blob: 832c2afcda60e08a34fca30b1f5854533093cd20 [file] [log] [blame]
// Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <errno.h>
#include <stdint.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <map>
#include <string>
#include <vector>
#include <base/files/file_util.h>
#include <base/files/file_path.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <gtest/gtest.h>
#include "update_engine/fake_clock.h"
#include "update_engine/fake_system_state.h"
#include "update_engine/prefs.h"
#include "update_engine/test_utils.h"
#include "update_engine/utils.h"
using std::map;
using std::string;
using std::vector;
namespace chromeos_update_engine {
class UtilsTest : public ::testing::Test { };
TEST(UtilsTest, CanParseECVersion) {
// Should be able to parse and valid key value line.
EXPECT_EQ("12345", utils::ParseECVersion("fw_version=12345"));
EXPECT_EQ("123456", utils::ParseECVersion(
"b=1231a fw_version=123456 a=fasd2"));
EXPECT_EQ("12345", utils::ParseECVersion("fw_version=12345"));
EXPECT_EQ("00VFA616", utils::ParseECVersion(
"vendor=\"sam\" fw_version=\"00VFA616\""));
// For invalid entries, should return the empty string.
EXPECT_EQ("", utils::ParseECVersion("b=1231a fw_version a=fasd2"));
}
TEST(UtilsTest, KernelDeviceOfBootDevice) {
EXPECT_EQ("", utils::KernelDeviceOfBootDevice(""));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("foo"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda0"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda1"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda2"));
EXPECT_EQ("/dev/sda2", utils::KernelDeviceOfBootDevice("/dev/sda3"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda4"));
EXPECT_EQ("/dev/sda4", utils::KernelDeviceOfBootDevice("/dev/sda5"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda6"));
EXPECT_EQ("/dev/sda6", utils::KernelDeviceOfBootDevice("/dev/sda7"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda8"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/sda9"));
EXPECT_EQ("/dev/mmcblk0p2",
utils::KernelDeviceOfBootDevice("/dev/mmcblk0p3"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/mmcblk0p4"));
EXPECT_EQ("/dev/ubi2", utils::KernelDeviceOfBootDevice("/dev/ubi3"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/ubi4"));
EXPECT_EQ("/dev/mtdblock2",
utils::KernelDeviceOfBootDevice("/dev/ubiblock3_0"));
EXPECT_EQ("/dev/mtdblock4",
utils::KernelDeviceOfBootDevice("/dev/ubiblock5_0"));
EXPECT_EQ("/dev/mtdblock6",
utils::KernelDeviceOfBootDevice("/dev/ubiblock7_0"));
EXPECT_EQ("", utils::KernelDeviceOfBootDevice("/dev/ubiblock4_0"));
}
TEST(UtilsTest, NormalizePathTest) {
EXPECT_EQ("", utils::NormalizePath("", false));
EXPECT_EQ("", utils::NormalizePath("", true));
EXPECT_EQ("/", utils::NormalizePath("/", false));
EXPECT_EQ("", utils::NormalizePath("/", true));
EXPECT_EQ("/", utils::NormalizePath("//", false));
EXPECT_EQ("", utils::NormalizePath("//", true));
EXPECT_EQ("foo", utils::NormalizePath("foo", false));
EXPECT_EQ("foo", utils::NormalizePath("foo", true));
EXPECT_EQ("/foo/", utils::NormalizePath("/foo//", false));
