ap, const char*); | 
|  | sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); | 
|  | }else if( c=='i' ){ | 
|  | sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); | 
|  | }else{ | 
|  | goto skip_op_resultrow; | 
|  | } | 
|  | } | 
|  | sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); | 
|  | skip_op_resultrow: | 
|  | va_end(ap); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Add an opcode that includes the p4 value as a pointer. | 
|  | */ | 
|  | int sqlite3VdbeAddOp4( | 
|  | Vdbe *p,            /* Add the opcode to this VM */ | 
|  | int op,             /* The new opcode */ | 
|  | int p1,             /* The P1 operand */ | 
|  | int p2,             /* The P2 operand */ | 
|  | int p3,             /* The P3 operand */ | 
|  | const char *zP4,    /* The P4 operand */ | 
|  | int p4type          /* P4 operand type */ | 
|  | ){ | 
|  | int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); | 
|  | sqlite3VdbeChangeP4(p, addr, zP4, p4type); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Add an opcode that includes the p4 value with a P4_INT64 or | 
|  | ** P4_REAL type. | 
|  | */ | 
|  | int sqlite3VdbeAddOp4Dup8( | 
|  | Vdbe *p,            /* Add the opcode to this VM */ | 
|  | int op,             /* The new opcode */ | 
|  | int p1,             /* The P1 operand */ | 
|  | int p2,             /* The P2 operand */ | 
|  | int p3,             /* The P3 operand */ | 
|  | const u8 *zP4,      /* The P4 operand */ | 
|  | int p4type          /* P4 operand type */ | 
|  | ){ | 
|  | char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); | 
|  | if( p4copy ) memcpy(p4copy, zP4, 8); | 
|  | return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Add an OP_ParseSchema opcode.  This routine is broken out from | 
|  | ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees | 
|  | ** as having been used. | 
|  | ** | 
|  | ** The zWhere string must have been obtained from sqlite3_malloc(). | 
|  | ** This routine will take ownership of the allocated memory. | 
|  | */ | 
|  | void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ | 
|  | int j; | 
|  | sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); | 
|  | for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Add an opcode that includes the p4 value as an integer. | 
|  | */ | 
|  | int sqlite3VdbeAddOp4Int( | 
|  | Vdbe *p,            /* Add the opcode to this VM */ | 
|  | int op,             /* The new opcode */ | 
|  | int p1,             /* The P1 operand */ | 
|  | int p2,             /* The P2 operand */ | 
|  | int p3,             /* The P3 operand */ | 
|  | int p4              /* The P4 operand as an integer */ | 
|  | ){ | 
|  | int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); | 
|  | if( p->db->mallocFailed==0 ){ | 
|  | VdbeOp *pOp = &p->aOp[addr]; | 
|  | pOp->p4type = P4_INT32; | 
|  | pOp->p4.i = p4; | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* Insert the end of a co-routine | 
|  | */ | 
|  | void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ | 
|  | sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); | 
|  |  | 
|  | /* Clear the temporary register cache, thereby ensuring that each | 
|  | ** co-routine has its own independent set of registers, because co-routines | 
|  | ** might expect their registers to be preserved across an OP_Yield, and | 
|  | ** that could cause problems if two or more co-routines are using the same | 
|  | ** temporary register. | 
|  | */ | 
|  | v->pParse->nTempReg = 0; | 
|  | v->pParse->nRangeReg = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Create a new symbolic label for an instruction that has yet to be | 
|  | ** coded.  The symbolic label is really just a negative number.  The | 
|  | ** label can be used as the P2 value of an operation.  Later, when | 
|  | ** the label is resolved to a specific address, the VDBE will scan | 
|  | ** through its operation list and change all values of P2 which match | 
|  | ** the label into the resolved address. | 
|  | ** | 
|  | ** The VDBE knows that a P2 value is a label because labels are | 
|  | ** always negative and P2 values are suppose to be non-negative. | 
|  | ** Hence, a negative P2 value is a label that has yet to be resolved. | 
|  | ** | 
|  | ** Zero is returned if a malloc() fails. | 
|  | */ | 
|  | int sqlite3VdbeMakeLabel(Vdbe *v){ | 
|  | Parse *p = v->pParse; | 
|  | int i = p->nLabel++; | 
|  | assert( v->magic==VDBE_MAGIC_INIT ); | 
|  | if( (i & (i-1))==0 ){ | 
|  | p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, | 
|  | (i*2+1)*sizeof(p->aLabel[0])); | 
|  | } | 
|  | if( p->aLabel ){ | 
|  | p->aLabel[i] = -1; | 
|  | } | 
|  | return ADDR(i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Resolve label "x" to be the address of the next instruction to | 
|  | ** be inserted.  The parameter "x" must have been obtained from | 
|  | ** a prior call to sqlite3VdbeMakeLabel(). | 
|  | */ | 
|  | void sqlite3VdbeResolveLabel(Vdbe *v, int x){ | 
|  | Parse *p = v->pParse; | 
|  | int j = ADDR(x); | 
|  | assert( v->magic==VDBE_MAGIC_INIT ); | 
|  | assert( j<p->nLabel ); | 
|  | assert( j>=0 ); | 
|  | if( p->aLabel ){ | 
|  | #ifdef SQLITE_DEBUG | 
|  | if( p->db->flags & SQLITE_VdbeAddopTrace ){ | 
|  | printf("RESOLVE LABEL %d to %d\n", x, v->nOp); | 
|  | } | 
|  | #endif | 
|  | assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ | 
|  | p->aLabel[j] = v->nOp; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_COVERAGE_TEST | 
|  | /* | 
|  | ** Return TRUE if and only if the label x has already been resolved. | 
|  | ** Return FALSE (zero) if label x is still unresolved. | 
|  | ** | 
|  | ** This routine is only used inside of testcase() macros, and so it | 
|  | ** only exists when measuring test coverage. | 
|  | */ | 
|  | int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){ | 
|  | return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0; | 
|  | } | 
|  | #endif /* SQLITE_COVERAGE_TEST */ | 
|  |  | 
|  | /* | 
|  | ** Mark the VDBE as one that can only be run one time. | 
|  | */ | 
|  | void sqlite3VdbeRunOnlyOnce(Vdbe *p){ | 
|  | p->runOnlyOnce = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Mark the VDBE as one that can only be run multiple times. | 
|  | */ | 
|  | void sqlite3VdbeReusable(Vdbe *p){ | 
|  | p->runOnlyOnce = 0; | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ | 
|  |  | 
|  | /* | 
|  | ** The following type and function are used to iterate through all opcodes | 
|  | ** in a Vdbe main program and each of the sub-programs (triggers) it may | 
|  | ** invoke directly or indirectly. It should be used as follows: | 
|  | ** | 
|  | **   Op *pOp; | 
|  | **   VdbeOpIter sIter; | 
|  | ** | 
|  | **   memset(&sIter, 0, sizeof(sIter)); | 
|  | **   sIter.v = v;                            // v is of type Vdbe* | 
|  | **   while( (pOp = opIterNext(&sIter)) ){ | 
|  | **     // Do something with pOp | 
|  | **   } | 
|  | **   sqlite3DbFree(v->db, sIter.apSub); | 
|  | ** | 
|  | */ | 
|  | typedef struct VdbeOpIter VdbeOpIter; | 
|  | struct VdbeOpIter { | 
|  | Vdbe *v;                   /* Vdbe to iterate through the opcodes of */ | 
|  | SubProgram **apSub;        /* Array of subprograms */ | 
|  | int nSub;                  /* Number of entries in apSub */ | 
|  | int iAddr;                 /* Address of next instruction to return */ | 
|  | int iSub;                  /* 0 = main program, 1 = first sub-program etc. */ | 
|  | }; | 
|  | static Op *opIterNext(VdbeOpIter *p){ | 
|  | Vdbe *v = p->v; | 
|  | Op *pRet = 0; | 
|  | Op *aOp; | 
|  | int nOp; | 
|  |  | 
|  | if( p->iSub<=p->nSub ){ | 
|  |  | 
|  | if( p->iSub==0 ){ | 
|  | aOp = v->aOp; | 
|  | nOp = v->nOp; | 
|  | }else{ | 
|  | aOp = p->apSub[p->iSub-1]->aOp; | 
|  | nOp = p->apSub[p->iSub-1]->nOp; | 
|  | } | 
|  | assert( p->iAddr<nOp ); | 
|  |  | 
|  | pRet = &aOp[p->iAddr]; | 
|  | p->iAddr++; | 
|  | if( p->iAddr==nOp ){ | 
|  | p->iSub++; | 
|  | p->iAddr = 0; | 
|  | } | 
|  |  | 
|  | if( pRet->p4type==P4_SUBPROGRAM ){ | 
|  | int nByte = (p->nSub+1)*sizeof(SubProgram*); | 
|  | int j; | 
|  | for(j=0; j<p->nSub; j++){ | 
|  | if( p->apSub[j]==pRet->p4.pProgram ) break; | 
|  | } | 
|  | if( j==p->nSub ){ | 
|  | p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); | 
|  | if( !p->apSub ){ | 
|  | pRet = 0; | 
|  | }else{ | 
|  | p->apSub[p->nSub++] = pRet->p4.pProgram; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return pRet; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Check if the program stored in the VM associated with pParse may | 
|  | ** throw an ABORT exception (causing the statement, but not entire transaction | 
|  | ** to be rolled back). This condition is true if the main program or any | 
|  | ** sub-programs contains any of the following: | 
|  | ** | 
|  | **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. | 
|  | **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. | 
|  | **   *  OP_Destroy | 
|  | **   *  OP_VUpdate | 
|  | **   *  OP_VRename | 
|  | **   *  OP_FkCounter with P2==0 (immediate foreign key constraint) | 
|  | **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine | 
|  | **      (for CREATE TABLE AS SELECT ...) | 
|  | ** | 
|  | ** Then check that the value of Parse.mayAbort is true if an | 
|  | ** ABORT may be thrown, or false otherwise. Return true if it does | 
|  | ** match, or false otherwise. This function is intended to be used as | 
|  | ** part of an assert statement in the compiler. Similar to: | 
|  | ** | 
|  | **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); | 
|  | */ | 
|  | int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ | 
|  | int hasAbort = 0; | 
|  | int hasFkCounter = 0; | 
|  | int hasCreateTable = 0; | 
|  | int hasInitCoroutine = 0; | 
|  | Op *pOp; | 
|  | VdbeOpIter sIter; | 
|  | memset(&sIter, 0, sizeof(sIter)); | 
|  | sIter.v = v; | 
|  |  | 
|  | while( (pOp = opIterNext(&sIter))!=0 ){ | 
|  | int opcode = pOp->opcode; | 
|  | if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename | 
|  | || ((opcode==OP_Halt || opcode==OP_HaltIfNull) | 
|  | && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) | 
|  | ){ | 
|  | hasAbort = 1; | 
|  | break; | 
|  | } | 
|  | if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; | 
|  | if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; | 
|  | #ifndef SQLITE_OMIT_FOREIGN_KEY | 
|  | if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ | 
|  | hasFkCounter = 1; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | sqlite3DbFree(v->db, sIter.apSub); | 
|  |  | 
|  | /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. | 
|  | ** If malloc failed, then the while() loop above may not have iterated | 
|  | ** through all opcodes and hasAbort may be set incorrectly. Return | 
|  | ** true for this case to prevent the assert() in the callers frame | 
|  | ** from failing.  */ | 
|  | return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter | 
|  | || (hasCreateTable && hasInitCoroutine) ); | 
|  | } | 
|  | #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ | 
|  |  | 
|  | /* | 
|  | ** This routine is called after all opcodes have been inserted.  It loops | 
|  | ** through all the opcodes and fixes up some details. | 
|  | ** | 
|  | ** (1) For each jump instruction with a negative P2 value (a label) | 
|  | **     resolve the P2 value to an actual address. | 
|  | ** | 
|  | ** (2) Compute the maximum number of arguments used by any SQL function | 
|  | **     and store that value in *pMaxFuncArgs. | 
|  | ** | 
|  | ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately | 
|  | **     indicate what the prepared statement actually does. | 
|  | ** | 
|  | ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. | 
|  | ** | 
|  | ** (5) Reclaim the memory allocated for storing labels. | 
|  | ** | 
|  | ** This routine will only function correctly if the mkopcodeh.tcl generator | 
|  | ** script numbers the opcodes correctly.  Changes to this routine must be | 
|  | ** coordinated with changes to mkopcodeh.tcl. | 
|  | */ | 
|  | static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ | 
|  | int nMaxArgs = *pMaxFuncArgs; | 
|  | Op *pOp; | 
|  | Parse *pParse = p->pParse; | 
|  | int *aLabel = pParse->aLabel; | 
|  | p->readOnly = 1; | 
|  | p->bIsReader = 0; | 
|  | pOp = &p->aOp[p->nOp-1]; | 
|  | while(1){ | 
|  |  | 
|  | /* Only JUMP opcodes and the short list of special opcodes in the switch | 
|  | ** below need to be considered.  The mkopcodeh.tcl generator script groups | 
|  | ** all these opcodes together near the front of the opcode list.  Skip | 
|  | ** any opcode that does not need processing by virtual of the fact that | 
|  | ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. | 
|  | */ | 
|  | if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ | 
|  | /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing | 
|  | ** cases from this switch! */ | 
|  | switch( pOp->opcode ){ | 
|  | case OP_Transaction: { | 
|  | if( pOp->p2!=0 ) p->readOnly = 0; | 
|  | /* fall thru */ | 
|  | } | 
|  | case OP_AutoCommit: | 
|  | case OP_Savepoint: { | 
|  | p->bIsReader = 1; | 
|  | break; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_WAL | 
|  | case OP_Checkpoint: | 
|  | #endif | 
|  | case OP_Vacuum: | 
|  | case OP_JournalMode: { | 
|  | p->readOnly = 0; | 
|  | p->bIsReader = 1; | 
|  | break; | 
|  | } | 
|  | case OP_Next: | 
|  | case OP_NextIfOpen: | 
|  | case OP_SorterNext: { | 
|  | pOp->p4.xAdvance = sqlite3BtreeNext; | 
|  | pOp->p4type = P4_ADVANCE; | 
|  | /* The code generator never codes any of these opcodes as a jump | 
|  | ** to a label.  They are always coded as a jump backwards to a | 
|  | ** known address */ | 
|  | assert( pOp->p2>=0 ); | 
|  | break; | 
|  | } | 
|  | case OP_Prev: | 
|  | case OP_PrevIfOpen: { | 
|  | pOp->p4.xAdvance = sqlite3BtreePrevious; | 
|  | pOp->p4type = P4_ADVANCE; | 
|  | /* The code generator never codes any of these opcodes as a jump | 
|  | ** to a label.  They are always coded as a jump backwards to a | 
|  | ** known address */ | 
|  | assert( pOp->p2>=0 ); | 
|  | break; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | case OP_VUpdate: { | 
|  | if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; | 
|  | break; | 
|  | } | 
|  | case OP_VFilter: { | 
|  | int n; | 
|  | assert( (pOp - p->aOp) >= 3 ); | 
|  | assert( pOp[-1].opcode==OP_Integer ); | 
|  | n = pOp[-1].p1; | 
|  | if( n>nMaxArgs ) nMaxArgs = n; | 
|  | /* Fall through into the default case */ | 
|  | } | 
|  | #endif | 
|  | default: { | 
|  | if( pOp->p2<0 ){ | 
|  | /* The mkopcodeh.tcl script has so arranged things that the only | 
|  | ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to | 
|  | ** have non-negative values for P2. */ | 
|  | assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); | 
|  | assert( ADDR(pOp->p2)<pParse->nLabel ); | 
|  | pOp->p2 = aLabel[ADDR(pOp->p2)]; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* The mkopcodeh.tcl script has so arranged things that the only | 
|  | ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to | 
|  | ** have non-negative values for P2. */ | 
|  | assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); | 
|  | } | 
|  | if( pOp==p->aOp ) break; | 
|  | pOp--; | 
|  | } | 
|  | sqlite3DbFree(p->db, pParse->aLabel); | 
|  | pParse->aLabel = 0; | 
|  | pParse->nLabel = 0; | 
|  | *pMaxFuncArgs = nMaxArgs; | 
|  | assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the address of the next instruction to be inserted. | 
|  | */ | 
|  | int sqlite3VdbeCurrentAddr(Vdbe *p){ | 
|  | assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | return p->nOp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Verify that at least N opcode slots are available in p without | 
|  | ** having to malloc for more space (except when compiled using | 
|  | ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing | 
|  | ** to verify that certain calls to sqlite3VdbeAddOpList() can never | 
|  | ** fail due to a OOM fault and hence that the return value from | 
|  | ** sqlite3VdbeAddOpList() will always be non-NULL. | 
|  | */ | 
|  | #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) | 
|  | void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ | 
|  | assert( p->nOp + N <= p->pParse->nOpAlloc ); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Verify that the VM passed as the only argument does not contain | 
|  | ** an OP_ResultRow opcode. Fail an assert() if it does. This is used | 
|  | ** by code in pragma.c to ensure that the implementation of certain | 
|  | ** pragmas comports with the flags specified in the mkpragmatab.tcl | 
|  | ** script. | 
|  | */ | 
|  | #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) | 
|  | void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ | 
|  | int i; | 
|  | for(i=0; i<p->nOp; i++){ | 
|  | assert( p->aOp[i].opcode!=OP_ResultRow ); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** This function returns a pointer to the array of opcodes associated with | 
|  | ** the Vdbe passed as the first argument. It is the callers responsibility | 
|  | ** to arrange for the returned array to be eventually freed using the | 
|  | ** vdbeFreeOpArray() function. | 
|  | ** | 
|  | ** Before returning, *pnOp is set to the number of entries in the returned | 
|  | ** array. Also, *pnMaxArg is set to the larger of its current value and | 
|  | ** the number of entries in the Vdbe.apArg[] array required to execute the | 
|  | ** returned program. | 
|  | */ | 
|  | VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ | 
|  | VdbeOp *aOp = p->aOp; | 
|  | assert( aOp && !p->db->mallocFailed ); | 
|  |  | 
|  | /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ | 
|  | assert( DbMaskAllZero(p->btreeMask) ); | 
|  |  | 
|  | resolveP2Values(p, pnMaxArg); | 
|  | *pnOp = p->nOp; | 
|  | p->aOp = 0; | 
|  | return aOp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Add a whole list of operations to the operation stack.  Return a | 
|  | ** pointer to the first operation inserted. | 
|  | ** | 
|  | ** Non-zero P2 arguments to jump instructions are automatically adjusted | 
|  | ** so that the jump target is relative to the first operation inserted. | 
|  | */ | 
|  | VdbeOp *sqlite3VdbeAddOpList( | 
|  | Vdbe *p,                     /* Add opcodes to the prepared statement */ | 
|  | int nOp,                     /* Number of opcodes to add */ | 
|  | VdbeOpList const *aOp,       /* The opcodes to be added */ | 
|  | int iLineno                  /* Source-file line number of first opcode */ | 
|  | ){ | 
|  | int i; | 
|  | VdbeOp *pOut, *pFirst; | 
|  | assert( nOp>0 ); | 
|  | assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ | 
|  | return 0; | 
|  | } | 
|  | pFirst = pOut = &p->aOp[p->nOp]; | 
|  | for(i=0; i<nOp; i++, aOp++, pOut++){ | 
|  | pOut->opcode = aOp->opcode; | 
|  | pOut->p1 = aOp->p1; | 
|  | pOut->p2 = aOp->p2; | 
|  | assert( aOp->p2>=0 ); | 
|  | if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ | 
|  | pOut->p2 += p->nOp; | 
|  | } | 
|  | pOut->p3 = aOp->p3; | 
|  | pOut->p4type = P4_NOTUSED; | 
|  | pOut->p4.p = 0; | 
|  | pOut->p5 = 0; | 
|  | #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
|  | pOut->zComment = 0; | 
|  | #endif | 
|  | #ifdef SQLITE_VDBE_COVERAGE | 
|  | pOut->iSrcLine = iLineno+i; | 
|  | #else | 
|  | (void)iLineno; | 
|  | #endif | 
|  | #ifdef SQLITE_DEBUG | 
|  | if( p->db->flags & SQLITE_VdbeAddopTrace ){ | 
|  | sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | p->nOp += nOp; | 
|  | return pFirst; | 
|  | } | 
|  |  | 
|  | #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) | 
|  | /* | 
|  | ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). | 
|  | */ | 
|  | void sqlite3VdbeScanStatus( | 
|  | Vdbe *p,                        /* VM to add scanstatus() to */ | 
|  | int addrExplain,                /* Address of OP_Explain (or 0) */ | 
|  | int addrLoop,                   /* Address of loop counter */ | 
|  | int addrVisit,                  /* Address of rows visited counter */ | 
|  | LogEst nEst,                    /* Estimated number of output rows */ | 
|  | const char *zName               /* Name of table or index being scanned */ | 
|  | ){ | 
|  | int nByte = (p->nScan+1) * sizeof(ScanStatus); | 
|  | ScanStatus *aNew; | 
|  | aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); | 