EXPECT_EQ("/foo", utils::NormalizePath("/foo//", true));
EXPECT_EQ("bar/baz/foo/adlr", utils::NormalizePath("bar/baz//foo/adlr",
false));
EXPECT_EQ("bar/baz/foo/adlr", utils::NormalizePath("bar/baz//foo/adlr",
true));
EXPECT_EQ("/bar/baz/foo/adlr/", utils::NormalizePath("/bar/baz//foo/adlr/",
false));
EXPECT_EQ("/bar/baz/foo/adlr", utils::NormalizePath("/bar/baz//foo/adlr/",
true));
EXPECT_EQ("\\\\", utils::NormalizePath("\\\\", false));
EXPECT_EQ("\\\\", utils::NormalizePath("\\\\", true));
EXPECT_EQ("\\:/;$PATH\n\\",
utils::NormalizePath("\\://;$PATH\n\\", false));
EXPECT_EQ("\\:/;$PATH\n\\",
utils::NormalizePath("\\://;$PATH\n\\", true));
EXPECT_EQ("/spaces s/ ok/s / / /",
utils::NormalizePath("/spaces s/ ok/s / / /", false));
EXPECT_EQ("/spaces s/ ok/s / / ",
utils::NormalizePath("/spaces s/ ok/s / / /", true));
}
TEST(UtilsTest, ReadFileFailure) {
vector<char> empty;
EXPECT_FALSE(utils::ReadFile("/this/doesn't/exist", &empty));
}
TEST(UtilsTest, ReadFileChunk) {
base::FilePath file;
EXPECT_TRUE(base::CreateTemporaryFile(&file));
ScopedPathUnlinker unlinker(file.value());
vector<char> data;
const size_t kSize = 1024 * 1024;
for (size_t i = 0; i < kSize; i++) {
data.push_back(i % 255);
}
EXPECT_TRUE(utils::WriteFile(file.value().c_str(), &data[0], data.size()));
vector<char> in_data;
EXPECT_TRUE(utils::ReadFileChunk(file.value().c_str(), kSize, 10, &in_data));
EXPECT_TRUE(in_data.empty());
EXPECT_TRUE(utils::ReadFileChunk(file.value().c_str(), 0, -1, &in_data));
EXPECT_TRUE(data == in_data);
in_data.clear();
EXPECT_TRUE(utils::ReadFileChunk(file.value().c_str(), 10, 20, &in_data));
EXPECT_TRUE(vector<char>(data.begin() + 10, data.begin() + 10 + 20) ==
in_data);
}
TEST(UtilsTest, ErrnoNumberAsStringTest) {
EXPECT_EQ("No such file or directory", utils::ErrnoNumberAsString(ENOENT));
}
TEST(UtilsTest, StringHasSuffixTest) {
EXPECT_TRUE(utils::StringHasSuffix("foo", "foo"));
EXPECT_TRUE(utils::StringHasSuffix("foo", "o"));
EXPECT_TRUE(utils::StringHasSuffix("", ""));
EXPECT_TRUE(utils::StringHasSuffix("abcabc", "abc"));
EXPECT_TRUE(utils::StringHasSuffix("adlrwashere", "ere"));
EXPECT_TRUE(utils::StringHasSuffix("abcdefgh", "gh"));
EXPECT_TRUE(utils::StringHasSuffix("abcdefgh", ""));
EXPECT_FALSE(utils::StringHasSuffix("foo", "afoo"));
EXPECT_FALSE(utils::StringHasSuffix("", "x"));
EXPECT_FALSE(utils::StringHasSuffix("abcdefgh", "fg"));
EXPECT_FALSE(utils::StringHasSuffix("abcdefgh", "ab"));
}
TEST(UtilsTest, StringHasPrefixTest) {
EXPECT_TRUE(utils::StringHasPrefix("foo", "foo"));
EXPECT_TRUE(utils::StringHasPrefix("foo", "f"));
EXPECT_TRUE(utils::StringHasPrefix("", ""));
EXPECT_TRUE(utils::StringHasPrefix("abcabc", "abc"));
EXPECT_TRUE(utils::StringHasPrefix("adlrwashere", "adl"));
EXPECT_TRUE(utils::StringHasPrefix("abcdefgh", "ab"));
EXPECT_TRUE(utils::StringHasPrefix("abcdefgh", ""));
EXPECT_FALSE(utils::StringHasPrefix("foo", "fooa"));
EXPECT_FALSE(utils::StringHasPrefix("", "x"));
EXPECT_FALSE(utils::StringHasPrefix("abcdefgh", "bc"));
EXPECT_FALSE(utils::StringHasPrefix("abcdefgh", "gh"));
}
TEST(UtilsTest, RecursiveUnlinkDirTest) {
string first_dir_name;
ASSERT_TRUE(utils::MakeTempDirectory("RecursiveUnlinkDirTest-a-XXXXXX",
&first_dir_name));
ASSERT_EQ(0, Chmod(first_dir_name, 0755));
string second_dir_name;
ASSERT_TRUE(utils::MakeTempDirectory("RecursiveUnlinkDirTest-b-XXXXXX",
&second_dir_name));
ASSERT_EQ(0, Chmod(second_dir_name, 0755));
EXPECT_EQ(0, Symlink(string("../") + first_dir_name,
second_dir_name + "/link"));
EXPECT_EQ(0, System(string("echo hi > ") + second_dir_name + "/file"));
EXPECT_EQ(0, Mkdir(second_dir_name + "/dir", 0755));
EXPECT_EQ(0, System(string("echo ok > ") + second_dir_name + "/dir/subfile"));
EXPECT_TRUE(utils::RecursiveUnlinkDir(second_dir_name));
EXPECT_TRUE(utils::FileExists(first_dir_name.c_str()));
EXPECT_EQ(0, System(string("rm -rf ") + first_dir_name));
EXPECT_FALSE(utils::FileExists(second_dir_name.c_str()));
EXPECT_TRUE(utils::RecursiveUnlinkDir("/something/that/doesnt/exist"));
}
TEST(UtilsTest, IsSymlinkTest) {
string temp_dir;
EXPECT_TRUE(utils::MakeTempDirectory("symlink-test.XXXXXX", &temp_dir));
string temp_file = temp_dir + "/temp-file";
EXPECT_TRUE(utils::WriteFile(temp_file.c_str(), "", 0));
string temp_symlink = temp_dir + "/temp-symlink";
EXPECT_EQ(0, symlink(temp_file.c_str(), temp_symlink.c_str()));
EXPECT_FALSE(utils::IsSymlink(temp_dir.c_str()));
EXPECT_FALSE(utils::IsSymlink(temp_file.c_str()));
EXPECT_TRUE(utils::IsSymlink(temp_symlink.c_str()));
EXPECT_FALSE(utils::IsSymlink("/non/existent/path"));
EXPECT_TRUE(utils::RecursiveUnlinkDir(temp_dir));
}
TEST(UtilsTest, IsDirTest) {
string temp_dir;
EXPECT_TRUE(utils::MakeTempDirectory("isdir-test.XXXXXX", &temp_dir));
string temp_file = temp_dir + "/temp-file";
EXPECT_TRUE(utils::WriteFile(temp_file.c_str(), "", 0));
string temp_symlink = temp_dir + "/temp-symlink";
EXPECT_EQ(0, symlink(temp_dir.c_str(), temp_symlink.c_str()));
EXPECT_TRUE(utils::IsDir(temp_dir.c_str()));
EXPECT_FALSE(utils::IsDir(temp_file.c_str()));
EXPECT_FALSE(utils::IsDir(temp_symlink.c_str()));
EXPECT_FALSE(utils::IsDir("/non/existent/path"));
ASSERT_TRUE(utils::RecursiveUnlinkDir(temp_dir));
}
TEST(UtilsTest, GetDiskNameTest) {
EXPECT_EQ("/dev/sda", utils::GetDiskName("/dev/sda3"));
EXPECT_EQ("/dev/sdp", utils::GetDiskName("/dev/sdp1234"));
EXPECT_EQ("/dev/mmcblk0", utils::GetDiskName("/dev/mmcblk0p3"));
EXPECT_EQ("", utils::GetDiskName("/dev/mmcblk0p"));
EXPECT_EQ("", utils::GetDiskName("/dev/sda"));
EXPECT_EQ("/dev/ubiblock", utils::GetDiskName("/dev/ubiblock3_2"));
EXPECT_EQ("", utils::GetDiskName("/dev/foo/bar"));
EXPECT_EQ("", utils::GetDiskName("/"));
EXPECT_EQ("", utils::GetDiskName(""));
}
TEST(UtilsTest, SysfsBlockDeviceTest) {
EXPECT_EQ("/sys/block/sda", utils::SysfsBlockDevice("/dev/sda"));
EXPECT_EQ("", utils::SysfsBlockDevice("/foo/sda"));
EXPECT_EQ("", utils::SysfsBlockDevice("/dev/foo/bar"));
EXPECT_EQ("", utils::SysfsBlockDevice("/"));
EXPECT_EQ("", utils::SysfsBlockDevice("./"));
EXPECT_EQ("", utils::SysfsBlockDevice(""));
}
TEST(UtilsTest, IsRemovableDeviceTest) {