|  | if( aNew ){ | 
|  | ScanStatus *pNew = &aNew[p->nScan++]; | 
|  | pNew->addrExplain = addrExplain; | 
|  | pNew->addrLoop = addrLoop; | 
|  | pNew->addrVisit = addrVisit; | 
|  | pNew->nEst = nEst; | 
|  | pNew->zName = sqlite3DbStrDup(p->db, zName); | 
|  | p->aScan = aNew; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Change the value of the opcode, or P1, P2, P3, or P5 operands | 
|  | ** for a specific instruction. | 
|  | */ | 
|  | void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ | 
|  | sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; | 
|  | } | 
|  | void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ | 
|  | sqlite3VdbeGetOp(p,addr)->p1 = val; | 
|  | } | 
|  | void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ | 
|  | sqlite3VdbeGetOp(p,addr)->p2 = val; | 
|  | } | 
|  | void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ | 
|  | sqlite3VdbeGetOp(p,addr)->p3 = val; | 
|  | } | 
|  | void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ | 
|  | assert( p->nOp>0 || p->db->mallocFailed ); | 
|  | if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the P2 operand of instruction addr so that it points to | 
|  | ** the address of the next instruction to be coded. | 
|  | */ | 
|  | void sqlite3VdbeJumpHere(Vdbe *p, int addr){ | 
|  | sqlite3VdbeChangeP2(p, addr, p->nOp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** If the input FuncDef structure is ephemeral, then free it.  If | 
|  | ** the FuncDef is not ephermal, then do nothing. | 
|  | */ | 
|  | static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ | 
|  | if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ | 
|  | sqlite3DbFreeNN(db, pDef); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vdbeFreeOpArray(sqlite3 *, Op *, int); | 
|  |  | 
|  | /* | 
|  | ** Delete a P4 value if necessary. | 
|  | */ | 
|  | static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ | 
|  | if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); | 
|  | sqlite3DbFreeNN(db, p); | 
|  | } | 
|  | static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ | 
|  | freeEphemeralFunction(db, p->pFunc); | 
|  | sqlite3DbFreeNN(db, p); | 
|  | } | 
|  | static void freeP4(sqlite3 *db, int p4type, void *p4){ | 
|  | assert( db ); | 
|  | switch( p4type ){ | 
|  | case P4_FUNCCTX: { | 
|  | freeP4FuncCtx(db, (sqlite3_context*)p4); | 
|  | break; | 
|  | } | 
|  | case P4_REAL: | 
|  | case P4_INT64: | 
|  | case P4_DYNAMIC: | 
|  | case P4_DYNBLOB: | 
|  | case P4_INTARRAY: { | 
|  | sqlite3DbFree(db, p4); | 
|  | break; | 
|  | } | 
|  | case P4_KEYINFO: { | 
|  | if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); | 
|  | break; | 
|  | } | 
|  | #ifdef SQLITE_ENABLE_CURSOR_HINTS | 
|  | case P4_EXPR: { | 
|  | sqlite3ExprDelete(db, (Expr*)p4); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case P4_FUNCDEF: { | 
|  | freeEphemeralFunction(db, (FuncDef*)p4); | 
|  | break; | 
|  | } | 
|  | case P4_MEM: { | 
|  | if( db->pnBytesFreed==0 ){ | 
|  | sqlite3ValueFree((sqlite3_value*)p4); | 
|  | }else{ | 
|  | freeP4Mem(db, (Mem*)p4); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case P4_VTAB : { | 
|  | if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free the space allocated for aOp and any p4 values allocated for the | 
|  | ** opcodes contained within. If aOp is not NULL it is assumed to contain | 
|  | ** nOp entries. | 
|  | */ | 
|  | static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ | 
|  | if( aOp ){ | 
|  | Op *pOp; | 
|  | for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){ | 
|  | if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); | 
|  | #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
|  | sqlite3DbFree(db, pOp->zComment); | 
|  | #endif | 
|  | } | 
|  | sqlite3DbFreeNN(db, aOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Link the SubProgram object passed as the second argument into the linked | 
|  | ** list at Vdbe.pSubProgram. This list is used to delete all sub-program | 
|  | ** objects when the VM is no longer required. | 
|  | */ | 
|  | void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ | 
|  | p->pNext = pVdbe->pProgram; | 
|  | pVdbe->pProgram = p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the opcode at addr into OP_Noop | 
|  | */ | 
|  | int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ | 
|  | VdbeOp *pOp; | 
|  | if( p->db->mallocFailed ) return 0; | 
|  | assert( addr>=0 && addr<p->nOp ); | 
|  | pOp = &p->aOp[addr]; | 
|  | freeP4(p->db, pOp->p4type, pOp->p4.p); | 
|  | pOp->p4type = P4_NOTUSED; | 
|  | pOp->p4.z = 0; | 
|  | pOp->opcode = OP_Noop; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If the last opcode is "op" and it is not a jump destination, | 
|  | ** then remove it.  Return true if and only if an opcode was removed. | 
|  | */ | 
|  | int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ | 
|  | if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ | 
|  | return sqlite3VdbeChangeToNoop(p, p->nOp-1); | 
|  | }else{ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the value of the P4 operand for a specific instruction. | 
|  | ** This routine is useful when a large program is loaded from a | 
|  | ** static array using sqlite3VdbeAddOpList but we want to make a | 
|  | ** few minor changes to the program. | 
|  | ** | 
|  | ** If n>=0 then the P4 operand is dynamic, meaning that a copy of | 
|  | ** the string is made into memory obtained from sqlite3_malloc(). | 
|  | ** A value of n==0 means copy bytes of zP4 up to and including the | 
|  | ** first null byte.  If n>0 then copy n+1 bytes of zP4. | 
|  | ** | 
|  | ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points | 
|  | ** to a string or structure that is guaranteed to exist for the lifetime of | 
|  | ** the Vdbe. In these cases we can just copy the pointer. | 
|  | ** | 
|  | ** If addr<0 then change P4 on the most recently inserted instruction. | 
|  | */ | 
|  | static void SQLITE_NOINLINE vdbeChangeP4Full( | 
|  | Vdbe *p, | 
|  | Op *pOp, | 
|  | const char *zP4, | 
|  | int n | 
|  | ){ | 
|  | if( pOp->p4type ){ | 
|  | freeP4(p->db, pOp->p4type, pOp->p4.p); | 
|  | pOp->p4type = 0; | 
|  | pOp->p4.p = 0; | 
|  | } | 
|  | if( n<0 ){ | 
|  | sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); | 
|  | }else{ | 
|  | if( n==0 ) n = sqlite3Strlen30(zP4); | 
|  | pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); | 
|  | pOp->p4type = P4_DYNAMIC; | 
|  | } | 
|  | } | 
|  | void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ | 
|  | Op *pOp; | 
|  | sqlite3 *db; | 
|  | assert( p!=0 ); | 
|  | db = p->db; | 
|  | assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | assert( p->aOp!=0 || db->mallocFailed ); | 
|  | if( db->mallocFailed ){ | 
|  | if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); | 
|  | return; | 
|  | } | 
|  | assert( p->nOp>0 ); | 
|  | assert( addr<p->nOp ); | 
|  | if( addr<0 ){ | 
|  | addr = p->nOp - 1; | 
|  | } | 
|  | pOp = &p->aOp[addr]; | 
|  | if( n>=0 || pOp->p4type ){ | 
|  | vdbeChangeP4Full(p, pOp, zP4, n); | 
|  | return; | 
|  | } | 
|  | if( n==P4_INT32 ){ | 
|  | /* Note: this cast is safe, because the origin data point was an int | 
|  | ** that was cast to a (const char *). */ | 
|  | pOp->p4.i = SQLITE_PTR_TO_INT(zP4); | 
|  | pOp->p4type = P4_INT32; | 
|  | }else if( zP4!=0 ){ | 
|  | assert( n<0 ); | 
|  | pOp->p4.p = (void*)zP4; | 
|  | pOp->p4type = (signed char)n; | 
|  | if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Change the P4 operand of the most recently coded instruction | 
|  | ** to the value defined by the arguments.  This is a high-speed | 
|  | ** version of sqlite3VdbeChangeP4(). | 
|  | ** | 
|  | ** The P4 operand must not have been previously defined.  And the new | 
|  | ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of | 
|  | ** those cases. | 
|  | */ | 
|  | void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ | 
|  | VdbeOp *pOp; | 
|  | assert( n!=P4_INT32 && n!=P4_VTAB ); | 
|  | assert( n<=0 ); | 
|  | if( p->db->mallocFailed ){ | 
|  | freeP4(p->db, n, pP4); | 
|  | }else{ | 
|  | assert( pP4!=0 ); | 
|  | assert( p->nOp>0 ); | 
|  | pOp = &p->aOp[p->nOp-1]; | 
|  | assert( pOp->p4type==P4_NOTUSED ); | 
|  | pOp->p4type = n; | 
|  | pOp->p4.p = pP4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Set the P4 on the most recently added opcode to the KeyInfo for the | 
|  | ** index given. | 
|  | */ | 
|  | void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ | 
|  | Vdbe *v = pParse->pVdbe; | 
|  | KeyInfo *pKeyInfo; | 
|  | assert( v!=0 ); | 
|  | assert( pIdx!=0 ); | 
|  | pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); | 
|  | if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
|  | /* | 
|  | ** Change the comment on the most recently coded instruction.  Or | 
|  | ** insert a No-op and add the comment to that new instruction.  This | 
|  | ** makes the code easier to read during debugging.  None of this happens | 
|  | ** in a production build. | 
|  | */ | 
|  | static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ | 
|  | assert( p->nOp>0 || p->aOp==0 ); | 
|  | assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); | 
|  | if( p->nOp ){ | 
|  | assert( p->aOp ); | 
|  | sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); | 
|  | p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); | 
|  | } | 
|  | } | 
|  | void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ | 
|  | va_list ap; | 
|  | if( p ){ | 
|  | va_start(ap, zFormat); | 
|  | vdbeVComment(p, zFormat, ap); | 
|  | va_end(ap); | 
|  | } | 
|  | } | 
|  | void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ | 
|  | va_list ap; | 
|  | if( p ){ | 
|  | sqlite3VdbeAddOp0(p, OP_Noop); | 
|  | va_start(ap, zFormat); | 
|  | vdbeVComment(p, zFormat, ap); | 
|  | va_end(ap); | 
|  | } | 
|  | } | 
|  | #endif  /* NDEBUG */ | 
|  |  | 
|  | #ifdef SQLITE_VDBE_COVERAGE | 
|  | /* | 
|  | ** Set the value if the iSrcLine field for the previously coded instruction. | 
|  | */ | 
|  | void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ | 
|  | sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; | 
|  | } | 
|  | #endif /* SQLITE_VDBE_COVERAGE */ | 
|  |  | 
|  | /* | 
|  | ** Return the opcode for a given address.  If the address is -1, then | 
|  | ** return the most recently inserted opcode. | 
|  | ** | 
|  | ** If a memory allocation error has occurred prior to the calling of this | 
|  | ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode | 
|  | ** is readable but not writable, though it is cast to a writable value. | 
|  | ** The return of a dummy opcode allows the call to continue functioning | 
|  | ** after an OOM fault without having to check to see if the return from | 
|  | ** this routine is a valid pointer.  But because the dummy.opcode is 0, | 
|  | ** dummy will never be written to.  This is verified by code inspection and | 
|  | ** by running with Valgrind. | 
|  | */ | 
|  | VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ | 
|  | /* C89 specifies that the constant "dummy" will be initialized to all | 
|  | ** zeros, which is correct.  MSVC generates a warning, nevertheless. */ | 
|  | static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */ | 
|  | assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | if( addr<0 ){ | 
|  | addr = p->nOp - 1; | 
|  | } | 
|  | assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); | 
|  | if( p->db->mallocFailed ){ | 
|  | return (VdbeOp*)&dummy; | 
|  | }else{ | 
|  | return &p->aOp[addr]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) | 
|  | /* | 
|  | ** Return an integer value for one of the parameters to the opcode pOp | 
|  | ** determined by character c. | 
|  | */ | 
|  | static int translateP(char c, const Op *pOp){ | 
|  | if( c=='1' ) return pOp->p1; | 
|  | if( c=='2' ) return pOp->p2; | 
|  | if( c=='3' ) return pOp->p3; | 
|  | if( c=='4' ) return pOp->p4.i; | 
|  | return pOp->p5; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Compute a string for the "comment" field of a VDBE opcode listing. | 
|  | ** | 
|  | ** The Synopsis: field in comments in the vdbe.c source file gets converted | 
|  | ** to an extra string that is appended to the sqlite3OpcodeName().  In the | 
|  | ** absence of other comments, this synopsis becomes the comment on the opcode. | 
|  | ** Some translation occurs: | 
|  | ** | 
|  | **       "PX"      ->  "r[X]" | 
|  | **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1 | 
|  | **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0 | 
|  | **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x | 
|  | */ | 
|  | static int displayComment( | 
|  | const Op *pOp,     /* The opcode to be commented */ | 
|  | const char *zP4,   /* Previously obtained value for P4 */ | 
|  | char *zTemp,       /* Write result here */ | 
|  | int nTemp          /* Space available in zTemp[] */ | 
|  | ){ | 
|  | const char *zOpName; | 
|  | const char *zSynopsis; | 
|  | int nOpName; | 
|  | int ii, jj; | 
|  | char zAlt[50]; | 
|  | zOpName = sqlite3OpcodeName(pOp->opcode); | 
|  | nOpName = sqlite3Strlen30(zOpName); | 
|  | if( zOpName[nOpName+1] ){ | 
|  | int seenCom = 0; | 
|  | char c; | 
|  | zSynopsis = zOpName += nOpName + 1; | 
|  | if( strncmp(zSynopsis,"IF ",3)==0 ){ | 
|  | if( pOp->p5 & SQLITE_STOREP2 ){ | 
|  | sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); | 
|  | }else{ | 
|  | sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); | 
|  | } | 
|  | zSynopsis = zAlt; | 
|  | } | 
|  | for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ | 
|  | if( c=='P' ){ | 
|  | c = zSynopsis[++ii]; | 
|  | if( c=='4' ){ | 
|  | sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); | 
|  | }else if( c=='X' ){ | 
|  | sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); | 
|  | seenCom = 1; | 
|  | }else{ | 
|  | int v1 = translateP(c, pOp); | 
|  | int v2; | 
|  | sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); | 
|  | if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ | 
|  | ii += 3; | 
|  | jj += sqlite3Strlen30(zTemp+jj); | 
|  | v2 = translateP(zSynopsis[ii], pOp); | 
|  | if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ | 
|  | ii += 2; | 
|  | v2++; | 
|  | } | 
|  | if( v2>1 ){ | 
|  | sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); | 
|  | } | 
|  | }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ | 
|  | ii += 4; | 
|  | } | 
|  | } | 
|  | jj += sqlite3Strlen30(zTemp+jj); | 
|  | }else{ | 
|  | zTemp[jj++] = c; | 
|  | } | 
|  | } | 
|  | if( !seenCom && jj<nTemp-5 && pOp->zComment ){ | 
|  | sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); | 
|  | jj += sqlite3Strlen30(zTemp+jj); | 
|  | } | 
|  | if( jj<nTemp ) zTemp[jj] = 0; | 
|  | }else if( pOp->zComment ){ | 
|  | sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); | 
|  | jj = sqlite3Strlen30(zTemp); | 
|  | }else{ | 
|  | zTemp[0] = 0; | 
|  | jj = 0; | 
|  | } | 
|  | return jj; | 
|  | } | 
|  | #endif /* SQLITE_DEBUG */ | 
|  |  | 
|  | #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) | 
|  | /* | 
|  | ** Translate the P4.pExpr value for an OP_CursorHint opcode into text | 
|  | ** that can be displayed in the P4 column of EXPLAIN output. | 
|  | */ | 
|  | static void displayP4Expr(StrAccum *p, Expr *pExpr){ | 
|  | const char *zOp = 0; | 
|  | switch( pExpr->op ){ | 
|  | case TK_STRING: | 
|  | sqlite3XPrintf(p, "%Q", pExpr->u.zToken); | 
|  | break; | 
|  | case TK_INTEGER: | 
|  | sqlite3XPrintf(p, "%d", pExpr->u.iValue); | 
|  | break; | 
|  | case TK_NULL: | 
|  | sqlite3XPrintf(p, "NULL"); | 
|  | break; | 
|  | case TK_REGISTER: { | 
|  | sqlite3XPrintf(p, "r[%d]", pExpr->iTable); | 
|  | break; | 
|  | } | 
|  | case TK_COLUMN: { | 
|  | if( pExpr->iColumn<0 ){ | 
|  | sqlite3XPrintf(p, "rowid"); | 
|  | }else{ | 
|  | sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case TK_LT:      zOp = "LT";      break; | 
|  | case TK_LE:      zOp = "LE";      break; | 
|  | case TK_GT:      zOp = "GT";      break; | 
|  | case TK_GE:      zOp = "GE";      break; | 
|  | case TK_NE:      zOp = "NE";      break; | 
|  | case TK_EQ:      zOp = "EQ";      break; | 
|  | case TK_IS:      zOp = "IS";      break; | 
|  | case TK_ISNOT:   zOp = "ISNOT";   break; | 
|  | case TK_AND:     zOp = "AND";     break; | 
|  | case TK_OR:      zOp = "OR";      break; | 
|  | case TK_PLUS:    zOp = "ADD";     break; | 
|  | case TK_STAR:    zOp = "MUL";     break; | 
|  | case TK_MINUS:   zOp = "SUB";     break; | 
|  | case TK_REM:     zOp = "REM";     break; | 
|  | case TK_BITAND:  zOp = "BITAND";  break; | 
|  | case TK_BITOR:   zOp = "BITOR";   break; | 
|  | case TK_SLASH:   zOp = "DIV";     break; | 
|  | case TK_LSHIFT:  zOp = "LSHIFT";  break; | 
|  | case TK_RSHIFT:  zOp = "RSHIFT";  break; | 
|  | case TK_CONCAT:  zOp = "CONCAT";  break; | 
|  | case TK_UMINUS:  zOp = "MINUS";   break; | 
|  | case TK_UPLUS:   zOp = "PLUS";    break; | 
|  | case TK_BITNOT:  zOp = "BITNOT";  break; | 
|  | case TK_NOT:     zOp = "NOT";     break; | 
|  | case TK_ISNULL:  zOp = "ISNULL";  break; | 
|  | case TK_NOTNULL: zOp = "NOTNULL"; break; | 
|  |  | 
|  | default: | 
|  | sqlite3XPrintf(p, "%s", "expr"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if( zOp ){ | 
|  | sqlite3XPrintf(p, "%s(", zOp); | 
|  | displayP4Expr(p, pExpr->pLeft); | 
|  | if( pExpr->pRight ){ | 
|  | sqlite3StrAccumAppend(p, ",", 1); | 
|  | displayP4Expr(p, pExpr->pRight); | 
|  | } | 
|  | sqlite3StrAccumAppend(p, ")", 1); | 
|  | } | 
|  | } | 
|  | #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ | 
|  |  | 
|  |  | 
|  | #if VDBE_DISPLAY_P4 | 
|  | /* | 
|  | ** Compute a string that describes the P4 parameter for an opcode. | 
|  | ** Use zTemp for any required temporary buffer space. | 
|  | */ | 
|  | static char *displayP4(Op *pOp, char *zTemp, int nTemp){ | 
|  | char *zP4 = zTemp; | 
|  | StrAccum x; | 
|  | assert( nTemp>=20 ); | 
|  | sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); | 
|  | switch( pOp->p4type ){ | 
|  | case P4_KEYINFO: { | 
|  | int j; | 
|  | KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; | 
|  | assert( pKeyInfo->aSortOrder!=0 ); | 
|  | sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField); | 
|  | for(j=0; j<pKeyInfo->nKeyField; j++){ | 
|  | CollSeq *pColl = pKeyInfo->aColl[j]; | 
|  | const char *zColl = pColl ? pColl->zName : ""; | 
|  | if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; | 
|  | sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); | 
|  | } | 
|  | sqlite3StrAccumAppend(&x, ")", 1); | 
|  | break; | 
|  | } | 
|  | #ifdef SQLITE_ENABLE_CURSOR_HINTS | 
|  | case P4_EXPR: { | 
|  | displayP4Expr(&x, pOp->p4.pExpr); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case P4_COLLSEQ: { | 
|  | CollSeq *pColl = pOp->p4.pColl; | 
|  | sqlite3XPrintf(&x, "(%.20s)", pColl->zName); | 
|  | break; | 
|  | } | 
|  | case P4_FUNCDEF: { | 
|  | FuncDef *pDef = pOp->p4.pFunc; | 
|  | sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); | 
|  | break; | 
|  | } | 
|  | #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) | 
|  | case P4_FUNCCTX: { | 
|  | FuncDef *pDef = pOp->p4.pCtx->pFunc; | 
|  | sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case P4_INT64: { | 
|  | sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); | 
|  | break; | 
|  | } | 
|  | case P4_INT32: { | 
|  | sqlite3XPrintf(&x, "%d", pOp->p4.i); | 
|  | break; | 
|  | } | 
|  | case P4_REAL: { | 
|  | sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); | 
|  | break; | 
|  | } | 
|  | case P4_MEM: { | 
|  | Mem *pMem = pOp->p4.pMem; | 
|  | if( pMem->flags & MEM_Str ){ | 
|  | zP4 = pMem->z; | 
|  | }else if( pMem->flags & MEM_Int ){ | 
|  | sqlite3XPrintf(&x, "%lld", pMem->u.i); | 
|  | }else if( pMem->flags & MEM_Real ){ | 
|  | sqlite3XPrintf(&x, "%.16g", pMem->u.r); | 
|  | }else if( pMem->flags & MEM_Null ){ | 
|  | zP4 = "NULL"; | 
|  | }else{ | 
|  | assert( pMem->flags & MEM_Blob ); | 
|  | zP4 = "(blob)"; | 
|  | } | 
|  | break; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | case P4_VTAB: { | 
|  | sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; | 
|  | sqlite3XPrintf(&x, "vtab:%p", pVtab); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | case P4_INTARRAY: { | 
|  | int i; | 
|  | int *ai = pOp->p4.ai; | 