EXPECT_FALSE(utils::IsRemovableDevice(""));
EXPECT_FALSE(utils::IsRemovableDevice("/dev/non-existent-device"));
}
TEST(UtilsTest, GetPartitionNumberTest) {
EXPECT_EQ(3, utils::GetPartitionNumber("/dev/sda3"));
EXPECT_EQ(3, utils::GetPartitionNumber("/dev/sdz3"));
EXPECT_EQ(123, utils::GetPartitionNumber("/dev/sda123"));
EXPECT_EQ(2, utils::GetPartitionNumber("/dev/mmcblk0p2"));
EXPECT_EQ(0, utils::GetPartitionNumber("/dev/mmcblk0p"));
EXPECT_EQ(3, utils::GetPartitionNumber("/dev/ubiblock3_2"));
EXPECT_EQ(0, utils::GetPartitionNumber(""));
EXPECT_EQ(0, utils::GetPartitionNumber("/"));
EXPECT_EQ(0, utils::GetPartitionNumber("/dev/"));
EXPECT_EQ(0, utils::GetPartitionNumber("/dev/sda"));
EXPECT_EQ(10, utils::GetPartitionNumber("/dev/loop10"));
EXPECT_EQ(11, utils::GetPartitionNumber("/dev/loop28p11"));
EXPECT_EQ(10, utils::GetPartitionNumber("/dev/loop10_0"));
EXPECT_EQ(11, utils::GetPartitionNumber("/dev/loop28p11_0"));
}
TEST(UtilsTest, MakePartitionNameTest) {
EXPECT_EQ("/dev/sda4", utils::MakePartitionName("/dev/sda", 4));
EXPECT_EQ("/dev/sda123", utils::MakePartitionName("/dev/sda", 123));
EXPECT_EQ("/dev/mmcblk2", utils::MakePartitionName("/dev/mmcblk", 2));
EXPECT_EQ("/dev/mmcblk0p2", utils::MakePartitionName("/dev/mmcblk0", 2));
EXPECT_EQ("/dev/loop8", utils::MakePartitionName("/dev/loop", 8));
EXPECT_EQ("/dev/loop12p2", utils::MakePartitionName("/dev/loop12", 2));
EXPECT_EQ("/dev/ubiblock3_0", utils::MakePartitionName("/dev/ubiblock", 3));
}
TEST(UtilsTest, CompareCpuSharesTest) {
EXPECT_LT(utils::CompareCpuShares(utils::kCpuSharesLow,
utils::kCpuSharesNormal), 0);
EXPECT_GT(utils::CompareCpuShares(utils::kCpuSharesNormal,
utils::kCpuSharesLow), 0);
EXPECT_EQ(utils::CompareCpuShares(utils::kCpuSharesNormal,
utils::kCpuSharesNormal), 0);
EXPECT_GT(utils::CompareCpuShares(utils::kCpuSharesHigh,
utils::kCpuSharesNormal), 0);
}
TEST(UtilsTest, FuzzIntTest) {
static const unsigned int kRanges[] = { 0, 1, 2, 20 };
for (size_t r = 0; r < arraysize(kRanges); ++r) {
unsigned int range = kRanges[r];
const int kValue = 50;
for (int tries = 0; tries < 100; ++tries) {
int value = utils::FuzzInt(kValue, range);
EXPECT_GE(value, kValue - range / 2);
EXPECT_LE(value, kValue + range - range / 2);
}
}
}
TEST(UtilsTest, ApplyMapTest) {
int initial_values[] = {1, 2, 3, 4, 6};
vector<int> collection(&initial_values[0],
initial_values + arraysize(initial_values));
EXPECT_EQ(arraysize(initial_values), collection.size());
int expected_values[] = {1, 2, 5, 4, 8};
map<int, int> value_map;
value_map[3] = 5;
value_map[6] = 8;
value_map[5] = 10;
utils::ApplyMap(&collection, value_map);
size_t index = 0;
for (vector<int>::iterator it = collection.begin(), e = collection.end();
it != e; ++it) {
EXPECT_EQ(expected_values[index++], *it);
}
}
TEST(UtilsTest, RunAsRootGetFilesystemSizeTest) {
string img;
EXPECT_TRUE(utils::MakeTempFile("img.XXXXXX", &img, nullptr));
ScopedPathUnlinker img_unlinker(img);
CreateExtImageAtPath(img, nullptr);
// Extend the "partition" holding the file system from 10MiB to 20MiB.