|  | int n = ai[0];   /* The first element of an INTARRAY is always the | 
|  | ** count of the number of elements to follow */ | 
|  | for(i=1; i<=n; i++){ | 
|  | sqlite3XPrintf(&x, ",%d", ai[i]); | 
|  | } | 
|  | zTemp[0] = '['; | 
|  | sqlite3StrAccumAppend(&x, "]", 1); | 
|  | break; | 
|  | } | 
|  | case P4_SUBPROGRAM: { | 
|  | sqlite3XPrintf(&x, "program"); | 
|  | break; | 
|  | } | 
|  | case P4_DYNBLOB: | 
|  | case P4_ADVANCE: { | 
|  | zTemp[0] = 0; | 
|  | break; | 
|  | } | 
|  | case P4_TABLE: { | 
|  | sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | zP4 = pOp->p4.z; | 
|  | if( zP4==0 ){ | 
|  | zP4 = zTemp; | 
|  | zTemp[0] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | sqlite3StrAccumFinish(&x); | 
|  | assert( zP4!=0 ); | 
|  | return zP4; | 
|  | } | 
|  | #endif /* VDBE_DISPLAY_P4 */ | 
|  |  | 
|  | /* | 
|  | ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. | 
|  | ** | 
|  | ** The prepared statements need to know in advance the complete set of | 
|  | ** attached databases that will be use.  A mask of these databases | 
|  | ** is maintained in p->btreeMask.  The p->lockMask value is the subset of | 
|  | ** p->btreeMask of databases that will require a lock. | 
|  | */ | 
|  | void sqlite3VdbeUsesBtree(Vdbe *p, int i){ | 
|  | assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); | 
|  | assert( i<(int)sizeof(p->btreeMask)*8 ); | 
|  | DbMaskSet(p->btreeMask, i); | 
|  | if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ | 
|  | DbMaskSet(p->lockMask, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(SQLITE_OMIT_SHARED_CACHE) | 
|  | /* | 
|  | ** If SQLite is compiled to support shared-cache mode and to be threadsafe, | 
|  | ** this routine obtains the mutex associated with each BtShared structure | 
|  | ** that may be accessed by the VM passed as an argument. In doing so it also | 
|  | ** sets the BtShared.db member of each of the BtShared structures, ensuring | 
|  | ** that the correct busy-handler callback is invoked if required. | 
|  | ** | 
|  | ** If SQLite is not threadsafe but does support shared-cache mode, then | 
|  | ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables | 
|  | ** of all of BtShared structures accessible via the database handle | 
|  | ** associated with the VM. | 
|  | ** | 
|  | ** If SQLite is not threadsafe and does not support shared-cache mode, this | 
|  | ** function is a no-op. | 
|  | ** | 
|  | ** The p->btreeMask field is a bitmask of all btrees that the prepared | 
|  | ** statement p will ever use.  Let N be the number of bits in p->btreeMask | 
|  | ** corresponding to btrees that use shared cache.  Then the runtime of | 
|  | ** this routine is N*N.  But as N is rarely more than 1, this should not | 
|  | ** be a problem. | 
|  | */ | 
|  | void sqlite3VdbeEnter(Vdbe *p){ | 
|  | int i; | 
|  | sqlite3 *db; | 
|  | Db *aDb; | 
|  | int nDb; | 
|  | if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */ | 
|  | db = p->db; | 
|  | aDb = db->aDb; | 
|  | nDb = db->nDb; | 
|  | for(i=0; i<nDb; i++){ | 
|  | if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ | 
|  | sqlite3BtreeEnter(aDb[i].pBt); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 | 
|  | /* | 
|  | ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). | 
|  | */ | 
|  | static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ | 
|  | int i; | 
|  | sqlite3 *db; | 
|  | Db *aDb; | 
|  | int nDb; | 
|  | db = p->db; | 
|  | aDb = db->aDb; | 
|  | nDb = db->nDb; | 
|  | for(i=0; i<nDb; i++){ | 
|  | if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ | 
|  | sqlite3BtreeLeave(aDb[i].pBt); | 
|  | } | 
|  | } | 
|  | } | 
|  | void sqlite3VdbeLeave(Vdbe *p){ | 
|  | if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */ | 
|  | vdbeLeave(p); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) | 
|  | /* | 
|  | ** Print a single opcode.  This routine is used for debugging only. | 
|  | */ | 
|  | void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ | 
|  | char *zP4; | 
|  | char zPtr[50]; | 
|  | char zCom[100]; | 
|  | static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; | 
|  | if( pOut==0 ) pOut = stdout; | 
|  | zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); | 
|  | #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
|  | displayComment(pOp, zP4, zCom, sizeof(zCom)); | 
|  | #else | 
|  | zCom[0] = 0; | 
|  | #endif | 
|  | /* NB:  The sqlite3OpcodeName() function is implemented by code created | 
|  | ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the | 
|  | ** information from the vdbe.c source text */ | 
|  | fprintf(pOut, zFormat1, pc, | 
|  | sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, | 
|  | zCom | 
|  | ); | 
|  | fflush(pOut); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Initialize an array of N Mem element. | 
|  | */ | 
|  | static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ | 
|  | while( (N--)>0 ){ | 
|  | p->db = db; | 
|  | p->flags = flags; | 
|  | p->szMalloc = 0; | 
|  | #ifdef SQLITE_DEBUG | 
|  | p->pScopyFrom = 0; | 
|  | #endif | 
|  | p++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Release an array of N Mem elements | 
|  | */ | 
|  | static void releaseMemArray(Mem *p, int N){ | 
|  | if( p && N ){ | 
|  | Mem *pEnd = &p[N]; | 
|  | sqlite3 *db = p->db; | 
|  | if( db->pnBytesFreed ){ | 
|  | do{ | 
|  | if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); | 
|  | }while( (++p)<pEnd ); | 
|  | return; | 
|  | } | 
|  | do{ | 
|  | assert( (&p[1])==pEnd || p[0].db==p[1].db ); | 
|  | assert( sqlite3VdbeCheckMemInvariants(p) ); | 
|  |  | 
|  | /* This block is really an inlined version of sqlite3VdbeMemRelease() | 
|  | ** that takes advantage of the fact that the memory cell value is | 
|  | ** being set to NULL after releasing any dynamic resources. | 
|  | ** | 
|  | ** The justification for duplicating code is that according to | 
|  | ** callgrind, this causes a certain test case to hit the CPU 4.7 | 
|  | ** percent less (x86 linux, gcc version 4.1.2, -O6) than if | 
|  | ** sqlite3MemRelease() were called from here. With -O2, this jumps | 
|  | ** to 6.6 percent. The test case is inserting 1000 rows into a table | 
|  | ** with no indexes using a single prepared INSERT statement, bind() | 
|  | ** and reset(). Inserts are grouped into a transaction. | 
|  | */ | 
|  | testcase( p->flags & MEM_Agg ); | 
|  | testcase( p->flags & MEM_Dyn ); | 
|  | testcase( p->flags & MEM_Frame ); | 
|  | testcase( p->flags & MEM_RowSet ); | 
|  | if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ | 
|  | sqlite3VdbeMemRelease(p); | 
|  | }else if( p->szMalloc ){ | 
|  | sqlite3DbFreeNN(db, p->zMalloc); | 
|  | p->szMalloc = 0; | 
|  | } | 
|  |  | 
|  | p->flags = MEM_Undefined; | 
|  | }while( (++p)<pEnd ); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Delete a VdbeFrame object and its contents. VdbeFrame objects are | 
|  | ** allocated by the OP_Program opcode in sqlite3VdbeExec(). | 
|  | */ | 
|  | void sqlite3VdbeFrameDelete(VdbeFrame *p){ | 
|  | int i; | 
|  | Mem *aMem = VdbeFrameMem(p); | 
|  | VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; | 
|  | for(i=0; i<p->nChildCsr; i++){ | 
|  | sqlite3VdbeFreeCursor(p->v, apCsr[i]); | 
|  | } | 
|  | releaseMemArray(aMem, p->nChildMem); | 
|  | sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); | 
|  | sqlite3DbFree(p->v->db, p); | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_EXPLAIN | 
|  | /* | 
|  | ** Give a listing of the program in the virtual machine. | 
|  | ** | 
|  | ** The interface is the same as sqlite3VdbeExec().  But instead of | 
|  | ** running the code, it invokes the callback once for each instruction. | 
|  | ** This feature is used to implement "EXPLAIN". | 
|  | ** | 
|  | ** When p->explain==1, each instruction is listed.  When | 
|  | ** p->explain==2, only OP_Explain instructions are listed and these | 
|  | ** are shown in a different format.  p->explain==2 is used to implement | 
|  | ** EXPLAIN QUERY PLAN. | 
|  | ** | 
|  | ** When p->explain==1, first the main program is listed, then each of | 
|  | ** the trigger subprograms are listed one by one. | 
|  | */ | 
|  | int sqlite3VdbeList( | 
|  | Vdbe *p                   /* The VDBE */ | 
|  | ){ | 
|  | int nRow;                            /* Stop when row count reaches this */ | 
|  | int nSub = 0;                        /* Number of sub-vdbes seen so far */ | 
|  | SubProgram **apSub = 0;              /* Array of sub-vdbes */ | 
|  | Mem *pSub = 0;                       /* Memory cell hold array of subprogs */ | 
|  | sqlite3 *db = p->db;                 /* The database connection */ | 
|  | int i;                               /* Loop counter */ | 
|  | int rc = SQLITE_OK;                  /* Return code */ | 
|  | Mem *pMem = &p->aMem[1];             /* First Mem of result set */ | 
|  | int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); | 
|  | Op *pOp = 0; | 
|  |  | 
|  | assert( p->explain ); | 
|  | assert( p->magic==VDBE_MAGIC_RUN ); | 
|  | assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); | 
|  |  | 
|  | /* Even though this opcode does not use dynamic strings for | 
|  | ** the result, result columns may become dynamic if the user calls | 
|  | ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. | 
|  | */ | 
|  | releaseMemArray(pMem, 8); | 
|  | p->pResultSet = 0; | 
|  |  | 
|  | if( p->rc==SQLITE_NOMEM ){ | 
|  | /* This happens if a malloc() inside a call to sqlite3_column_text() or | 
|  | ** sqlite3_column_text16() failed.  */ | 
|  | sqlite3OomFault(db); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  |  | 
|  | /* When the number of output rows reaches nRow, that means the | 
|  | ** listing has finished and sqlite3_step() should return SQLITE_DONE. | 
|  | ** nRow is the sum of the number of rows in the main program, plus | 
|  | ** the sum of the number of rows in all trigger subprograms encountered | 
|  | ** so far.  The nRow value will increase as new trigger subprograms are | 
|  | ** encountered, but p->pc will eventually catch up to nRow. | 
|  | */ | 
|  | nRow = p->nOp; | 
|  | if( bListSubprogs ){ | 
|  | /* The first 8 memory cells are used for the result set.  So we will | 
|  | ** commandeer the 9th cell to use as storage for an array of pointers | 
|  | ** to trigger subprograms.  The VDBE is guaranteed to have at least 9 | 
|  | ** cells.  */ | 
|  | assert( p->nMem>9 ); | 
|  | pSub = &p->aMem[9]; | 
|  | if( pSub->flags&MEM_Blob ){ | 
|  | /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is | 
|  | ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ | 
|  | nSub = pSub->n/sizeof(Vdbe*); | 
|  | apSub = (SubProgram **)pSub->z; | 
|  | } | 
|  | for(i=0; i<nSub; i++){ | 
|  | nRow += apSub[i]->nOp; | 
|  | } | 
|  | } | 
|  |  | 
|  | do{ | 
|  | i = p->pc++; | 
|  | if( i>=nRow ){ | 
|  | p->rc = SQLITE_OK; | 
|  | rc = SQLITE_DONE; | 
|  | break; | 
|  | } | 
|  | if( i<p->nOp ){ | 
|  | /* The output line number is small enough that we are still in the | 
|  | ** main program. */ | 
|  | pOp = &p->aOp[i]; | 
|  | }else{ | 
|  | /* We are currently listing subprograms.  Figure out which one and | 
|  | ** pick up the appropriate opcode. */ | 
|  | int j; | 
|  | i -= p->nOp; | 
|  | for(j=0; i>=apSub[j]->nOp; j++){ | 
|  | i -= apSub[j]->nOp; | 
|  | } | 
|  | pOp = &apSub[j]->aOp[i]; | 
|  | } | 
|  |  | 
|  | /* When an OP_Program opcode is encounter (the only opcode that has | 
|  | ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms | 
|  | ** kept in p->aMem[9].z to hold the new program - assuming this subprogram | 
|  | ** has not already been seen. | 
|  | */ | 
|  | if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){ | 
|  | int nByte = (nSub+1)*sizeof(SubProgram*); | 
|  | int j; | 
|  | for(j=0; j<nSub; j++){ | 
|  | if( apSub[j]==pOp->p4.pProgram ) break; | 
|  | } | 
|  | if( j==nSub ){ | 
|  | p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); | 
|  | if( p->rc!=SQLITE_OK ){ | 
|  | rc = SQLITE_ERROR; | 
|  | break; | 
|  | } | 
|  | apSub = (SubProgram **)pSub->z; | 
|  | apSub[nSub++] = pOp->p4.pProgram; | 
|  | pSub->flags |= MEM_Blob; | 
|  | pSub->n = nSub*sizeof(SubProgram*); | 
|  | nRow += pOp->p4.pProgram->nOp; | 
|  | } | 
|  | } | 
|  | }while( p->explain==2 && pOp->opcode!=OP_Explain ); | 
|  |  | 
|  | if( rc==SQLITE_OK ){ | 
|  | if( db->u1.isInterrupted ){ | 
|  | p->rc = SQLITE_INTERRUPT; | 
|  | rc = SQLITE_ERROR; | 
|  | sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); | 
|  | }else{ | 
|  | char *zP4; | 
|  | if( p->explain==1 ){ | 
|  | pMem->flags = MEM_Int; | 
|  | pMem->u.i = i;                                /* Program counter */ | 
|  | pMem++; | 
|  |  | 
|  | pMem->flags = MEM_Static|MEM_Str|MEM_Term; | 
|  | pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ | 
|  | assert( pMem->z!=0 ); | 
|  | pMem->n = sqlite3Strlen30(pMem->z); | 
|  | pMem->enc = SQLITE_UTF8; | 
|  | pMem++; | 
|  | } | 
|  |  | 
|  | pMem->flags = MEM_Int; | 
|  | pMem->u.i = pOp->p1;                          /* P1 */ | 
|  | pMem++; | 
|  |  | 
|  | pMem->flags = MEM_Int; | 
|  | pMem->u.i = pOp->p2;                          /* P2 */ | 
|  | pMem++; | 
|  |  | 
|  | pMem->flags = MEM_Int; | 
|  | pMem->u.i = pOp->p3;                          /* P3 */ | 
|  | pMem++; | 
|  |  | 
|  | if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ | 
|  | assert( p->db->mallocFailed ); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | pMem->flags = MEM_Str|MEM_Term; | 
|  | zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); | 
|  | if( zP4!=pMem->z ){ | 
|  | pMem->n = 0; | 
|  | sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); | 
|  | }else{ | 
|  | assert( pMem->z!=0 ); | 
|  | pMem->n = sqlite3Strlen30(pMem->z); | 
|  | pMem->enc = SQLITE_UTF8; | 
|  | } | 
|  | pMem++; | 
|  |  | 
|  | if( p->explain==1 ){ | 
|  | if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ | 
|  | assert( p->db->mallocFailed ); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | pMem->flags = MEM_Str|MEM_Term; | 
|  | pMem->n = 2; | 
|  | sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */ | 
|  | pMem->enc = SQLITE_UTF8; | 
|  | pMem++; | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | 
|  | if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ | 
|  | assert( p->db->mallocFailed ); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | pMem->flags = MEM_Str|MEM_Term; | 
|  | pMem->n = displayComment(pOp, zP4, pMem->z, 500); | 
|  | pMem->enc = SQLITE_UTF8; | 
|  | #else | 
|  | pMem->flags = MEM_Null;                       /* Comment */ | 
|  | #endif | 
|  | } | 
|  |  | 
|  | p->nResColumn = 8 - 4*(p->explain-1); | 
|  | p->pResultSet = &p->aMem[1]; | 
|  | p->rc = SQLITE_OK; | 
|  | rc = SQLITE_ROW; | 
|  | } | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_EXPLAIN */ | 
|  |  | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* | 
|  | ** Print the SQL that was used to generate a VDBE program. | 
|  | */ | 
|  | void sqlite3VdbePrintSql(Vdbe *p){ | 
|  | const char *z = 0; | 
|  | if( p->zSql ){ | 
|  | z = p->zSql; | 
|  | }else if( p->nOp>=1 ){ | 
|  | const VdbeOp *pOp = &p->aOp[0]; | 
|  | if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ | 
|  | z = pOp->p4.z; | 
|  | while( sqlite3Isspace(*z) ) z++; | 
|  | } | 
|  | } | 
|  | if( z ) printf("SQL: [%s]\n", z); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) | 
|  | /* | 
|  | ** Print an IOTRACE message showing SQL content. | 
|  | */ | 
|  | void sqlite3VdbeIOTraceSql(Vdbe *p){ | 
|  | int nOp = p->nOp; | 
|  | VdbeOp *pOp; | 
|  | if( sqlite3IoTrace==0 ) return; | 
|  | if( nOp<1 ) return; | 
|  | pOp = &p->aOp[0]; | 
|  | if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ | 
|  | int i, j; | 
|  | char z[1000]; | 
|  | sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); | 
|  | for(i=0; sqlite3Isspace(z[i]); i++){} | 
|  | for(j=0; z[i]; i++){ | 
|  | if( sqlite3Isspace(z[i]) ){ | 
|  | if( z[i-1]!=' ' ){ | 
|  | z[j++] = ' '; | 
|  | } | 
|  | }else{ | 
|  | z[j++] = z[i]; | 
|  | } | 
|  | } | 
|  | z[j] = 0; | 
|  | sqlite3IoTrace("SQL %s\n", z); | 
|  | } | 
|  | } | 
|  | #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ | 
|  |  | 
|  | /* An instance of this object describes bulk memory available for use | 
|  | ** by subcomponents of a prepared statement.  Space is allocated out | 
|  | ** of a ReusableSpace object by the allocSpace() routine below. | 
|  | */ | 
|  | struct ReusableSpace { | 
|  | u8 *pSpace;          /* Available memory */ | 
|  | int nFree;           /* Bytes of available memory */ | 
|  | int nNeeded;         /* Total bytes that could not be allocated */ | 
|  | }; | 
|  |  | 
|  | /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf | 
|  | ** from the ReusableSpace object.  Return a pointer to the allocated | 
|  | ** memory on success.  If insufficient memory is available in the | 
|  | ** ReusableSpace object, increase the ReusableSpace.nNeeded | 
|  | ** value by the amount needed and return NULL. | 
|  | ** | 
|  | ** If pBuf is not initially NULL, that means that the memory has already | 
|  | ** been allocated by a prior call to this routine, so just return a copy | 
|  | ** of pBuf and leave ReusableSpace unchanged. | 
|  | ** | 
|  | ** This allocator is employed to repurpose unused slots at the end of the | 
|  | ** opcode array of prepared state for other memory needs of the prepared | 
|  | ** statement. | 
|  | */ | 
|  | static void *allocSpace( | 
|  | struct ReusableSpace *p,  /* Bulk memory available for allocation */ | 
|  | void *pBuf,               /* Pointer to a prior allocation */ | 
|  | int nByte                 /* Bytes of memory needed */ | 
|  | ){ | 
|  | assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); | 
|  | if( pBuf==0 ){ | 
|  | nByte = ROUND8(nByte); | 
|  | if( nByte <= p->nFree ){ | 
|  | p->nFree -= nByte; | 
|  | pBuf = &p->pSpace[p->nFree]; | 
|  | }else{ | 
|  | p->nNeeded += nByte; | 
|  | } | 
|  | } | 
|  | assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); | 
|  | return pBuf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Rewind the VDBE back to the beginning in preparation for | 
|  | ** running it. | 
|  | */ | 
|  | void sqlite3VdbeRewind(Vdbe *p){ | 
|  | #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) | 
|  | int i; | 
|  | #endif | 
|  | assert( p!=0 ); | 
|  | assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); | 
|  |  | 
|  | /* There should be at least one opcode. | 
|  | */ | 
|  | assert( p->nOp>0 ); | 
|  |  | 
|  | /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ | 
|  | p->magic = VDBE_MAGIC_RUN; | 
|  |  | 
|  | #ifdef SQLITE_DEBUG | 
|  | for(i=0; i<p->nMem; i++){ | 
|  | assert( p->aMem[i].db==p->db ); | 
|  | } | 
|  | #endif | 
|  | p->pc = -1; | 
|  | p->rc = SQLITE_OK; | 
|  | p->errorAction = OE_Abort; | 
|  | p->nChange = 0; | 
|  | p->cacheCtr = 1; | 
|  | p->minWriteFileFormat = 255; | 
|  | p->iStatement = 0; | 
|  | p->nFkConstraint = 0; | 
|  | #ifdef VDBE_PROFILE | 
|  | for(i=0; i<p->nOp; i++){ | 
|  | p->aOp[i].cnt = 0; | 
|  | p->aOp[i].cycles = 0; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Prepare a virtual machine for execution for the first time after | 
|  | ** creating the virtual machine.  This involves things such | 
|  | ** as allocating registers and initializing the program counter. | 
|  | ** After the VDBE has be prepped, it can be executed by one or more | 
|  | ** calls to sqlite3VdbeExec(). | 
|  | ** | 
|  | ** This function may be called exactly once on each virtual machine. | 
|  | ** After this routine is called the VM has been "packaged" and is ready | 
|  | ** to run.  After this routine is called, further calls to | 
|  | ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects | 
|  | ** the Vdbe from the Parse object that helped generate it so that the | 
|  | ** the Vdbe becomes an independent entity and the Parse object can be | 
|  | ** destroyed. | 
|  | ** | 
|  | ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back | 
|  | ** to its initial state after it has been run. | 
|  | */ | 
|  | void sqlite3VdbeMakeReady( | 
|  | Vdbe *p,                       /* The VDBE */ | 
|  | Parse *pParse                  /* Parsing context */ | 
|  | ){ | 
|  | sqlite3 *db;                   /* The database connection */ | 
|  | int nVar;                      /* Number of parameters */ | 
|  | int nMem;                      /* Number of VM memory registers */ | 
|  | int nCursor;                   /* Number of cursors required */ | 
|  | int nArg;                      /* Number of arguments in subprograms */ | 
|  | int n;                         /* Loop counter */ | 
|  | struct ReusableSpace x;        /* Reusable bulk memory */ | 
|  |  | 
|  | assert( p!=0 ); | 
|  | assert( p->nOp>0 ); | 
|  | assert( pParse!=0 ); | 
|  | assert( p->magic==VDBE_MAGIC_INIT ); | 
|  | assert( pParse==p->pParse ); | 
|  | db = p->db; | 
|  | assert( db->mallocFailed==0 ); | 
|  | nVar = pParse->nVar; | 
|  | nMem = pParse->nMem; | 
|  | nCursor = pParse->nTab; | 
|  | nArg = pParse->nMaxArg; | 
|  |  | 
|  | /* Each cursor uses a memory cell.  The first cursor (cursor 0) can | 
|  | ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate | 
|  | ** space at the end of aMem[] for cursors 1 and greater. | 
|  | ** See also: allocateCursor(). | 
|  | */ | 
|  | nMem += nCursor; | 
|  | if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */ | 
|  |  | 
|  | /* Figure out how much reusable memory is available at the end of the | 
|  | ** opcode array.  This extra memory will be reallocated for other elements | 
|  | ** of the prepared statement. | 
|  | */ | 
|  | n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */ | 
|  | x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */ | 
|  | assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); | 
|  | x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */ | 
|  | assert( x.nFree>=0 ); | 
|  | assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); | 
|  |  | 
|  | resolveP2Values(p, &nArg); | 
|  | p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); | 
|  | if( pParse->explain && nMem<10 ){ | 
|  | nMem = 10; | 
|  | } | 
|  | p->expired = 0; | 
|  |  | 
|  | /* Memory for registers, parameters, cursor, etc, is allocated in one or two | 
|  | ** passes.  On the first pass, we try to reuse unused memory at the | 
|  | ** end of the opcode array.  If we are unable to satisfy all memory | 
|  | ** requirements by reusing the opcode array tail, then the second | 
|  | ** pass will fill in the remainder using a fresh memory allocation. | 
|  | ** | 
|  | ** This two-pass approach that reuses as much memory as possible from | 
|  | ** the leftover memory at the end of the opcode array.  This can significantly | 
|  | ** reduce the amount of memory held by a prepared statement. | 
|  | */ | 
|  | do { | 
|  | x.nNeeded = 0; | 
|  | p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); | 
|  | p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); | 
|  | p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); | 
|  | p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); | 
|  | #ifdef SQLITE_ENABLE_STMT_SCANSTATUS | 
|  | p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); | 
|  | #endif | 
|  | if( x.nNeeded==0 ) break; | 
|  | x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); | 
|  | x.nFree = x.nNeeded; | 
|  | }while( !db->mallocFailed ); | 
|  |  | 
|  | p->pVList = pParse->pVList; | 
|  | pParse->pVList =  0; | 
|  | p->explain = pParse->explain; | 
|  | if( db->mallocFailed ){ | 
|  | p->nVar = 0; | 
|  | p->nCursor = 0; | 
|  | p->nMem = 0; | 
|  | }else{ | 
|  | p->nCursor = nCursor; | 
|  | p->nVar = (ynVar)nVar; | 
|  | initMemArray(p->aVar, nVar, db, MEM_Null); | 
|  | p->nMem = nMem; | 
|  | initMemArray(p->aMem, nMem, db, MEM_Undefined); | 
|  | memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); | 
|  | #ifdef SQLITE_ENABLE_STMT_SCANSTATUS | 
|  | memset(p->anExec, 0, p->nOp*sizeof(i64)); | 
|  | #endif | 
|  | } | 
|  | sqlite3VdbeRewind(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Close a VDBE cursor and release all the resources that cursor | 
|  | ** happens to hold. | 
|  | */ | 
|  | void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ | 
|  | if( pCx==0 ){ | 
|  | return; | 
|  | } | 
|  | assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); | 
|  | switch( pCx->eCurType ){ | 
|  | case CURTYPE_SORTER: { | 
|  | sqlite3VdbeSorterClose(p->db, pCx); | 
|  | break; | 
|  | } | 
|  | case CURTYPE_BTREE: { | 
|  | if( pCx->isEphemeral ){ | 
|  | if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx); | 
|  | /* The pCx->pCursor will be close automatically, if it exists, by | 
|  | ** the call above. */ | 
|  | }else{ | 
|  | assert( pCx->uc.pCursor!=0 ); | 
|  | sqlite3BtreeCloseCursor(pCx->uc.pCursor); | 
|  | } | 
|  | break; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | case CURTYPE_VTAB: { | 
|  | sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; | 
|  | const sqlite3_module *pModule = pVCur->pVtab->pModule; | 
|  | assert( pVCur->pVtab->nRef>0 ); | 
|  | pVCur->pVtab->nRef--; | 
|  | pModule->xClose(pVCur); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Close all cursors in the current frame. | 
|  | */ | 
|  | static void closeCursorsInFrame(Vdbe *p){ | 
|  | if( p->apCsr ){ | 
|  | int i; | 
|  | for(i=0; i<p->nCursor; i++){ | 
|  | VdbeCursor *pC = p->apCsr[i]; | 
|  | if( pC ){ | 
|  | sqlite3VdbeFreeCursor(p, pC); | 
|  | p->apCsr[i] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Copy the values stored in the VdbeFrame structure to its Vdbe. This | 
|  | ** is used, for example, when a trigger sub-program is halted to restore | 
|  | ** control to the main program. | 
|  | */ | 
|  | int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ | 
|  | Vdbe *v = pFrame->v; | 
|  | closeCursorsInFrame(v); | 
|  | #ifdef SQLITE_ENABLE_STMT_SCANSTATUS | 
|  | v->anExec = pFrame->anExec; | 
|  | #endif | 
|  | v->aOp = pFrame->aOp; | 
|  | v->nOp = pFrame->nOp; | 
|  | v->aMem = pFrame->aMem; | 
|  | v->nMem = pFrame->nMem; | 
|  | v->apCsr = pFrame->apCsr; | 
|  | v->nCursor = pFrame->nCursor; | 
|  | v->db->lastRowid = pFrame->lastRowid; | 
|  | v->nChange = pFrame->nChange; | 
|  | v->db->nChange = pFrame->nDbChange; | 
|  | sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); | 
|  | v->pAuxData = pFrame->pAuxData; | 
|  | pFrame->pAuxData = 0; | 
|  | return pFrame->pc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Close all cursors. | 
|  | ** | 
|  | ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory | 
|  | ** cell array. This is necessary as the memory cell array may contain | 
|  | ** pointers to VdbeFrame objects, which may in turn contain pointers to | 
|  | ** open cursors. | 
|  | */ | 
|  | static void closeAllCursors(Vdbe *p){ | 
|  | if( p->pFrame ){ | 
|  | VdbeFrame *pFrame; | 
|  | for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); | 
|  | sqlite3VdbeFrameRestore(pFrame); | 
|  | p->pFrame = 0; | 
|  | p->nFrame = 0; | 
|  | } | 
|  | assert( p->nFrame==0 ); | 
|  | closeCursorsInFrame(p); | 
|  | if( p->aMem ){ | 
|  | releaseMemArray(p->aMem, p->nMem); | 
|  | } | 
|  | while( p->pDelFrame ){ | 
|  | VdbeFrame *pDel = p->pDelFrame; | 
|  | p->pDelFrame = pDel->pParent; | 
|  | sqlite3VdbeFrameDelete(pDel); | 
|  | } | 
|  |  | 
|  | /* Delete any auxdata allocations made by the VM */ | 
|  | if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); | 
|  | assert( p->pAuxData==0 ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Set the number of result columns that will be returned by this SQL | 
|  | ** statement. This is now set at compile time, rather than during | 
|  | ** execution of the vdbe program so that sqlite3_column_count() can | 
|  | ** be called on an SQL statement before sqlite3_step(). | 
|  | */ | 
|  | void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ | 
|  | int n; | 
|  | sqlite3 *db = p->db; | 
|  |  | 
|  | if( p->nResColumn ){ | 
|  | releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); | 
|  | sqlite3DbFree(db, p->aColName); | 
|  | } | 
|  | n = nResColumn*COLNAME_N; | 
|  | p->nResColumn = (u16)nResColumn; | 
|  | p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); | 
|  | if( p->aColName==0 ) return; | 
|  | initMemArray(p->aColName, n, db, MEM_Null); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Set the name of the idx'th column to be returned by the SQL statement. | 
|  | ** zName must be a pointer to a nul terminated string. | 
|  | ** | 
|  | ** This call must be made after a call to sqlite3VdbeSetNumCols(). | 
|  | ** | 
|  | ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC | 
|  | ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed | 
|  | ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. | 
|  | */ | 
|  | int sqlite3VdbeSetColName( | 
|  | Vdbe *p,                         /* Vdbe being configured */ | 
|  | int idx,                         /* Index of column zName applies to */ | 
|  | int var,                         /* One of the COLNAME_* constants */ | 
|  | const char *zName,               /* Pointer to buffer containing name */ | 
|  | void (*xDel)(void*)              /* Memory management strategy for zName */ | 
|  | ){ | 
|  | int rc; | 
|  | Mem *pColName; | 
|  | assert( idx<p->nResColumn ); | 
|  | assert( var<COLNAME_N ); | 
|  | if( p->db->mallocFailed ){ | 
|  | assert( !zName || xDel!=SQLITE_DYNAMIC ); | 
|  | return SQLITE_NOMEM_BKPT; | 
|  | } | 
|  | assert( p->aColName!=0 ); | 
|  | pColName = &(p->aColName[idx+var*p->nResColumn]); | 
|  | rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); | 
|  | assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** A read or write transaction may or may not be active on database handle | 
|  | ** db. If a transaction is active, commit it. If there is a | 
|  | ** write-transaction spanning more than one database file, this routine | 
|  | ** takes care of the master journal trickery. | 
|  | */ | 
|  | static int vdbeCommit(sqlite3 *db, Vdbe *p){ | 
|  | int i; | 
|  | int nTrans = 0;  /* Number of databases with an active write-transaction | 
|  | ** that are candidates for a two-phase commit using a | 
|  | ** master-journal */ | 
|  | int rc = SQLITE_OK; | 
|  | int needXcommit = 0; | 
|  |  | 
|  | #ifdef SQLITE_OMIT_VIRTUALTABLE | 
|  | /* With this option, sqlite3VtabSync() is defined to be simply | 
|  | ** SQLITE_OK so p is not used. | 
|  | */ | 
|  | UNUSED_PARAMETER(p); | 
|  | #endif | 
|  |  | 
|  | /* Before doing anything else, call the xSync() callback for any | 
|  | ** virtual module tables written in this transaction. This has to | 
|  | ** be done before determining whether a master journal file is | 
|  | ** required, as an xSync() callback may add an attached database | 
|  | ** to the transaction. | 
|  | */ | 
|  | rc = sqlite3VtabSync(db, p); | 
|  |  | 
|  | /* This loop determines (a) if the commit hook should be invoked and | 
|  | ** (b) how many database files have open write transactions, not | 
|  | ** including the temp database. (b) is important because if more than | 
|  | ** one database file has an open write transaction, a master journal | 
|  | ** file is required for an atomic commit. | 
|  | */ | 
|  | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( sqlite3BtreeIsInTrans(pBt) ){ | 
|  | /* Whether or not a database might need a master journal depends upon | 
|  | ** its journal mode (among other things).  This matrix determines which | 
|  | ** journal modes use a master journal and which do not */ | 
|  | static const u8 aMJNeeded[] = { | 
|  | /* DELETE   */  1, | 
|  | /* PERSIST   */ 1, | 
|  | /* OFF       */ 0, | 
|  | /* TRUNCATE  */ 1, | 
|  | /* MEMORY    */ 0, | 
|  | /* WAL       */ 0 | 
|  | }; | 
|  | Pager *pPager;   /* Pager associated with pBt */ | 
|  | needXcommit = 1; | 
|  | sqlite3BtreeEnter(pBt); | 
|  | pPager = sqlite3BtreePager(pBt); | 
|  | if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF | 
|  | && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] | 
|  | && sqlite3PagerIsMemdb(pPager)==0 | 
|  | ){ | 
|  | assert( i!=1 ); | 
|  | nTrans++; | 
|  | } | 
|  | rc = sqlite3PagerExclusiveLock(pPager); | 
|  | sqlite3BtreeLeave(pBt); | 
|  | } | 
|  | } | 
|  | if( rc!=SQLITE_OK ){ | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* If there are any write-transactions at all, invoke the commit hook */ | 
|  | if( needXcommit && db->xCommitCallback ){ | 
|  | rc = db->xCommitCallback(db->pCommitArg); | 
|  | if( rc ){ | 
|  | return SQLITE_CONSTRAINT_COMMITHOOK; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The simple case - no more than one database file (not counting the | 
|  | ** TEMP database) has a transaction active.   There is no need for the | 
|  | ** master-journal. | 
|  | ** | 
|  | ** If the return value of sqlite3BtreeGetFilename() is a zero length | 
|  | ** string, it means the main database is :memory: or a temp file.  In | 
|  | ** that case we do not support atomic multi-file commits, so use the | 
|  | ** simple case then too. | 
|  | */ | 
|  | if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) | 
|  | || nTrans<=1 | 
|  | ){ | 
|  | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( pBt ){ | 
|  | rc = sqlite3BtreeCommitPhaseOne(pBt, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do the commit only if all databases successfully complete phase 1. | 
|  | ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an | 
|  | ** IO error while deleting or truncating a journal file. It is unlikely, | 
|  | ** but could happen. In this case abandon processing and return the error. | 
|  | */ | 
|  | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( pBt ){ | 
|  | rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); | 
|  | } | 
|  | } | 
|  | if( rc==SQLITE_OK ){ | 
|  | sqlite3VtabCommit(db); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The complex case - There is a multi-file write-transaction active. | 
|  | ** This requires a master journal file to ensure the transaction is | 
|  | ** committed atomically. | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_DISKIO | 
|  | else{ | 
|  | sqlite3_vfs *pVfs = db->pVfs; | 
|  | char *zMaster = 0;   /* File-name for the master journal */ | 
|  | char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); | 
|  | sqlite3_file *pMaster = 0; | 
|  | i64 offset = 0; | 
|  | int res; | 
|  | int retryCount = 0; | 
|  | int nMainFile; | 
|  |  | 
|  | /* Select a master journal file name */ | 
|  | nMainFile = sqlite3Strlen30(zMainFile); | 
|  | zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); | 
|  | if( zMaster==0 ) return SQLITE_NOMEM_BKPT; | 
|  | do { | 
|  | u32 iRandom; | 
|  | if( retryCount ){ | 
|  | if( retryCount>100 ){ | 
|  | sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); | 
|  | sqlite3OsDelete(pVfs, zMaster, 0); | 
|  | break; | 
|  | }else if( retryCount==1 ){ | 
|  | sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); | 
|  | } | 
|  | } | 
|  | retryCount++; | 
|  | sqlite3_randomness(sizeof(iRandom), &iRandom); | 
|  | sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", | 
|  | (iRandom>>8)&0xffffff, iRandom&0xff); | 
|  | /* The antipenultimate character of the master journal name must | 
|  | ** be "9" to avoid name collisions when using 8+3 filenames. */ | 
|  | assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); | 
|  | sqlite3FileSuffix3(zMainFile, zMaster); | 
|  | rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); | 
|  | }while( rc==SQLITE_OK && res ); | 
|  | if( rc==SQLITE_OK ){ | 
|  | /* Open the master journal. */ | 
|  | rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, | 
|  | SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| | 
|  | SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 | 
|  | ); | 
|  | } | 
|  | if( rc!=SQLITE_OK ){ | 
|  | sqlite3DbFree(db, zMaster); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Write the name of each database file in the transaction into the new | 
|  | ** master journal file. If an error occurs at this point close | 
|  | ** and delete the master journal file. All the individual journal files | 
|  | ** still have 'null' as the master journal pointer, so they will roll | 
|  | ** back independently if a failure occurs. | 
|  | */ | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( sqlite3BtreeIsInTrans(pBt) ){ | 
|  | char const *zFile = sqlite3BtreeGetJournalname(pBt); | 
|  | if( zFile==0 ){ | 
|  | continue;  /* Ignore TEMP and :memory: databases */ | 
|  | } | 
|  | assert( zFile[0]!=0 ); | 
|  | rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); | 
|  | offset += sqlite3Strlen30(zFile)+1; | 
|  | if( rc!=SQLITE_OK ){ | 
|  | sqlite3OsCloseFree(pMaster); | 
|  | sqlite3OsDelete(pVfs, zMaster, 0); | 
|  | sqlite3DbFree(db, zMaster); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sync the master journal file. If the IOCAP_SEQUENTIAL device | 
|  | ** flag is set this is not required. | 
|  | */ | 
|  | if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) | 
|  | && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) | 
|  | ){ | 
|  | sqlite3OsCloseFree(pMaster); | 
|  | sqlite3OsDelete(pVfs, zMaster, 0); | 
|  | sqlite3DbFree(db, zMaster); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Sync all the db files involved in the transaction. The same call | 
|  | ** sets the master journal pointer in each individual journal. If | 
|  | ** an error occurs here, do not delete the master journal file. | 
|  | ** | 
|  | ** If the error occurs during the first call to | 
|  | ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the | 
|  | ** master journal file will be orphaned. But we cannot delete it, | 
|  | ** in case the master journal file name was written into the journal | 
|  | ** file before the failure occurred. | 
|  | */ | 
|  | for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( pBt ){ | 
|  | rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); | 
|  | } | 
|  | } | 
|  | sqlite3OsCloseFree(pMaster); | 
|  | assert( rc!=SQLITE_BUSY ); | 
|  | if( rc!=SQLITE_OK ){ | 
|  | sqlite3DbFree(db, zMaster); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Delete the master journal file. This commits the transaction. After | 
|  | ** doing this the directory is synced again before any individual | 
|  | ** transaction files are deleted. | 
|  | */ | 
|  | rc = sqlite3OsDelete(pVfs, zMaster, 1); | 
|  | sqlite3DbFree(db, zMaster); | 
|  | zMaster = 0; | 
|  | if( rc ){ | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* All files and directories have already been synced, so the following | 
|  | ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and | 
|  | ** deleting or truncating journals. If something goes wrong while | 
|  | ** this is happening we don't really care. The integrity of the | 
|  | ** transaction is already guaranteed, but some stray 'cold' journals | 
|  | ** may be lying around. Returning an error code won't help matters. | 
|  | */ | 
|  | disable_simulated_io_errors(); | 
|  | sqlite3BeginBenignMalloc(); | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( pBt ){ | 
|  | sqlite3BtreeCommitPhaseTwo(pBt, 1); | 
|  | } | 
|  | } | 
|  | sqlite3EndBenignMalloc(); | 
|  | enable_simulated_io_errors(); | 
|  |  | 
|  | sqlite3VtabCommit(db); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This routine checks that the sqlite3.nVdbeActive count variable | 
|  | ** matches the number of vdbe's in the list sqlite3.pVdbe that are | 
|  | ** currently active. An assertion fails if the two counts do not match. | 
|  | ** This is an internal self-check only - it is not an essential processing | 
|  | ** step. | 
|  | ** | 
|  | ** This is a no-op if NDEBUG is defined. | 
|  | */ | 
|  | #ifndef NDEBUG | 
|  | static void checkActiveVdbeCnt(sqlite3 *db){ | 
|  | Vdbe *p; | 
|  | int cnt = 0; | 
|  | int nWrite = 0; | 
|  | int nRead = 0; | 
|  | p = db->pVdbe; | 
|  | while( p ){ | 
|  | if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ | 
|  | cnt++; | 
|  | if( p->readOnly==0 ) nWrite++; | 
|  | if( p->bIsReader ) nRead++; | 
|  | } | 
|  | p = p->pNext; | 
|  | } | 
|  | assert( cnt==db->nVdbeActive ); | 
|  | assert( nWrite==db->nVdbeWrite ); | 
|  | assert( nRead==db->nVdbeRead ); | 
|  | } | 
|  | #else | 
|  | #define checkActiveVdbeCnt(x) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** If the Vdbe passed as the first argument opened a statement-transaction, | 
|  | ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or | 
|  | ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement | 
|  | ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the | 