EXPECT_EQ(0, System(base::StringPrintf(
"dd if=/dev/zero of=%s seek=20971519 bs=1 count=1",
img.c_str())));
EXPECT_EQ(20 * 1024 * 1024, utils::FileSize(img));
int block_count = 0;
int block_size = 0;
EXPECT_TRUE(utils::GetFilesystemSize(img, &block_count, &block_size));
EXPECT_EQ(4096, block_size);
EXPECT_EQ(10 * 1024 * 1024 / 4096, block_count);
}
TEST(UtilsTest, GetInstallDevTest) {
string boot_dev = "/dev/sda5";
string install_dev;
EXPECT_TRUE(utils::GetInstallDev(boot_dev, &install_dev));
EXPECT_EQ(install_dev, "/dev/sda3");
boot_dev = "/dev/sda3";
EXPECT_TRUE(utils::GetInstallDev(boot_dev, &install_dev));
EXPECT_EQ(install_dev, "/dev/sda5");
boot_dev = "/dev/sda12";
EXPECT_FALSE(utils::GetInstallDev(boot_dev, &install_dev));
boot_dev = "/dev/ubiblock3_0";
EXPECT_TRUE(utils::GetInstallDev(boot_dev, &install_dev));
EXPECT_EQ(install_dev, "/dev/ubiblock5_0");
boot_dev = "/dev/ubiblock5_0";
EXPECT_TRUE(utils::GetInstallDev(boot_dev, &install_dev));
EXPECT_EQ(install_dev, "/dev/ubiblock3_0");
boot_dev = "/dev/ubiblock12_0";
EXPECT_FALSE(utils::GetInstallDev(boot_dev, &install_dev));
}
namespace {
void GetFileFormatTester(const string& expected,
const vector<uint8_t>& contents) {
ScopedTempFile file;
ASSERT_TRUE(utils::WriteFile(file.GetPath().c_str(),
reinterpret_cast<const char*>(contents.data()),
contents.size()));
EXPECT_EQ(expected, utils::GetFileFormat(file.GetPath()));
}
}
TEST(UtilsTest, GetFileFormatTest) {
EXPECT_EQ("File not found.", utils::GetFileFormat("/path/to/nowhere"));
GetFileFormatTester("data", vector<uint8_t>{1, 2, 3, 4, 5, 6, 7, 8});
GetFileFormatTester("ELF", vector<uint8_t>{0x7f, 0x45, 0x4c, 0x46});
// Real tests from cros_installer on different boards.