|  | ** statement transaction is committed. | 
|  | ** | 
|  | ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. | 
|  | ** Otherwise SQLITE_OK. | 
|  | */ | 
|  | static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ | 
|  | sqlite3 *const db = p->db; | 
|  | int rc = SQLITE_OK; | 
|  | int i; | 
|  | const int iSavepoint = p->iStatement-1; | 
|  |  | 
|  | assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); | 
|  | assert( db->nStatement>0 ); | 
|  | assert( p->iStatement==(db->nStatement+db->nSavepoint) ); | 
|  |  | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | int rc2 = SQLITE_OK; | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( pBt ){ | 
|  | if( eOp==SAVEPOINT_ROLLBACK ){ | 
|  | rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); | 
|  | } | 
|  | if( rc2==SQLITE_OK ){ | 
|  | rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); | 
|  | } | 
|  | if( rc==SQLITE_OK ){ | 
|  | rc = rc2; | 
|  | } | 
|  | } | 
|  | } | 
|  | db->nStatement--; | 
|  | p->iStatement = 0; | 
|  |  | 
|  | if( rc==SQLITE_OK ){ | 
|  | if( eOp==SAVEPOINT_ROLLBACK ){ | 
|  | rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); | 
|  | } | 
|  | if( rc==SQLITE_OK ){ | 
|  | rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the statement transaction is being rolled back, also restore the | 
|  | ** database handles deferred constraint counter to the value it had when | 
|  | ** the statement transaction was opened.  */ | 
|  | if( eOp==SAVEPOINT_ROLLBACK ){ | 
|  | db->nDeferredCons = p->nStmtDefCons; | 
|  | db->nDeferredImmCons = p->nStmtDefImmCons; | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ | 
|  | if( p->db->nStatement && p->iStatement ){ | 
|  | return vdbeCloseStatement(p, eOp); | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** This function is called when a transaction opened by the database | 
|  | ** handle associated with the VM passed as an argument is about to be | 
|  | ** committed. If there are outstanding deferred foreign key constraint | 
|  | ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. | 
|  | ** | 
|  | ** If there are outstanding FK violations and this function returns | 
|  | ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY | 
|  | ** and write an error message to it. Then return SQLITE_ERROR. | 
|  | */ | 
|  | #ifndef SQLITE_OMIT_FOREIGN_KEY | 
|  | int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ | 
|  | sqlite3 *db = p->db; | 
|  | if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) | 
|  | || (!deferred && p->nFkConstraint>0) | 
|  | ){ | 
|  | p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; | 
|  | p->errorAction = OE_Abort; | 
|  | sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** This routine is called the when a VDBE tries to halt.  If the VDBE | 
|  | ** has made changes and is in autocommit mode, then commit those | 
|  | ** changes.  If a rollback is needed, then do the rollback. | 
|  | ** | 
|  | ** This routine is the only way to move the state of a VM from | 
|  | ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to | 
|  | ** call this on a VM that is in the SQLITE_MAGIC_HALT state. | 
|  | ** | 
|  | ** Return an error code.  If the commit could not complete because of | 
|  | ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it | 
|  | ** means the close did not happen and needs to be repeated. | 
|  | */ | 
|  | int sqlite3VdbeHalt(Vdbe *p){ | 
|  | int rc;                         /* Used to store transient return codes */ | 
|  | sqlite3 *db = p->db; | 
|  |  | 
|  | /* This function contains the logic that determines if a statement or | 
|  | ** transaction will be committed or rolled back as a result of the | 
|  | ** execution of this virtual machine. | 
|  | ** | 
|  | ** If any of the following errors occur: | 
|  | ** | 
|  | **     SQLITE_NOMEM | 
|  | **     SQLITE_IOERR | 
|  | **     SQLITE_FULL | 
|  | **     SQLITE_INTERRUPT | 
|  | ** | 
|  | ** Then the internal cache might have been left in an inconsistent | 
|  | ** state.  We need to rollback the statement transaction, if there is | 
|  | ** one, or the complete transaction if there is no statement transaction. | 
|  | */ | 
|  |  | 
|  | if( p->magic!=VDBE_MAGIC_RUN ){ | 
|  | return SQLITE_OK; | 
|  | } | 
|  | if( db->mallocFailed ){ | 
|  | p->rc = SQLITE_NOMEM_BKPT; | 
|  | } | 
|  | closeAllCursors(p); | 
|  | checkActiveVdbeCnt(db); | 
|  |  | 
|  | /* No commit or rollback needed if the program never started or if the | 
|  | ** SQL statement does not read or write a database file.  */ | 
|  | if( p->pc>=0 && p->bIsReader ){ | 
|  | int mrc;   /* Primary error code from p->rc */ | 
|  | int eStatementOp = 0; | 
|  | int isSpecialError;            /* Set to true if a 'special' error */ | 
|  |  | 
|  | /* Lock all btrees used by the statement */ | 
|  | sqlite3VdbeEnter(p); | 
|  |  | 
|  | /* Check for one of the special errors */ | 
|  | mrc = p->rc & 0xff; | 
|  | isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR | 
|  | || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; | 
|  | if( isSpecialError ){ | 
|  | /* If the query was read-only and the error code is SQLITE_INTERRUPT, | 
|  | ** no rollback is necessary. Otherwise, at least a savepoint | 
|  | ** transaction must be rolled back to restore the database to a | 
|  | ** consistent state. | 
|  | ** | 
|  | ** Even if the statement is read-only, it is important to perform | 
|  | ** a statement or transaction rollback operation. If the error | 
|  | ** occurred while writing to the journal, sub-journal or database | 
|  | ** file as part of an effort to free up cache space (see function | 
|  | ** pagerStress() in pager.c), the rollback is required to restore | 
|  | ** the pager to a consistent state. | 
|  | */ | 
|  | if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ | 
|  | if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ | 
|  | eStatementOp = SAVEPOINT_ROLLBACK; | 
|  | }else{ | 
|  | /* We are forced to roll back the active transaction. Before doing | 
|  | ** so, abort any other statements this handle currently has active. | 
|  | */ | 
|  | sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 
|  | sqlite3CloseSavepoints(db); | 
|  | db->autoCommit = 1; | 
|  | p->nChange = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for immediate foreign key violations. */ | 
|  | if( p->rc==SQLITE_OK ){ | 
|  | sqlite3VdbeCheckFk(p, 0); | 
|  | } | 
|  |  | 
|  | /* If the auto-commit flag is set and this is the only active writer | 
|  | ** VM, then we do either a commit or rollback of the current transaction. | 
|  | ** | 
|  | ** Note: This block also runs if one of the special errors handled | 
|  | ** above has occurred. | 
|  | */ | 
|  | if( !sqlite3VtabInSync(db) | 
|  | && db->autoCommit | 
|  | && db->nVdbeWrite==(p->readOnly==0) | 
|  | ){ | 
|  | if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ | 
|  | rc = sqlite3VdbeCheckFk(p, 1); | 
|  | if( rc!=SQLITE_OK ){ | 
|  | if( NEVER(p->readOnly) ){ | 
|  | sqlite3VdbeLeave(p); | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | rc = SQLITE_CONSTRAINT_FOREIGNKEY; | 
|  | }else{ | 
|  | /* The auto-commit flag is true, the vdbe program was successful | 
|  | ** or hit an 'OR FAIL' constraint and there are no deferred foreign | 
|  | ** key constraints to hold up the transaction. This means a commit | 
|  | ** is required. */ | 
|  | rc = vdbeCommit(db, p); | 
|  | } | 
|  | if( rc==SQLITE_BUSY && p->readOnly ){ | 
|  | sqlite3VdbeLeave(p); | 
|  | return SQLITE_BUSY; | 
|  | }else if( rc!=SQLITE_OK ){ | 
|  | p->rc = rc; | 
|  | sqlite3RollbackAll(db, SQLITE_OK); | 
|  | p->nChange = 0; | 
|  | }else{ | 
|  | db->nDeferredCons = 0; | 
|  | db->nDeferredImmCons = 0; | 
|  | db->flags &= ~SQLITE_DeferFKs; | 
|  | sqlite3CommitInternalChanges(db); | 
|  | } | 
|  | }else{ | 
|  | sqlite3RollbackAll(db, SQLITE_OK); | 
|  | p->nChange = 0; | 
|  | } | 
|  | db->nStatement = 0; | 
|  | }else if( eStatementOp==0 ){ | 
|  | if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ | 
|  | eStatementOp = SAVEPOINT_RELEASE; | 
|  | }else if( p->errorAction==OE_Abort ){ | 
|  | eStatementOp = SAVEPOINT_ROLLBACK; | 
|  | }else{ | 
|  | sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 
|  | sqlite3CloseSavepoints(db); | 
|  | db->autoCommit = 1; | 
|  | p->nChange = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If eStatementOp is non-zero, then a statement transaction needs to | 
|  | ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to | 
|  | ** do so. If this operation returns an error, and the current statement | 
|  | ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the | 
|  | ** current statement error code. | 
|  | */ | 
|  | if( eStatementOp ){ | 
|  | rc = sqlite3VdbeCloseStatement(p, eStatementOp); | 
|  | if( rc ){ | 
|  | if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ | 
|  | p->rc = rc; | 
|  | sqlite3DbFree(db, p->zErrMsg); | 
|  | p->zErrMsg = 0; | 
|  | } | 
|  | sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); | 
|  | sqlite3CloseSavepoints(db); | 
|  | db->autoCommit = 1; | 
|  | p->nChange = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this was an INSERT, UPDATE or DELETE and no statement transaction | 
|  | ** has been rolled back, update the database connection change-counter. | 
|  | */ | 
|  | if( p->changeCntOn ){ | 
|  | if( eStatementOp!=SAVEPOINT_ROLLBACK ){ | 
|  | sqlite3VdbeSetChanges(db, p->nChange); | 
|  | }else{ | 
|  | sqlite3VdbeSetChanges(db, 0); | 
|  | } | 
|  | p->nChange = 0; | 
|  | } | 
|  |  | 
|  | /* Release the locks */ | 
|  | sqlite3VdbeLeave(p); | 
|  | } | 
|  |  | 
|  | /* We have successfully halted and closed the VM.  Record this fact. */ | 
|  | if( p->pc>=0 ){ | 
|  | db->nVdbeActive--; | 
|  | if( !p->readOnly ) db->nVdbeWrite--; | 
|  | if( p->bIsReader ) db->nVdbeRead--; | 
|  | assert( db->nVdbeActive>=db->nVdbeRead ); | 
|  | assert( db->nVdbeRead>=db->nVdbeWrite ); | 
|  | assert( db->nVdbeWrite>=0 ); | 
|  | } | 
|  | p->magic = VDBE_MAGIC_HALT; | 
|  | checkActiveVdbeCnt(db); | 
|  | if( db->mallocFailed ){ | 
|  | p->rc = SQLITE_NOMEM_BKPT; | 
|  | } | 
|  |  | 
|  | /* If the auto-commit flag is set to true, then any locks that were held | 
|  | ** by connection db have now been released. Call sqlite3ConnectionUnlocked() | 
|  | ** to invoke any required unlock-notify callbacks. | 
|  | */ | 
|  | if( db->autoCommit ){ | 
|  | sqlite3ConnectionUnlocked(db); | 
|  | } | 
|  |  | 
|  | assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); | 
|  | return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Each VDBE holds the result of the most recent sqlite3_step() call | 
|  | ** in p->rc.  This routine sets that result back to SQLITE_OK. | 
|  | */ | 
|  | void sqlite3VdbeResetStepResult(Vdbe *p){ | 
|  | p->rc = SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Copy the error code and error message belonging to the VDBE passed | 
|  | ** as the first argument to its database handle (so that they will be | 
|  | ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). | 
|  | ** | 
|  | ** This function does not clear the VDBE error code or message, just | 
|  | ** copies them to the database handle. | 
|  | */ | 
|  | int sqlite3VdbeTransferError(Vdbe *p){ | 
|  | sqlite3 *db = p->db; | 
|  | int rc = p->rc; | 
|  | if( p->zErrMsg ){ | 
|  | db->bBenignMalloc++; | 
|  | sqlite3BeginBenignMalloc(); | 
|  | if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); | 
|  | sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); | 
|  | sqlite3EndBenignMalloc(); | 
|  | db->bBenignMalloc--; | 
|  | }else if( db->pErr ){ | 
|  | sqlite3ValueSetNull(db->pErr); | 
|  | } | 
|  | db->errCode = rc; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_SQLLOG | 
|  | /* | 
|  | ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, | 
|  | ** invoke it. | 
|  | */ | 
|  | static void vdbeInvokeSqllog(Vdbe *v){ | 
|  | if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ | 
|  | char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); | 
|  | assert( v->db->init.busy==0 ); | 
|  | if( zExpanded ){ | 
|  | sqlite3GlobalConfig.xSqllog( | 
|  | sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 | 
|  | ); | 
|  | sqlite3DbFree(v->db, zExpanded); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | # define vdbeInvokeSqllog(x) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Clean up a VDBE after execution but do not delete the VDBE just yet. | 
|  | ** Write any error messages into *pzErrMsg.  Return the result code. | 
|  | ** | 
|  | ** After this routine is run, the VDBE should be ready to be executed | 
|  | ** again. | 
|  | ** | 
|  | ** To look at it another way, this routine resets the state of the | 
|  | ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to | 
|  | ** VDBE_MAGIC_INIT. | 
|  | */ | 
|  | int sqlite3VdbeReset(Vdbe *p){ | 
|  | #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) | 
|  | int i; | 
|  | #endif | 
|  |  | 
|  | sqlite3 *db; | 
|  | db = p->db; | 
|  |  | 
|  | /* If the VM did not run to completion or if it encountered an | 
|  | ** error, then it might not have been halted properly.  So halt | 
|  | ** it now. | 
|  | */ | 
|  | sqlite3VdbeHalt(p); | 
|  |  | 
|  | /* If the VDBE has be run even partially, then transfer the error code | 
|  | ** and error message from the VDBE into the main database structure.  But | 
|  | ** if the VDBE has just been set to run but has not actually executed any | 
|  | ** instructions yet, leave the main database error information unchanged. | 
|  | */ | 
|  | if( p->pc>=0 ){ | 
|  | vdbeInvokeSqllog(p); | 
|  | sqlite3VdbeTransferError(p); | 
|  | if( p->runOnlyOnce ) p->expired = 1; | 
|  | }else if( p->rc && p->expired ){ | 
|  | /* The expired flag was set on the VDBE before the first call | 
|  | ** to sqlite3_step(). For consistency (since sqlite3_step() was | 
|  | ** called), set the database error in this case as well. | 
|  | */ | 
|  | sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); | 
|  | } | 
|  |  | 
|  | /* Reset register contents and reclaim error message memory. | 
|  | */ | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* Execute assert() statements to ensure that the Vdbe.apCsr[] and | 
|  | ** Vdbe.aMem[] arrays have already been cleaned up.  */ | 
|  | if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); | 
|  | if( p->aMem ){ | 
|  | for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); | 
|  | } | 
|  | #endif | 
|  | sqlite3DbFree(db, p->zErrMsg); | 
|  | p->zErrMsg = 0; | 
|  | p->pResultSet = 0; | 
|  |  | 
|  | /* Save profiling information from this VDBE run. | 
|  | */ | 
|  | #ifdef VDBE_PROFILE | 
|  | { | 
|  | FILE *out = fopen("vdbe_profile.out", "a"); | 
|  | if( out ){ | 
|  | fprintf(out, "---- "); | 
|  | for(i=0; i<p->nOp; i++){ | 
|  | fprintf(out, "%02x", p->aOp[i].opcode); | 
|  | } | 
|  | fprintf(out, "\n"); | 
|  | if( p->zSql ){ | 
|  | char c, pc = 0; | 
|  | fprintf(out, "-- "); | 
|  | for(i=0; (c = p->zSql[i])!=0; i++){ | 
|  | if( pc=='\n' ) fprintf(out, "-- "); | 
|  | putc(c, out); | 
|  | pc = c; | 
|  | } | 
|  | if( pc!='\n' ) fprintf(out, "\n"); | 
|  | } | 
|  | for(i=0; i<p->nOp; i++){ | 
|  | char zHdr[100]; | 
|  | sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", | 
|  | p->aOp[i].cnt, | 
|  | p->aOp[i].cycles, | 
|  | p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 | 
|  | ); | 
|  | fprintf(out, "%s", zHdr); | 
|  | sqlite3VdbePrintOp(out, i, &p->aOp[i]); | 
|  | } | 
|  | fclose(out); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | p->magic = VDBE_MAGIC_RESET; | 
|  | return p->rc & db->errMask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Clean up and delete a VDBE after execution.  Return an integer which is | 
|  | ** the result code.  Write any error message text into *pzErrMsg. | 
|  | */ | 
|  | int sqlite3VdbeFinalize(Vdbe *p){ | 
|  | int rc = SQLITE_OK; | 
|  | if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ | 
|  | rc = sqlite3VdbeReset(p); | 
|  | assert( (rc & p->db->errMask)==rc ); | 
|  | } | 
|  | sqlite3VdbeDelete(p); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If parameter iOp is less than zero, then invoke the destructor for | 
|  | ** all auxiliary data pointers currently cached by the VM passed as | 
|  | ** the first argument. | 
|  | ** | 
|  | ** Or, if iOp is greater than or equal to zero, then the destructor is | 
|  | ** only invoked for those auxiliary data pointers created by the user | 
|  | ** function invoked by the OP_Function opcode at instruction iOp of | 
|  | ** VM pVdbe, and only then if: | 
|  | ** | 
|  | **    * the associated function parameter is the 32nd or later (counting | 
|  | **      from left to right), or | 
|  | ** | 
|  | **    * the corresponding bit in argument mask is clear (where the first | 
|  | **      function parameter corresponds to bit 0 etc.). | 
|  | */ | 
|  | void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ | 
|  | while( *pp ){ | 
|  | AuxData *pAux = *pp; | 
|  | if( (iOp<0) | 
|  | || (pAux->iAuxOp==iOp | 
|  | && pAux->iAuxArg>=0 | 
|  | && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) | 
|  | ){ | 
|  | testcase( pAux->iAuxArg==31 ); | 
|  | if( pAux->xDeleteAux ){ | 
|  | pAux->xDeleteAux(pAux->pAux); | 
|  | } | 
|  | *pp = pAux->pNextAux; | 
|  | sqlite3DbFree(db, pAux); | 
|  | }else{ | 
|  | pp= &pAux->pNextAux; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Free all memory associated with the Vdbe passed as the second argument, | 
|  | ** except for object itself, which is preserved. | 
|  | ** | 
|  | ** The difference between this function and sqlite3VdbeDelete() is that | 
|  | ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with | 
|  | ** the database connection and frees the object itself. | 
|  | */ | 
|  | void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ | 
|  | SubProgram *pSub, *pNext; | 
|  | assert( p->db==0 || p->db==db ); | 
|  | releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); | 
|  | for(pSub=p->pProgram; pSub; pSub=pNext){ | 
|  | pNext = pSub->pNext; | 
|  | vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); | 
|  | sqlite3DbFree(db, pSub); | 
|  | } | 
|  | if( p->magic!=VDBE_MAGIC_INIT ){ | 
|  | releaseMemArray(p->aVar, p->nVar); | 
|  | sqlite3DbFree(db, p->pVList); | 
|  | sqlite3DbFree(db, p->pFree); | 
|  | } | 
|  | vdbeFreeOpArray(db, p->aOp, p->nOp); | 
|  | sqlite3DbFree(db, p->aColName); | 
|  | sqlite3DbFree(db, p->zSql); | 
|  | #ifdef SQLITE_ENABLE_STMT_SCANSTATUS | 
|  | { | 
|  | int i; | 
|  | for(i=0; i<p->nScan; i++){ | 
|  | sqlite3DbFree(db, p->aScan[i].zName); | 
|  | } | 
|  | sqlite3DbFree(db, p->aScan); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Delete an entire VDBE. | 
|  | */ | 
|  | void sqlite3VdbeDelete(Vdbe *p){ | 
|  | sqlite3 *db; | 
|  |  | 
|  | assert( p!=0 ); | 
|  | db = p->db; | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | sqlite3VdbeClearObject(db, p); | 
|  | if( p->pPrev ){ | 
|  | p->pPrev->pNext = p->pNext; | 
|  | }else{ | 
|  | assert( db->pVdbe==p ); | 
|  | db->pVdbe = p->pNext; | 
|  | } | 
|  | if( p->pNext ){ | 
|  | p->pNext->pPrev = p->pPrev; | 
|  | } | 
|  | p->magic = VDBE_MAGIC_DEAD; | 
|  | p->db = 0; | 
|  | sqlite3DbFreeNN(db, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The cursor "p" has a pending seek operation that has not yet been | 
|  | ** carried out.  Seek the cursor now.  If an error occurs, return | 
|  | ** the appropriate error code. | 
|  | */ | 
|  | static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ | 
|  | int res, rc; | 
|  | #ifdef SQLITE_TEST | 
|  | extern int sqlite3_search_count; | 
|  | #endif | 
|  | assert( p->deferredMoveto ); | 
|  | assert( p->isTable ); | 
|  | assert( p->eCurType==CURTYPE_BTREE ); | 
|  | rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); | 
|  | if( rc ) return rc; | 
|  | if( res!=0 ) return SQLITE_CORRUPT_BKPT; | 
|  | #ifdef SQLITE_TEST | 
|  | sqlite3_search_count++; | 
|  | #endif | 
|  | p->deferredMoveto = 0; | 
|  | p->cacheStatus = CACHE_STALE; | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Something has moved cursor "p" out of place.  Maybe the row it was | 
|  | ** pointed to was deleted out from under it.  Or maybe the btree was | 
|  | ** rebalanced.  Whatever the cause, try to restore "p" to the place it | 
|  | ** is supposed to be pointing.  If the row was deleted out from under the | 
|  | ** cursor, set the cursor to point to a NULL row. | 
|  | */ | 
|  | static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ | 
|  | int isDifferentRow, rc; | 
|  | assert( p->eCurType==CURTYPE_BTREE ); | 
|  | assert( p->uc.pCursor!=0 ); | 
|  | assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); | 
|  | rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); | 
|  | p->cacheStatus = CACHE_STALE; | 
|  | if( isDifferentRow ) p->nullRow = 1; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Check to ensure that the cursor is valid.  Restore the cursor | 
|  | ** if need be.  Return any I/O error from the restore operation. | 
|  | */ | 
|  | int sqlite3VdbeCursorRestore(VdbeCursor *p){ | 
|  | assert( p->eCurType==CURTYPE_BTREE ); | 
|  | if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ | 
|  | return handleMovedCursor(p); | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Make sure the cursor p is ready to read or write the row to which it | 
|  | ** was last positioned.  Return an error code if an OOM fault or I/O error | 
|  | ** prevents us from positioning the cursor to its correct position. | 
|  | ** | 
|  | ** If a MoveTo operation is pending on the given cursor, then do that | 
|  | ** MoveTo now.  If no move is pending, check to see if the row has been | 
|  | ** deleted out from under the cursor and if it has, mark the row as | 
|  | ** a NULL row. | 
|  | ** | 
|  | ** If the cursor is already pointing to the correct row and that row has | 
|  | ** not been deleted out from under the cursor, then this routine is a no-op. | 
|  | */ | 
|  | int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ | 
|  | VdbeCursor *p = *pp; | 
|  | assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO ); | 
|  | if( p->deferredMoveto ){ | 
|  | int iMap; | 
|  | if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ | 
|  | *pp = p->pAltCursor; | 
|  | *piCol = iMap - 1; | 
|  | return SQLITE_OK; | 
|  | } | 
|  | return handleDeferredMoveto(p); | 
|  | } | 
|  | if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ | 
|  | return handleMovedCursor(p); | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The following functions: | 
|  | ** | 
|  | ** sqlite3VdbeSerialType() | 
|  | ** sqlite3VdbeSerialTypeLen() | 
|  | ** sqlite3VdbeSerialLen() | 
|  | ** sqlite3VdbeSerialPut() | 
|  | ** sqlite3VdbeSerialGet() | 
|  | ** | 
|  | ** encapsulate the code that serializes values for storage in SQLite | 
|  | ** data and index records. Each serialized value consists of a | 
|  | ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned | 
|  | ** integer, stored as a varint. | 
|  | ** | 
|  | ** In an SQLite index record, the serial type is stored directly before | 
|  | ** the blob of data that it corresponds to. In a table record, all serial | 
|  | ** types are stored at the start of the record, and the blobs of data at | 
|  | ** the end. Hence these functions allow the caller to handle the | 
|  | ** serial-type and data blob separately. | 
|  | ** | 
|  | ** The following table describes the various storage classes for data: | 
|  | ** | 
|  | **   serial type        bytes of data      type | 
|  | **   --------------     ---------------    --------------- | 
|  | **      0                     0            NULL | 
|  | **      1                     1            signed integer | 
|  | **      2                     2            signed integer | 
|  | **      3                     3            signed integer | 
|  | **      4                     4            signed integer | 
|  | **      5                     6            signed integer | 
|  | **      6                     8            signed integer | 
|  | **      7                     8            IEEE float | 
|  | **      8                     0            Integer constant 0 | 
|  | **      9                     0            Integer constant 1 | 
|  | **     10,11                               reserved for expansion | 
|  | **    N>=12 and even       (N-12)/2        BLOB | 
|  | **    N>=13 and odd        (N-13)/2        text | 
|  | ** | 
|  | ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions | 
|  | ** of SQLite will not understand those serial types. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | ** Return the serial-type for the value stored in pMem. | 
|  | */ | 
|  | u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ | 
|  | int flags = pMem->flags; | 
|  | u32 n; | 
|  |  | 
|  | assert( pLen!=0 ); | 
|  | if( flags&MEM_Null ){ | 
|  | *pLen = 0; | 
|  | return 0; | 
|  | } | 
|  | if( flags&MEM_Int ){ | 
|  | /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ | 
|  | #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1) | 
|  | i64 i = pMem->u.i; | 
|  | u64 u; | 
|  | if( i<0 ){ | 
|  | u = ~i; | 
|  | }else{ | 
|  | u = i; | 
|  | } | 
|  | if( u<=127 ){ | 
|  | if( (i&1)==i && file_format>=4 ){ | 
|  | *pLen = 0; | 
|  | return 8+(u32)u; | 
|  | }else{ | 
|  | *pLen = 1; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | if( u<=32767 ){ *pLen = 2; return 2; } | 
|  | if( u<=8388607 ){ *pLen = 3; return 3; } | 
|  | if( u<=2147483647 ){ *pLen = 4; return 4; } | 
|  | if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } | 
|  | *pLen = 8; | 
|  | return 6; | 
|  | } | 
|  | if( flags&MEM_Real ){ | 
|  | *pLen = 8; | 
|  | return 7; | 
|  | } | 
|  | assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); | 
|  | assert( pMem->n>=0 ); | 
|  | n = (u32)pMem->n; | 
|  | if( flags & MEM_Zero ){ | 
|  | n += pMem->u.nZero; | 
|  | } | 
|  | *pLen = n; | 
|  | return ((n*2) + 12 + ((flags&MEM_Str)!=0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The sizes for serial types less than 128 | 
|  | */ | 
|  | static const u8 sqlite3SmallTypeSizes[] = { | 
|  | /*  0   1   2   3   4   5   6   7   8   9 */ | 
|  | /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0, | 
|  | /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3, | 
|  | /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8, | 
|  | /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13, | 
|  | /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18, | 
|  | /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23, | 
|  | /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28, | 
|  | /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33, | 
|  | /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38, | 
|  | /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43, | 
|  | /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48, | 
|  | /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53, | 
|  | /* 120 */  54, 54, 55, 55, 56, 56, 57, 57 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** Return the length of the data corresponding to the supplied serial-type. | 
|  | */ | 
|  | u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ | 
|  | if( serial_type>=128 ){ | 
|  | return (serial_type-12)/2; | 
|  | }else{ | 
|  | assert( serial_type<12 | 
|  | || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); | 
|  | return sqlite3SmallTypeSizes[serial_type]; | 
|  | } | 
|  | } | 
|  | u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ | 
|  | assert( serial_type<128 ); | 
|  | return sqlite3SmallTypeSizes[serial_type]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If we are on an architecture with mixed-endian floating | 
|  | ** points (ex: ARM7) then swap the lower 4 bytes with the | 
|  | ** upper 4 bytes.  Return the result. | 
|  | ** | 
|  | ** For most architectures, this is a no-op. | 
|  | ** | 
|  | ** (later):  It is reported to me that the mixed-endian problem | 
|  | ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems | 
|  | ** that early versions of GCC stored the two words of a 64-bit | 
|  | ** float in the wrong order.  And that error has been propagated | 
|  | ** ever since.  The blame is not necessarily with GCC, though. | 
|  | ** GCC might have just copying the problem from a prior compiler. | 
|  | ** I am also told that newer versions of GCC that follow a different | 
|  | ** ABI get the byte order right. | 
|  | ** | 
|  | ** Developers using SQLite on an ARM7 should compile and run their | 
|  | ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG | 
|  | ** enabled, some asserts below will ensure that the byte order of | 
|  | ** floating point values is correct. | 
|  | ** | 
|  | ** (2007-08-30)  Frank van Vugt has studied this problem closely | 
|  | ** and has send his findings to the SQLite developers.  Frank | 
|  | ** writes that some Linux kernels offer floating point hardware | 
|  | ** emulation that uses only 32-bit mantissas instead of a full | 
|  | ** 48-bits as required by the IEEE standard.  (This is the | 
|  | ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point | 
|  | ** byte swapping becomes very complicated.  To avoid problems, | 
|  | ** the necessary byte swapping is carried out using a 64-bit integer | 
|  | ** rather than a 64-bit float.  Frank assures us that the code here | 
|  | ** works for him.  We, the developers, have no way to independently | 
|  | ** verify this, but Frank seems to know what he is talking about | 
|  | ** so we trust him. | 
|  | */ | 
|  | #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT | 
|  | static u64 floatSwap(u64 in){ | 
|  | union { | 
|  | u64 r; | 
|  | u32 i[2]; | 
|  | } u; | 
|  | u32 t; | 
|  |  | 
|  | u.r = in; | 
|  | t = u.i[0]; | 
|  | u.i[0] = u.i[1]; | 
|  | u.i[1] = t; | 
|  | return u.r; | 
|  | } | 
|  | # define swapMixedEndianFloat(X)  X = floatSwap(X) | 
|  | #else | 
|  | # define swapMixedEndianFloat(X) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Write the serialized data blob for the value stored in pMem into | 
|  | ** buf. It is assumed that the caller has allocated sufficient space. | 
|  | ** Return the number of bytes written. | 
|  | ** | 
|  | ** nBuf is the amount of space left in buf[].  The caller is responsible | 
|  | ** for allocating enough space to buf[] to hold the entire field, exclusive | 
|  | ** of the pMem->u.nZero bytes for a MEM_Zero value. | 
|  | ** | 
|  | ** Return the number of bytes actually written into buf[].  The number | 
|  | ** of bytes in the zero-filled tail is included in the return value only | 
|  | ** if those bytes were zeroed in buf[]. | 
|  | */ | 
|  | u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ | 
|  | u32 len; | 
|  |  | 
|  | /* Integer and Real */ | 
|  | if( serial_type<=7 && serial_type>0 ){ | 
|  | u64 v; | 
|  | u32 i; | 
|  | if( serial_type==7 ){ | 
|  | assert( sizeof(v)==sizeof(pMem->u.r) ); | 
|  | memcpy(&v, &pMem->u.r, sizeof(v)); | 
|  | swapMixedEndianFloat(v); | 
|  | }else{ | 
|  | v = pMem->u.i; | 
|  | } | 
|  | len = i = sqlite3SmallTypeSizes[serial_type]; | 
|  | assert( i>0 ); | 
|  | do{ | 
|  | buf[--i] = (u8)(v&0xFF); | 
|  | v >>= 8; | 
|  | }while( i ); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* String or blob */ | 
|  | if( serial_type>=12 ){ | 
|  | assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) | 
|  | == (int)sqlite3VdbeSerialTypeLen(serial_type) ); | 
|  | len = pMem->n; | 
|  | if( len>0 ) memcpy(buf, pMem->z, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* NULL or constants 0 or 1 */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Input "x" is a sequence of unsigned characters that represent a | 
|  | ** big-endian integer.  Return the equivalent native integer | 
|  | */ | 
|  | #define ONE_BYTE_INT(x)    ((i8)(x)[0]) | 
|  | #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1]) | 
|  | #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) | 
|  | #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) | 
|  | #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) | 
|  |  | 
|  | /* | 
|  | ** Deserialize the data blob pointed to by buf as serial type serial_type | 
|  | ** and store the result in pMem.  Return the number of bytes read. | 
|  | ** | 
|  | ** This function is implemented as two separate routines for performance. | 
|  | ** The few cases that require local variables are broken out into a separate | 
|  | ** routine so that in most cases the overhead of moving the stack pointer | 
|  | ** is avoided. | 
|  | */ | 
|  | static u32 SQLITE_NOINLINE serialGet( | 
|  | const unsigned char *buf,     /* Buffer to deserialize from */ | 
|  | u32 serial_type,              /* Serial type to deserialize */ | 
|  | Mem *pMem                     /* Memory cell to write value into */ | 
|  | ){ | 
|  | u64 x = FOUR_BYTE_UINT(buf); | 
|  | u32 y = FOUR_BYTE_UINT(buf+4); | 
|  | x = (x<<32) + y; | 
|  | if( serial_type==6 ){ | 
|  | /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit | 
|  | ** twos-complement integer. */ | 
|  | pMem->u.i = *(i64*)&x; | 
|  | pMem->flags = MEM_Int; | 
|  | testcase( pMem->u.i<0 ); | 
|  | }else{ | 
|  | /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit | 
|  | ** floating point number. */ | 
|  | #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) | 
|  | /* Verify that integers and floating point values use the same | 
|  | ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is | 
|  | ** defined that 64-bit floating point values really are mixed | 
|  | ** endian. | 
|  | */ | 
|  | static const u64 t1 = ((u64)0x3ff00000)<<32; | 
|  | static const double r1 = 1.0; | 
|  | u64 t2 = t1; | 
|  | swapMixedEndianFloat(t2); | 
|  | assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); | 
|  | #endif | 
|  | assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); | 
|  | swapMixedEndianFloat(x); | 
|  | memcpy(&pMem->u.r, &x, sizeof(x)); | 
|  | pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; | 
|  | } | 
|  | return 8; | 
|  | } | 
|  | u32 sqlite3VdbeSerialGet( | 
|  | const unsigned char *buf,     /* Buffer to deserialize from */ | 
|  | u32 serial_type,              /* Serial type to deserialize */ | 
|  | Mem *pMem                     /* Memory cell to write value into */ | 
|  | ){ | 
|  | switch( serial_type ){ | 
|  | case 10: { /* Internal use only: NULL with virtual table | 
|  | ** UPDATE no-change flag set */ | 
|  | pMem->flags = MEM_Null|MEM_Zero; | 
|  | pMem->n = 0; | 
|  | pMem->u.nZero = 0; | 
|  | break; | 
|  | } | 
|  | case 11:   /* Reserved for future use */ | 
|  | case 0: {  /* Null */ | 
|  | /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ | 
|  | pMem->flags = MEM_Null; | 
|  | break; | 
|  | } | 
|  | case 1: { | 
|  | /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement | 
|  | ** integer. */ | 
|  | pMem->u.i = ONE_BYTE_INT(buf); | 
|  | pMem->flags = MEM_Int; | 
|  | testcase( pMem->u.i<0 ); | 
|  | return 1; | 
|  | } | 
|  | case 2: { /* 2-byte signed integer */ | 
|  | /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit | 
|  | ** twos-complement integer. */ | 
|  | pMem->u.i = TWO_BYTE_INT(buf); | 
|  | pMem->flags = MEM_Int; | 
|  | testcase( pMem->u.i<0 ); | 
|  | return 2; | 
|  | } | 
|  | case 3: { /* 3-byte signed integer */ | 
|  | /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit | 
|  | ** twos-complement integer. */ | 
|  | pMem->u.i = THREE_BYTE_INT(buf); | 
|  | pMem->flags = MEM_Int; | 
|  | testcase( pMem->u.i<0 ); | 
|  | return 3; | 
|  | } | 
|  | case 4: { /* 4-byte signed integer */ | 
|  | /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit | 
|  | ** twos-complement integer. */ | 
|  | pMem->u.i = FOUR_BYTE_INT(buf); | 
|  | #ifdef __HP_cc | 
|  | /* Work around a sign-extension bug in the HP compiler for HP/UX */ | 
|  | if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; | 
|  | #endif | 
|  | pMem->flags = MEM_Int; | 
|  | testcase( pMem->u.i<0 ); | 
|  | return 4; | 
|  | } | 
|  | case 5: { /* 6-byte signed integer */ | 
|  | /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit | 
|  | ** twos-complement integer. */ | 
|  | pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); | 
|  | pMem->flags = MEM_Int; | 
|  | testcase( pMem->u.i<0 ); | 
|  | return 6; | 
|  | } | 
|  | case 6:   /* 8-byte signed integer */ | 
|  | case 7: { /* IEEE floating point */ | 
|  | /* These use local variables, so do them in a separate routine | 
|  | ** to avoid having to move the frame pointer in the common case */ | 
|  | return serialGet(buf,serial_type,pMem); | 
|  | } | 
|  | case 8:    /* Integer 0 */ | 
|  | case 9: {  /* Integer 1 */ | 
|  | /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ | 
|  | /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ | 
|  | pMem->u.i = serial_type-8; | 
|  | pMem->flags = MEM_Int; | 
|  | return 0; | 
|  | } | 
|  | default: { | 
|  | /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in | 
|  | ** length. | 
|  | ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and | 
|  | ** (N-13)/2 bytes in length. */ | 
|  | static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; | 
|  | pMem->z = (char *)buf; | 
|  | pMem->n = (serial_type-12)/2; | 
|  | pMem->flags = aFlag[serial_type&1]; | 
|  | return pMem->n; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | ** This routine is used to allocate sufficient space for an UnpackedRecord | 
|  | ** structure large enough to be used with sqlite3VdbeRecordUnpack() if | 
|  | ** the first argument is a pointer to KeyInfo structure pKeyInfo. | 
|  | ** | 
|  | ** The space is either allocated using sqlite3DbMallocRaw() or from within | 
|  | ** the unaligned buffer passed via the second and third arguments (presumably | 
|  | ** stack space). If the former, then *ppFree is set to a pointer that should | 
|  | ** be eventually freed by the caller using sqlite3DbFree(). Or, if the | 
|  | ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL | 
|  | ** before returning. | 
|  | ** | 
|  | ** If an OOM error occurs, NULL is returned. | 
|  | */ | 
|  | UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( | 
|  | KeyInfo *pKeyInfo               /* Description of the record */ | 
|  | ){ | 
|  | UnpackedRecord *p;              /* Unpacked record to return */ | 
|  | int nByte;                      /* Number of bytes required for *p */ | 
|  | nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); | 
|  | p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); | 
|  | if( !p ) return 0; | 
|  | p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; | 
|  | assert( pKeyInfo->aSortOrder!=0 ); | 
|  | p->pKeyInfo = pKeyInfo; | 
|  | p->nField = pKeyInfo->nKeyField + 1; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given the nKey-byte encoding of a record in pKey[], populate the | 
|  | ** UnpackedRecord structure indicated by the fourth argument with the | 
|  | ** contents of the decoded record. | 
|  | */ | 
|  | void sqlite3VdbeRecordUnpack( | 
|  | KeyInfo *pKeyInfo,     /* Information about the record format */ | 
|  | int nKey,              /* Size of the binary record */ | 
|  | const void *pKey,      /* The binary record */ | 
|  | UnpackedRecord *p      /* Populate this structure before returning. */ | 
|  | ){ | 
|  | const unsigned char *aKey = (const unsigned char *)pKey; | 
|  | int d; | 
|  | u32 idx;                        /* Offset in aKey[] to read from */ | 
|  | u16 u;                          /* Unsigned loop counter */ | 
|  | u32 szHdr; | 
|  | Mem *pMem = p->aMem; | 
|  |  | 
|  | p->default_rc = 0; | 
|  | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | 
|  | idx = getVarint32(aKey, szHdr); | 
|  | d = szHdr; | 
|  | u = 0; | 
|  | while( idx<szHdr && d<=nKey ){ | 
|  | u32 serial_type; | 
|  |  | 
|  | idx += getVarint32(&aKey[idx], serial_type); | 
|  | pMem->enc = pKeyInfo->enc; | 
|  | pMem->db = pKeyInfo->db; | 
|  | /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ | 
|  | pMem->szMalloc = 0; | 
|  | pMem->z = 0; | 
|  | d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); | 
|  | pMem++; | 
|  | if( (++u)>=p->nField ) break; | 
|  | } | 
|  | assert( u<=pKeyInfo->nKeyField + 1 ); | 
|  | p->nField = u; | 
|  | } | 
|  |  | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* | 
|  | ** This function compares two index or table record keys in the same way | 
|  | ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), | 
|  | ** this function deserializes and compares values using the | 
|  | ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used | 
|  | ** in assert() statements to ensure that the optimized code in | 
|  | ** sqlite3VdbeRecordCompare() returns results with these two primitives. | 