// ELF 32-bit LSB executable, Intel 80386
GetFileFormatTester(
"ELF 32-bit little-endian x86",
vector<uint8_t>{0x7f, 0x45, 0x4c, 0x46, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00,
0x90, 0x83, 0x04, 0x08, 0x34, 0x00, 0x00, 0x00});
// ELF 32-bit LSB executable, MIPS
GetFileFormatTester(
"ELF 32-bit little-endian mips",
vector<uint8_t>{0x7f, 0x45, 0x4c, 0x46, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x03, 0x00, 0x08, 0x00, 0x01, 0x00, 0x00, 0x00,
0xc0, 0x12, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00});
// ELF 32-bit LSB executable, ARM
GetFileFormatTester(
"ELF 32-bit little-endian arm",
vector<uint8_t>{0x7f, 0x45, 0x4c, 0x46, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x28, 0x00, 0x01, 0x00, 0x00, 0x00,
0x85, 0x8b, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00});
// ELF 64-bit LSB executable, x86-64
GetFileFormatTester(
"ELF 64-bit little-endian x86-64",
vector<uint8_t>{0x7f, 0x45, 0x4c, 0x46, 0x02, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x02, 0x00, 0x3e, 0x00, 0x01, 0x00, 0x00, 0x00,
0xb0, 0x04, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00});
}
namespace {
gboolean TerminateScheduleCrashReporterUploadTest(void* arg) {
GMainLoop* loop = reinterpret_cast<GMainLoop*>(arg);
g_main_loop_quit(loop);
return FALSE; // Don't call this callback again
}
} // namespace
TEST(UtilsTest, ScheduleCrashReporterUploadTest) {
// Not much to test. At least this tests for memory leaks, crashes,
// log errors.
GMainLoop* loop = g_main_loop_new(g_main_context_default(), FALSE);
utils::ScheduleCrashReporterUpload();
g_timeout_add_seconds(1, &TerminateScheduleCrashReporterUploadTest, loop);
g_main_loop_run(loop);
g_main_loop_unref(loop);
}
TEST(UtilsTest, FormatTimeDeltaTest) {
// utils::FormatTimeDelta() is not locale-aware (it's only used for logging
// which is not localized) so we only need to test the C locale
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromMilliseconds(100)),
"0.1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(0)),
"0s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(1)),
"1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(59)),
"59s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(60)),
"1m0s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(61)),
"1m1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(90)),
"1m30s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(1205)),
"20m5s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(3600)),
"1h0m0s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(3601)),
"1h0m1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(3661)),
"1h1m1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(7261)),
"2h1m1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(86400)),
"1d0h0m0s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(86401)),
"1d0h0m1s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(200000)),
"2d7h33m20s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(200000) +
base::TimeDelta::FromMilliseconds(1)),
"2d7h33m20.001s");
EXPECT_EQ(utils::FormatTimeDelta(base::TimeDelta::FromSeconds(-1)),
"-1s");
}
TEST(UtilsTest, TimeFromStructTimespecTest) {
struct timespec ts;
// Unix epoch (Thursday 00:00:00 UTC on Jan 1, 1970)
ts = (struct timespec) {.tv_sec = 0, .tv_nsec = 0};
EXPECT_EQ(base::Time::UnixEpoch(), utils::TimeFromStructTimespec(&ts));
// 42 ms after the Unix billennium (Sunday 01:46:40 UTC on September 9, 2001)
ts = (struct timespec) {.tv_sec = 1000 * 1000 * 1000,
.tv_nsec = 42 * 1000 * 1000};
base::Time::Exploded exploded = (base::Time::Exploded) {
.year = 2001, .month = 9, .day_of_week = 0, .day_of_month = 9,
.hour = 1, .minute = 46, .second = 40, .millisecond = 42};
EXPECT_EQ(base::Time::FromUTCExploded(exploded),
utils::TimeFromStructTimespec(&ts));
}
TEST(UtilsTest, DecodeAndStoreBase64String) {
base::FilePath path;
// Ensure we return false on empty strings or invalid base64.
EXPECT_FALSE(utils::DecodeAndStoreBase64String("", &path));
EXPECT_FALSE(utils::DecodeAndStoreBase64String("not valid base64", &path));
// Pass known base64 and check that it matches. This string was generated
// the following way:
//
// $ echo "Update Engine" | base64
// VXBkYXRlIEVuZ2luZQo=
EXPECT_TRUE(utils::DecodeAndStoreBase64String("VXBkYXRlIEVuZ