|  | ** | 
|  | ** Return true if the result of comparison is equivalent to desiredResult. | 
|  | ** Return false if there is a disagreement. | 
|  | */ | 
|  | static int vdbeRecordCompareDebug( | 
|  | int nKey1, const void *pKey1, /* Left key */ | 
|  | const UnpackedRecord *pPKey2, /* Right key */ | 
|  | int desiredResult             /* Correct answer */ | 
|  | ){ | 
|  | u32 d1;            /* Offset into aKey[] of next data element */ | 
|  | u32 idx1;          /* Offset into aKey[] of next header element */ | 
|  | u32 szHdr1;        /* Number of bytes in header */ | 
|  | int i = 0; | 
|  | int rc = 0; | 
|  | const unsigned char *aKey1 = (const unsigned char *)pKey1; | 
|  | KeyInfo *pKeyInfo; | 
|  | Mem mem1; | 
|  |  | 
|  | pKeyInfo = pPKey2->pKeyInfo; | 
|  | if( pKeyInfo->db==0 ) return 1; | 
|  | mem1.enc = pKeyInfo->enc; | 
|  | mem1.db = pKeyInfo->db; | 
|  | /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */ | 
|  | VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ | 
|  |  | 
|  | /* Compilers may complain that mem1.u.i is potentially uninitialized. | 
|  | ** We could initialize it, as shown here, to silence those complaints. | 
|  | ** But in fact, mem1.u.i will never actually be used uninitialized, and doing | 
|  | ** the unnecessary initialization has a measurable negative performance | 
|  | ** impact, since this routine is a very high runner.  And so, we choose | 
|  | ** to ignore the compiler warnings and leave this variable uninitialized. | 
|  | */ | 
|  | /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */ | 
|  |  | 
|  | idx1 = getVarint32(aKey1, szHdr1); | 
|  | if( szHdr1>98307 ) return SQLITE_CORRUPT; | 
|  | d1 = szHdr1; | 
|  | assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); | 
|  | assert( pKeyInfo->aSortOrder!=0 ); | 
|  | assert( pKeyInfo->nKeyField>0 ); | 
|  | assert( idx1<=szHdr1 || CORRUPT_DB ); | 
|  | do{ | 
|  | u32 serial_type1; | 
|  |  | 
|  | /* Read the serial types for the next element in each key. */ | 
|  | idx1 += getVarint32( aKey1+idx1, serial_type1 ); | 
|  |  | 
|  | /* Verify that there is enough key space remaining to avoid | 
|  | ** a buffer overread.  The "d1+serial_type1+2" subexpression will | 
|  | ** always be greater than or equal to the amount of required key space. | 
|  | ** Use that approximation to avoid the more expensive call to | 
|  | ** sqlite3VdbeSerialTypeLen() in the common case. | 
|  | */ | 
|  | if( d1+serial_type1+2>(u32)nKey1 | 
|  | && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 | 
|  | ){ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Extract the values to be compared. | 
|  | */ | 
|  | d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); | 
|  |  | 
|  | /* Do the comparison | 
|  | */ | 
|  | rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); | 
|  | if( rc!=0 ){ | 
|  | assert( mem1.szMalloc==0 );  /* See comment below */ | 
|  | if( pKeyInfo->aSortOrder[i] ){ | 
|  | rc = -rc;  /* Invert the result for DESC sort order. */ | 
|  | } | 
|  | goto debugCompareEnd; | 
|  | } | 
|  | i++; | 
|  | }while( idx1<szHdr1 && i<pPKey2->nField ); | 
|  |  | 
|  | /* No memory allocation is ever used on mem1.  Prove this using | 
|  | ** the following assert().  If the assert() fails, it indicates a | 
|  | ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). | 
|  | */ | 
|  | assert( mem1.szMalloc==0 ); | 
|  |  | 
|  | /* rc==0 here means that one of the keys ran out of fields and | 
|  | ** all the fields up to that point were equal. Return the default_rc | 
|  | ** value.  */ | 
|  | rc = pPKey2->default_rc; | 
|  |  | 
|  | debugCompareEnd: | 
|  | if( desiredResult==0 && rc==0 ) return 1; | 
|  | if( desiredResult<0 && rc<0 ) return 1; | 
|  | if( desiredResult>0 && rc>0 ) return 1; | 
|  | if( CORRUPT_DB ) return 1; | 
|  | if( pKeyInfo->db->mallocFailed ) return 1; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef SQLITE_DEBUG | 
|  | /* | 
|  | ** Count the number of fields (a.k.a. columns) in the record given by | 
|  | ** pKey,nKey.  The verify that this count is less than or equal to the | 
|  | ** limit given by pKeyInfo->nAllField. | 
|  | ** | 
|  | ** If this constraint is not satisfied, it means that the high-speed | 
|  | ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will | 
|  | ** not work correctly.  If this assert() ever fires, it probably means | 
|  | ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed | 
|  | ** incorrectly. | 
|  | */ | 
|  | static void vdbeAssertFieldCountWithinLimits( | 
|  | int nKey, const void *pKey,   /* The record to verify */ | 
|  | const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */ | 
|  | ){ | 
|  | int nField = 0; | 
|  | u32 szHdr; | 
|  | u32 idx; | 
|  | u32 notUsed; | 
|  | const unsigned char *aKey = (const unsigned char*)pKey; | 
|  |  | 
|  | if( CORRUPT_DB ) return; | 
|  | idx = getVarint32(aKey, szHdr); | 
|  | assert( nKey>=0 ); | 
|  | assert( szHdr<=(u32)nKey ); | 
|  | while( idx<szHdr ){ | 
|  | idx += getVarint32(aKey+idx, notUsed); | 
|  | nField++; | 
|  | } | 
|  | assert( nField <= pKeyInfo->nAllField ); | 
|  | } | 
|  | #else | 
|  | # define vdbeAssertFieldCountWithinLimits(A,B,C) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Both *pMem1 and *pMem2 contain string values. Compare the two values | 
|  | ** using the collation sequence pColl. As usual, return a negative , zero | 
|  | ** or positive value if *pMem1 is less than, equal to or greater than | 
|  | ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". | 
|  | */ | 
|  | static int vdbeCompareMemString( | 
|  | const Mem *pMem1, | 
|  | const Mem *pMem2, | 
|  | const CollSeq *pColl, | 
|  | u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */ | 
|  | ){ | 
|  | if( pMem1->enc==pColl->enc ){ | 
|  | /* The strings are already in the correct encoding.  Call the | 
|  | ** comparison function directly */ | 
|  | return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); | 
|  | }else{ | 
|  | int rc; | 
|  | const void *v1, *v2; | 
|  | Mem c1; | 
|  | Mem c2; | 
|  | sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); | 
|  | sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); | 
|  | sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); | 
|  | sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); | 
|  | v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); | 
|  | v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); | 
|  | if( (v1==0 || v2==0) ){ | 
|  | if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; | 
|  | rc = 0; | 
|  | }else{ | 
|  | rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); | 
|  | } | 
|  | sqlite3VdbeMemRelease(&c1); | 
|  | sqlite3VdbeMemRelease(&c2); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The input pBlob is guaranteed to be a Blob that is not marked | 
|  | ** with MEM_Zero.  Return true if it could be a zero-blob. | 
|  | */ | 
|  | static int isAllZero(const char *z, int n){ | 
|  | int i; | 
|  | for(i=0; i<n; i++){ | 
|  | if( z[i] ) return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Compare two blobs.  Return negative, zero, or positive if the first | 
|  | ** is less than, equal to, or greater than the second, respectively. | 
|  | ** If one blob is a prefix of the other, then the shorter is the lessor. | 
|  | */ | 
|  | static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ | 
|  | int c; | 
|  | int n1 = pB1->n; | 
|  | int n2 = pB2->n; | 
|  |  | 
|  | /* It is possible to have a Blob value that has some non-zero content | 
|  | ** followed by zero content.  But that only comes up for Blobs formed | 
|  | ** by the OP_MakeRecord opcode, and such Blobs never get passed into | 
|  | ** sqlite3MemCompare(). */ | 
|  | assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); | 
|  | assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); | 
|  |  | 
|  | if( (pB1->flags|pB2->flags) & MEM_Zero ){ | 
|  | if( pB1->flags & pB2->flags & MEM_Zero ){ | 
|  | return pB1->u.nZero - pB2->u.nZero; | 
|  | }else if( pB1->flags & MEM_Zero ){ | 
|  | if( !isAllZero(pB2->z, pB2->n) ) return -1; | 
|  | return pB1->u.nZero - n2; | 
|  | }else{ | 
|  | if( !isAllZero(pB1->z, pB1->n) ) return +1; | 
|  | return n1 - pB2->u.nZero; | 
|  | } | 
|  | } | 
|  | c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); | 
|  | if( c ) return c; | 
|  | return n1 - n2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point | 
|  | ** number.  Return negative, zero, or positive if the first (i64) is less than, | 
|  | ** equal to, or greater than the second (double). | 
|  | */ | 
|  | static int sqlite3IntFloatCompare(i64 i, double r){ | 
|  | if( sizeof(LONGDOUBLE_TYPE)>8 ){ | 
|  | LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; | 
|  | if( x<r ) return -1; | 
|  | if( x>r ) return +1; | 
|  | return 0; | 
|  | }else{ | 
|  | i64 y; | 
|  | double s; | 
|  | if( r<-9223372036854775808.0 ) return +1; | 
|  | if( r>9223372036854775807.0 ) return -1; | 
|  | y = (i64)r; | 
|  | if( i<y ) return -1; | 
|  | if( i>y ){ | 
|  | if( y==SMALLEST_INT64 && r>0.0 ) return -1; | 
|  | return +1; | 
|  | } | 
|  | s = (double)i; | 
|  | if( s<r ) return -1; | 
|  | if( s>r ) return +1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Compare the values contained by the two memory cells, returning | 
|  | ** negative, zero or positive if pMem1 is less than, equal to, or greater | 
|  | ** than pMem2. Sorting order is NULL's first, followed by numbers (integers | 
|  | ** and reals) sorted numerically, followed by text ordered by the collating | 
|  | ** sequence pColl and finally blob's ordered by memcmp(). | 
|  | ** | 
|  | ** Two NULL values are considered equal by this function. | 
|  | */ | 
|  | int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ | 
|  | int f1, f2; | 
|  | int combined_flags; | 
|  |  | 
|  | f1 = pMem1->flags; | 
|  | f2 = pMem2->flags; | 
|  | combined_flags = f1|f2; | 
|  | assert( (combined_flags & MEM_RowSet)==0 ); | 
|  |  | 
|  | /* If one value is NULL, it is less than the other. If both values | 
|  | ** are NULL, return 0. | 
|  | */ | 
|  | if( combined_flags&MEM_Null ){ | 
|  | return (f2&MEM_Null) - (f1&MEM_Null); | 
|  | } | 
|  |  | 
|  | /* At least one of the two values is a number | 
|  | */ | 
|  | if( combined_flags&(MEM_Int|MEM_Real) ){ | 
|  | if( (f1 & f2 & MEM_Int)!=0 ){ | 
|  | if( pMem1->u.i < pMem2->u.i ) return -1; | 
|  | if( pMem1->u.i > pMem2->u.i ) return +1; | 
|  | return 0; | 
|  | } | 
|  | if( (f1 & f2 & MEM_Real)!=0 ){ | 
|  | if( pMem1->u.r < pMem2->u.r ) return -1; | 
|  | if( pMem1->u.r > pMem2->u.r ) return +1; | 
|  | return 0; | 
|  | } | 
|  | if( (f1&MEM_Int)!=0 ){ | 
|  | if( (f2&MEM_Real)!=0 ){ | 
|  | return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); | 
|  | }else{ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if( (f1&MEM_Real)!=0 ){ | 
|  | if( (f2&MEM_Int)!=0 ){ | 
|  | return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); | 
|  | }else{ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return +1; | 
|  | } | 
|  |  | 
|  | /* If one value is a string and the other is a blob, the string is less. | 
|  | ** If both are strings, compare using the collating functions. | 
|  | */ | 
|  | if( combined_flags&MEM_Str ){ | 
|  | if( (f1 & MEM_Str)==0 ){ | 
|  | return 1; | 
|  | } | 
|  | if( (f2 & MEM_Str)==0 ){ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); | 
|  | assert( pMem1->enc==SQLITE_UTF8 || | 
|  | pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); | 
|  |  | 
|  | /* The collation sequence must be defined at this point, even if | 
|  | ** the user deletes the collation sequence after the vdbe program is | 
|  | ** compiled (this was not always the case). | 
|  | */ | 
|  | assert( !pColl || pColl->xCmp ); | 
|  |  | 
|  | if( pColl ){ | 
|  | return vdbeCompareMemString(pMem1, pMem2, pColl, 0); | 
|  | } | 
|  | /* If a NULL pointer was passed as the collate function, fall through | 
|  | ** to the blob case and use memcmp().  */ | 
|  | } | 
|  |  | 
|  | /* Both values must be blobs.  Compare using memcmp().  */ | 
|  | return sqlite3BlobCompare(pMem1, pMem2); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** The first argument passed to this function is a serial-type that | 
|  | ** corresponds to an integer - all values between 1 and 9 inclusive | 
|  | ** except 7. The second points to a buffer containing an integer value | 
|  | ** serialized according to serial_type. This function deserializes | 
|  | ** and returns the value. | 
|  | */ | 
|  | static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ | 
|  | u32 y; | 
|  | assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); | 
|  | switch( serial_type ){ | 
|  | case 0: | 
|  | case 1: | 
|  | testcase( aKey[0]&0x80 ); | 
|  | return ONE_BYTE_INT(aKey); | 
|  | case 2: | 
|  | testcase( aKey[0]&0x80 ); | 
|  | return TWO_BYTE_INT(aKey); | 
|  | case 3: | 
|  | testcase( aKey[0]&0x80 ); | 
|  | return THREE_BYTE_INT(aKey); | 
|  | case 4: { | 
|  | testcase( aKey[0]&0x80 ); | 
|  | y = FOUR_BYTE_UINT(aKey); | 
|  | return (i64)*(int*)&y; | 
|  | } | 
|  | case 5: { | 
|  | testcase( aKey[0]&0x80 ); | 
|  | return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); | 
|  | } | 
|  | case 6: { | 
|  | u64 x = FOUR_BYTE_UINT(aKey); | 
|  | testcase( aKey[0]&0x80 ); | 
|  | x = (x<<32) | FOUR_BYTE_UINT(aKey+4); | 
|  | return (i64)*(i64*)&x; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (serial_type - 8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This function compares the two table rows or index records | 
|  | ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero | 
|  | ** or positive integer if key1 is less than, equal to or | 
|  | ** greater than key2.  The {nKey1, pKey1} key must be a blob | 
|  | ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2 | 
|  | ** key must be a parsed key such as obtained from | 
|  | ** sqlite3VdbeParseRecord. | 
|  | ** | 
|  | ** If argument bSkip is non-zero, it is assumed that the caller has already | 
|  | ** determined that the first fields of the keys are equal. | 
|  | ** | 
|  | ** Key1 and Key2 do not have to contain the same number of fields. If all | 
|  | ** fields that appear in both keys are equal, then pPKey2->default_rc is | 
|  | ** returned. | 
|  | ** | 
|  | ** If database corruption is discovered, set pPKey2->errCode to | 
|  | ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, | 
|  | ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the | 
|  | ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). | 
|  | */ | 
|  | int sqlite3VdbeRecordCompareWithSkip( | 
|  | int nKey1, const void *pKey1,   /* Left key */ | 
|  | UnpackedRecord *pPKey2,         /* Right key */ | 
|  | int bSkip                       /* If true, skip the first field */ | 
|  | ){ | 
|  | u32 d1;                         /* Offset into aKey[] of next data element */ | 
|  | int i;                          /* Index of next field to compare */ | 
|  | u32 szHdr1;                     /* Size of record header in bytes */ | 
|  | u32 idx1;                       /* Offset of first type in header */ | 
|  | int rc = 0;                     /* Return value */ | 
|  | Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */ | 
|  | KeyInfo *pKeyInfo = pPKey2->pKeyInfo; | 
|  | const unsigned char *aKey1 = (const unsigned char *)pKey1; | 
|  | Mem mem1; | 
|  |  | 
|  | /* If bSkip is true, then the caller has already determined that the first | 
|  | ** two elements in the keys are equal. Fix the various stack variables so | 
|  | ** that this routine begins comparing at the second field. */ | 
|  | if( bSkip ){ | 
|  | u32 s1; | 
|  | idx1 = 1 + getVarint32(&aKey1[1], s1); | 
|  | szHdr1 = aKey1[0]; | 
|  | d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); | 
|  | i = 1; | 
|  | pRhs++; | 
|  | }else{ | 
|  | idx1 = getVarint32(aKey1, szHdr1); | 
|  | d1 = szHdr1; | 
|  | if( d1>(unsigned)nKey1 ){ | 
|  | pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
|  | return 0;  /* Corruption */ | 
|  | } | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ | 
|  | assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField | 
|  | || CORRUPT_DB ); | 
|  | assert( pPKey2->pKeyInfo->aSortOrder!=0 ); | 
|  | assert( pPKey2->pKeyInfo->nKeyField>0 ); | 
|  | assert( idx1<=szHdr1 || CORRUPT_DB ); | 
|  | do{ | 
|  | u32 serial_type; | 
|  |  | 
|  | /* RHS is an integer */ | 
|  | if( pRhs->flags & MEM_Int ){ | 
|  | serial_type = aKey1[idx1]; | 
|  | testcase( serial_type==12 ); | 
|  | if( serial_type>=10 ){ | 
|  | rc = +1; | 
|  | }else if( serial_type==0 ){ | 
|  | rc = -1; | 
|  | }else if( serial_type==7 ){ | 
|  | sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); | 
|  | rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); | 
|  | }else{ | 
|  | i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); | 
|  | i64 rhs = pRhs->u.i; | 
|  | if( lhs<rhs ){ | 
|  | rc = -1; | 
|  | }else if( lhs>rhs ){ | 
|  | rc = +1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RHS is real */ | 
|  | else if( pRhs->flags & MEM_Real ){ | 
|  | serial_type = aKey1[idx1]; | 
|  | if( serial_type>=10 ){ | 
|  | /* Serial types 12 or greater are strings and blobs (greater than | 
|  | ** numbers). Types 10 and 11 are currently "reserved for future | 
|  | ** use", so it doesn't really matter what the results of comparing | 
|  | ** them to numberic values are.  */ | 
|  | rc = +1; | 
|  | }else if( serial_type==0 ){ | 
|  | rc = -1; | 
|  | }else{ | 
|  | sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); | 
|  | if( serial_type==7 ){ | 
|  | if( mem1.u.r<pRhs->u.r ){ | 
|  | rc = -1; | 
|  | }else if( mem1.u.r>pRhs->u.r ){ | 
|  | rc = +1; | 
|  | } | 
|  | }else{ | 
|  | rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RHS is a string */ | 
|  | else if( pRhs->flags & MEM_Str ){ | 
|  | getVarint32(&aKey1[idx1], serial_type); | 
|  | testcase( serial_type==12 ); | 
|  | if( serial_type<12 ){ | 
|  | rc = -1; | 
|  | }else if( !(serial_type & 0x01) ){ | 
|  | rc = +1; | 
|  | }else{ | 
|  | mem1.n = (serial_type - 12) / 2; | 
|  | testcase( (d1+mem1.n)==(unsigned)nKey1 ); | 
|  | testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); | 
|  | if( (d1+mem1.n) > (unsigned)nKey1 ){ | 
|  | pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
|  | return 0;                /* Corruption */ | 
|  | }else if( pKeyInfo->aColl[i] ){ | 
|  | mem1.enc = pKeyInfo->enc; | 
|  | mem1.db = pKeyInfo->db; | 
|  | mem1.flags = MEM_Str; | 
|  | mem1.z = (char*)&aKey1[d1]; | 
|  | rc = vdbeCompareMemString( | 
|  | &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode | 
|  | ); | 
|  | }else{ | 
|  | int nCmp = MIN(mem1.n, pRhs->n); | 
|  | rc = memcmp(&aKey1[d1], pRhs->z, nCmp); | 
|  | if( rc==0 ) rc = mem1.n - pRhs->n; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RHS is a blob */ | 
|  | else if( pRhs->flags & MEM_Blob ){ | 
|  | assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); | 
|  | getVarint32(&aKey1[idx1], serial_type); | 
|  | testcase( serial_type==12 ); | 
|  | if( serial_type<12 || (serial_type & 0x01) ){ | 
|  | rc = -1; | 
|  | }else{ | 
|  | int nStr = (serial_type - 12) / 2; | 
|  | testcase( (d1+nStr)==(unsigned)nKey1 ); | 
|  | testcase( (d1+nStr+1)==(unsigned)nKey1 ); | 
|  | if( (d1+nStr) > (unsigned)nKey1 ){ | 
|  | pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
|  | return 0;                /* Corruption */ | 
|  | }else if( pRhs->flags & MEM_Zero ){ | 
|  | if( !isAllZero((const char*)&aKey1[d1],nStr) ){ | 
|  | rc = 1; | 
|  | }else{ | 
|  | rc = nStr - pRhs->u.nZero; | 
|  | } | 
|  | }else{ | 
|  | int nCmp = MIN(nStr, pRhs->n); | 
|  | rc = memcmp(&aKey1[d1], pRhs->z, nCmp); | 
|  | if( rc==0 ) rc = nStr - pRhs->n; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RHS is null */ | 
|  | else{ | 
|  | serial_type = aKey1[idx1]; | 
|  | rc = (serial_type!=0); | 
|  | } | 
|  |  | 
|  | if( rc!=0 ){ | 
|  | if( pKeyInfo->aSortOrder[i] ){ | 
|  | rc = -rc; | 
|  | } | 
|  | assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); | 
|  | assert( mem1.szMalloc==0 );  /* See comment below */ | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | i++; | 
|  | pRhs++; | 
|  | d1 += sqlite3VdbeSerialTypeLen(serial_type); | 
|  | idx1 += sqlite3VarintLen(serial_type); | 
|  | }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); | 
|  |  | 
|  | /* No memory allocation is ever used on mem1.  Prove this using | 
|  | ** the following assert().  If the assert() fails, it indicates a | 
|  | ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */ | 
|  | assert( mem1.szMalloc==0 ); | 
|  |  | 
|  | /* rc==0 here means that one or both of the keys ran out of fields and | 
|  | ** all the fields up to that point were equal. Return the default_rc | 
|  | ** value.  */ | 
|  | assert( CORRUPT_DB | 
|  | || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) | 
|  | || pKeyInfo->db->mallocFailed | 
|  | ); | 
|  | pPKey2->eqSeen = 1; | 
|  | return pPKey2->default_rc; | 
|  | } | 
|  | int sqlite3VdbeRecordCompare( | 
|  | int nKey1, const void *pKey1,   /* Left key */ | 
|  | UnpackedRecord *pPKey2          /* Right key */ | 
|  | ){ | 
|  | return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** This function is an optimized version of sqlite3VdbeRecordCompare() | 
|  | ** that (a) the first field of pPKey2 is an integer, and (b) the | 
|  | ** size-of-header varint at the start of (pKey1/nKey1) fits in a single | 
|  | ** byte (i.e. is less than 128). | 
|  | ** | 
|  | ** To avoid concerns about buffer overreads, this routine is only used | 
|  | ** on schemas where the maximum valid header size is 63 bytes or less. | 
|  | */ | 
|  | static int vdbeRecordCompareInt( | 
|  | int nKey1, const void *pKey1, /* Left key */ | 
|  | UnpackedRecord *pPKey2        /* Right key */ | 
|  | ){ | 
|  | const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; | 
|  | int serial_type = ((const u8*)pKey1)[1]; | 
|  | int res; | 
|  | u32 y; | 
|  | u64 x; | 
|  | i64 v; | 
|  | i64 lhs; | 
|  |  | 
|  | vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); | 
|  | assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); | 
|  | switch( serial_type ){ | 
|  | case 1: { /* 1-byte signed integer */ | 
|  | lhs = ONE_BYTE_INT(aKey); | 
|  | testcase( lhs<0 ); | 
|  | break; | 
|  | } | 
|  | case 2: { /* 2-byte signed integer */ | 
|  | lhs = TWO_BYTE_INT(aKey); | 
|  | testcase( lhs<0 ); | 
|  | break; | 
|  | } | 
|  | case 3: { /* 3-byte signed integer */ | 
|  | lhs = THREE_BYTE_INT(aKey); | 
|  | testcase( lhs<0 ); | 
|  | break; | 
|  | } | 
|  | case 4: { /* 4-byte signed integer */ | 
|  | y = FOUR_BYTE_UINT(aKey); | 
|  | lhs = (i64)*(int*)&y; | 
|  | testcase( lhs<0 ); | 
|  | break; | 
|  | } | 
|  | case 5: { /* 6-byte signed integer */ | 
|  | lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); | 
|  | testcase( lhs<0 ); | 
|  | break; | 
|  | } | 
|  | case 6: { /* 8-byte signed integer */ | 
|  | x = FOUR_BYTE_UINT(aKey); | 
|  | x = (x<<32) | FOUR_BYTE_UINT(aKey+4); | 
|  | lhs = *(i64*)&x; | 
|  | testcase( lhs<0 ); | 
|  | break; | 
|  | } | 
|  | case 8: | 
|  | lhs = 0; | 
|  | break; | 
|  | case 9: | 
|  | lhs = 1; | 
|  | break; | 
|  |  | 
|  | /* This case could be removed without changing the results of running | 
|  | ** this code. Including it causes gcc to generate a faster switch | 
|  | ** statement (since the range of switch targets now starts at zero and | 
|  | ** is contiguous) but does not cause any duplicate code to be generated | 
|  | ** (as gcc is clever enough to combine the two like cases). Other | 
|  | ** compilers might be similar.  */ | 
|  | case 0: case 7: | 
|  | return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); | 
|  |  | 
|  | default: | 
|  | return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); | 
|  | } | 
|  |  | 
|  | v = pPKey2->aMem[0].u.i; | 
|  | if( v>lhs ){ | 
|  | res = pPKey2->r1; | 
|  | }else if( v<lhs ){ | 
|  | res = pPKey2->r2; | 
|  | }else if( pPKey2->nField>1 ){ | 
|  | /* The first fields of the two keys are equal. Compare the trailing | 
|  | ** fields.  */ | 
|  | res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); | 
|  | }else{ | 
|  | /* The first fields of the two keys are equal and there are no trailing | 
|  | ** fields. Return pPKey2->default_rc in this case. */ | 
|  | res = pPKey2->default_rc; | 
|  | pPKey2->eqSeen = 1; | 
|  | } | 
|  |  | 
|  | assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This function is an optimized version of sqlite3VdbeRecordCompare() | 
|  | ** that (a) the first field of pPKey2 is a string, that (b) the first field | 
|  | ** uses the collation sequence BINARY and (c) that the size-of-header varint | 
|  | ** at the start of (pKey1/nKey1) fits in a single byte. | 
|  | */ | 
|  | static int vdbeRecordCompareString( | 
|  | int nKey1, const void *pKey1, /* Left key */ | 
|  | UnpackedRecord *pPKey2        /* Right key */ | 
|  | ){ | 
|  | const u8 *aKey1 = (const u8*)pKey1; | 
|  | int serial_type; | 
|  | int res; | 
|  |  | 
|  | assert( pPKey2->aMem[0].flags & MEM_Str ); | 
|  | vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); | 
|  | getVarint32(&aKey1[1], serial_type); | 
|  | if( serial_type<12 ){ | 
|  | res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */ | 
|  | }else if( !(serial_type & 0x01) ){ | 
|  | res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */ | 
|  | }else{ | 
|  | int nCmp; | 
|  | int nStr; | 
|  | int szHdr = aKey1[0]; | 
|  |  | 
|  | nStr = (serial_type-12) / 2; | 
|  | if( (szHdr + nStr) > nKey1 ){ | 
|  | pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; | 
|  | return 0;    /* Corruption */ | 
|  | } | 
|  | nCmp = MIN( pPKey2->aMem[0].n, nStr ); | 
|  | res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); | 
|  |  | 
|  | if( res==0 ){ | 
|  | res = nStr - pPKey2->aMem[0].n; | 
|  | if( res==0 ){ | 
|  | if( pPKey2->nField>1 ){ | 
|  | res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); | 
|  | }else{ | 
|  | res = pPKey2->default_rc; | 
|  | pPKey2->eqSeen = 1; | 
|  | } | 
|  | }else if( res>0 ){ | 
|  | res = pPKey2->r2; | 
|  | }else{ | 
|  | res = pPKey2->r1; | 
|  | } | 
|  | }else if( res>0 ){ | 
|  | res = pPKey2->r2; | 
|  | }else{ | 
|  | res = pPKey2->r1; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) | 
|  | || CORRUPT_DB | 
|  | || pPKey2->pKeyInfo->db->mallocFailed | 
|  | ); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function | 
|  | ** suitable for comparing serialized records to the unpacked record passed | 
|  | ** as the only argument. | 
|  | */ | 
|  | RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ | 
|  | /* varintRecordCompareInt() and varintRecordCompareString() both assume | 
|  | ** that the size-of-header varint that occurs at the start of each record | 
|  | ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() | 
|  | ** also assumes that it is safe to overread a buffer by at least the | 
|  | ** maximum possible legal header size plus 8 bytes. Because there is | 
|  | ** guaranteed to be at least 74 (but not 136) bytes of padding following each | 
|  | ** buffer passed to varintRecordCompareInt() this makes it convenient to | 
|  | ** limit the size of the header to 64 bytes in cases where the first field | 
|  | ** is an integer. | 
|  | ** | 
|  | ** The easiest way to enforce this limit is to consider only records with | 
|  | ** 13 fields or less. If the first field is an integer, the maximum legal | 
|  | ** header size is (12*5 + 1 + 1) bytes.  */ | 
|  | if( p->pKeyInfo->nAllField<=13 ){ | 
|  | int flags = p->aMem[0].flags; | 
|  | if( p->pKeyInfo->aSortOrder[0] ){ | 
|  | p->r1 = 1; | 
|  | p->r2 = -1; | 
|  | }else{ | 
|  | p->r1 = -1; | 
|  | p->r2 = 1; | 
|  | } | 
|  | if( (flags & MEM_Int) ){ | 
|  | return vdbeRecordCompareInt; | 
|  | } | 
|  | testcase( flags & MEM_Real ); | 
|  | testcase( flags & MEM_Null ); | 
|  | testcase( flags & MEM_Blob ); | 
|  | if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ | 
|  | assert( flags & MEM_Str ); | 
|  | return vdbeRecordCompareString; | 
|  | } | 
|  | } | 
|  |  | 
|  | return sqlite3VdbeRecordCompare; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** pCur points at an index entry created using the OP_MakeRecord opcode. | 
|  | ** Read the rowid (the last field in the record) and store it in *rowid. | 
|  | ** Return SQLITE_OK if everything works, or an error code otherwise. | 
|  | ** | 
|  | ** pCur might be pointing to text obtained from a corrupt database file. | 
|  | ** So the content cannot be trusted.  Do appropriate checks on the content. | 
|  | */ | 
|  | int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ | 
|  | i64 nCellKey = 0; | 
|  | int rc; | 
|  | u32 szHdr;        /* Size of the header */ | 
|  | u32 typeRowid;    /* Serial type of the rowid */ | 
|  | u32 lenRowid;     /* Size of the rowid */ | 
|  | Mem m, v; | 
|  |  | 
|  | /* Get the size of the index entry.  Only indices entries of less | 
|  | ** than 2GiB are support - anything large must be database corruption. | 
|  | ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so | 
|  | ** this code can safely assume that nCellKey is 32-bits | 
|  | */ | 
|  | assert( sqlite3BtreeCursorIsValid(pCur) ); | 
|  | nCellKey = sqlite3BtreePayloadSize(pCur); | 
|  | assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); | 
|  |  | 
|  | /* Read in the complete content of the index entry */ | 
|  | sqlite3VdbeMemInit(&m, db, 0); | 
|  | rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); | 
|  | if( rc ){ | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* The index entry must begin with a header size */ | 
|  | (void)getVarint32((u8*)m.z, szHdr); | 
|  | testcase( szHdr==3 ); | 
|  | testcase( szHdr==m.n ); | 
|  | if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ | 
|  | goto idx_rowid_corruption; | 
|  | } | 
|  |  | 
|  | /* The last field of the index should be an integer - the ROWID. | 
|  | ** Verify that the last entry really is an integer. */ | 
|  | (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); | 
|  | testcase( typeRowid==1 ); | 
|  | testcase( typeRowid==2 ); | 
|  | testcase( typeRowid==3 ); | 
|  | testcase( typeRowid==4 ); | 
|  | testcase( typeRowid==5 ); | 
|  | testcase( typeRowid==6 ); | 
|  | testcase( typeRowid==8 ); | 
|  | testcase( typeRowid==9 ); | 
|  | if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ | 
|  | goto idx_rowid_corruption; | 
|  | } | 
|  | lenRowid = sqlite3SmallTypeSizes[typeRowid]; | 
|  | testcase( (u32)m.n==szHdr+lenRowid ); | 
|  | if( unlikely((u32)m.n<szHdr+lenRowid) ){ | 
|  | goto idx_rowid_corruption; | 
|  | } | 
|  |  | 
|  | /* Fetch the integer off the end of the index record */ | 
|  | sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); | 
|  | *rowid = v.u.i; | 
|  | sqlite3VdbeMemRelease(&m); | 
|  | return SQLITE_OK; | 
|  |  | 
|  | /* Jump here if database corruption is detected after m has been | 
|  | ** allocated.  Free the m object and return SQLITE_CORRUPT. */ | 
|  | idx_rowid_corruption: | 
|  | testcase( m.szMalloc!=0 ); | 
|  | sqlite3VdbeMemRelease(&m); | 
|  | return SQLITE_CORRUPT_BKPT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Compare the key of the index entry that cursor pC is pointing to against | 
|  | ** the key string in pUnpacked.  Write into *pRes a number | 
|  | ** that is negative, zero, or positive if pC is less than, equal to, | 
|  | ** or greater than pUnpacked.  Return SQLITE_OK on success. | 
|  | ** | 
|  | ** pUnpacked is either created without a rowid or is truncated so that it | 
|  | ** omits the rowid at the end.  The rowid at the end of the index entry | 
|  | ** is ignored as well.  Hence, this routine only compares the prefixes | 
|  | ** of the keys prior to the final rowid, not the entire key. | 
|  | */ | 
|  | int sqlite3VdbeIdxKeyCompare( | 
|  | sqlite3 *db,                     /* Database connection */ | 
|  | VdbeCursor *pC,                  /* The cursor to compare against */ | 
|  | UnpackedRecord *pUnpacked,       /* Unpacked version of key */ | 
|  | int *res                         /* Write the comparison result here */ | 
|  | ){ | 
|  | i64 nCellKey = 0; | 
|  | int rc; | 
|  | BtCursor *pCur; | 
|  | Mem m; | 
|  |  | 
|  | assert( pC->eCurType==CURTYPE_BTREE ); | 
|  | pCur = pC->uc.pCursor; | 
|  | assert( sqlite3BtreeCursorIsValid(pCur) ); | 
|  | nCellKey = sqlite3BtreePayloadSize(pCur); | 
|  | /* nCellKey will always be between 0 and 0xffffffff because of the way | 
|  | ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ | 
|  | if( nCellKey<=0 || nCellKey>0x7fffffff ){ | 
|  | *res = 0; | 
|  | return SQLITE_CORRUPT_BKPT; | 
|  | } | 
|  | sqlite3VdbeMemInit(&m, db, 0); | 
|  | rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); | 
|  | if( rc ){ | 
|  | return rc; | 
|  | } | 
|  | *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); | 
|  | sqlite3VdbeMemRelease(&m); | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This routine sets the value to be returned by subsequent calls to | 
|  | ** sqlite3_changes() on the database handle 'db'. | 
|  | */ | 
|  | void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ | 
|  | assert( sqlite3_mutex_held(db->mutex) ); | 
|  | db->nChange = nChange; | 
|  | db->nTotalChange += nChange; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Set a flag in the vdbe to update the change counter when it is finalised | 
|  | ** or reset. | 
|  | */ | 
|  | void sqlite3VdbeCountChanges(Vdbe *v){ | 
|  | v->changeCntOn = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Mark every prepared statement associated with a database connection | 
|  | ** as expired. | 
|  | ** | 
|  | ** An expired statement means that recompilation of the statement is | 
|  | ** recommend.  Statements expire when things happen that make their | 
|  | ** programs obsolete.  Removing user-defined functions or collating | 
|  | ** sequences, or changing an authorization function are the types of | 
|  | ** things that make prepared statements obsolete. | 
|  | */ | 
|  | void sqlite3ExpirePreparedStatements(sqlite3 *db){ | 
|  | Vdbe *p; | 
|  | for(p = db->pVdbe; p; p=p->pNext){ | 
|  | p->expired = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the database associated with the Vdbe. | 
|  | */ | 
|  | sqlite3 *sqlite3VdbeDb(Vdbe *v){ | 
|  | return v->db; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the SQLITE_PREPARE flags for a Vdbe. | 
|  | */ | 
|  | u8 sqlite3VdbePrepareFlags(Vdbe *v){ | 
|  | return v->prepFlags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return a pointer to an sqlite3_value structure containing the value bound | 
|  | ** parameter iVar of VM v. Except, if the value is an SQL NULL, return | 
|  | ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* | 
|  | ** constants) to the value before returning it. | 
|  | ** | 
|  | ** The returned value must be freed by the caller using sqlite3ValueFree(). | 
|  | */ | 
|  | sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ | 
|  | assert( iVar>0 ); | 
|  | if( v ){ | 
|  | Mem *pMem = &v->aVar[iVar-1]; | 
|  | assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); | 
|  | if( 0==(pMem->flags & MEM_Null) ){ | 
|  | sqlite3_value *pRet = sqlite3ValueNew(v->db); | 
|  | if( pRet ){ | 
|  | sqlite3VdbeMemCopy((Mem *)pRet, pMem); | 
|  | sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); | 
|  | } | 
|  | return pRet; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Configure SQL variable iVar so that binding a new value to it signals | 
|  | ** to sqlite3_reoptimize() that re-preparing the statement may result | 
|  | ** in a better query plan. | 
|  | */ | 
|  | void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ | 
|  | assert( iVar>0 ); | 
|  | assert( (v->db->flags & SQLITE_EnableQPSG)==0 ); | 
|  | if( iVar>=32 ){ | 
|  | v->expmask |= 0x80000000; | 
|  | }else{ | 
|  | v->expmask |= ((u32)1 << (iVar-1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Cause a function to throw an error if it was call from OP_PureFunc | 
|  | ** rather than OP_Function. | 
|  | ** | 
|  | ** OP_PureFunc means that the function must be deterministic, and should | 
|  | ** throw an error if it is given inputs that would make it non-deterministic. | 
|  | ** This routine is invoked by date/time functions that use non-deterministic | 
|  | ** features such as 'now'. | 
|  | */ | 
|  | int sqlite3NotPureFunc(sqlite3_context *pCtx){ | 
|  | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | 
|  | if( pCtx->pVdbe==0 ) return 1; | 
|  | #endif | 
|  | if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){ | 
|  | sqlite3_result_error(pCtx, | 
|  | "non-deterministic function in index expression or CHECK constraint", | 
|  | -1); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_VIRTUALTABLE | 
|  | /* | 
|  | ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored | 
|  | ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored | 
|  | ** in memory obtained from sqlite3DbMalloc). | 
|  | */ | 
|  | void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ | 
|  | if( pVtab->zErrMsg ){ | 
|  | sqlite3 *db = p->db; | 
|  | sqlite3DbFree(db, p->zErrMsg); | 
|  | p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); | 
|  | sqlite3_free(pVtab->zErrMsg); | 
|  | pVtab->zErrMsg = 0; | 
|  | } | 
|  | } | 
|  | #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK | 
|  |  | 
|  | /* | 
|  | ** If the second argument is not NULL, release any allocations associated | 
|  | ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord | 
|  | ** structure itself, using sqlite3DbFree(). | 
|  | ** | 
|  | ** This function is used to free UnpackedRecord structures allocated by | 
|  | ** the vdbeUnpackRecord() function found in vdbeapi.c. | 
|  | */ | 
|  | static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ | 
|  | if( p ){ | 
|  | int i; | 
|  | for(i=0; i<nField; i++){ | 
|  | Mem *pMem = &p->aMem[i]; | 
|  | if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); | 
|  | } | 
|  | sqlite3DbFreeNN(db, p); | 
|  | } | 
|  | } | 
|  | #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_PREUPDATE_HOOK | 
|  | /* | 
|  | ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, | 
|  | ** then cursor passed as the second argument should point to the row about | 
|  | ** to be update or deleted. If the application calls sqlite3_preupdate_old(), | 
|  | ** the required value will be read from the row the cursor points to. | 
|  | */ | 
|  | void sqlite3VdbePreUpdateHook( | 
|  | Vdbe *v,                        /* Vdbe pre-update hook is invoked by */ | 
|  | VdbeCursor *pCsr,               /* Cursor to grab old.* values from */ | 
|  | int op,                         /* SQLITE_INSERT, UPDATE or DELETE */ | 
|  | const char *zDb,                /* Database name */ | 
|  | Table *pTab,                    /* Modified table */ | 
|  | i64 iKey1,                      /* Initial key value */ | 
|  | int iReg                        /* Register for new.* record */ | 
|  | ){ | 
|  | sqlite3 *db = v->db; | 
|  | i64 iKey2; | 
|  | PreUpdate preupdate; | 
|  | const char *zTbl = pTab->zName; | 
|  | static const u8 fakeSortOrder = 0; | 
|  |  | 
|  | assert( db->pPreUpdate==0 ); | 
|  | memset(&preupdate, 0, sizeof(PreUpdate)); | 
|  | if( HasRowid(pTab)==0 ){ | 
|  | iKey1 = iKey2 = 0; | 
|  | preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); | 
|  | }else{ | 
|  | if( op==SQLITE_UPDATE ){ | 
|  | iKey2 = v->aMem[iReg].u.i; | 
|  | }else{ | 
|  | iKey2 = iKey1; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert( pCsr->nField==pTab->nCol | 
|  | || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) | 
|  | ); | 
|  |  | 
|  | preupdate.v = v; | 
|  | preupdate.pCsr = pCsr; | 
|  | preupdate.op = op; | 
|  | preupdate.iNewReg = iReg; | 
|  | preupdate.keyinfo.db = db; | 
|  | preupdate.keyinfo.enc = ENC(db); | 
|  | preupdate.keyinfo.nKeyField = pTab->nCol; | 
|  | preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; | 
|  | preupdate.iKey1 = iKey1; | 
|  | preupdate.iKey2 = iKey2; | 
|  | preupdate.pTab = pTab; | 
|  |  | 
|  | db->pPreUpdate = &preupdate; | 
|  | db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); | 
|  | db->pPreUpdate = 0; | 
|  | sqlite3DbFree(db, preupdate.aRecord); | 
|  | vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); | 
|  | vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); | 
|  | if( preupdate.aNew ){ | 
|  | int i; | 
|  | for(i=0; i<pCsr->nField; i++){ | 
|  | sqlite3VdbeMemRelease(&preupdate.aNew[i]); | 
|  | } | 
|  | sqlite3DbFreeNN(db, preupdate.aNew); | 
|  | } | 
|  | } | 
|  | #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |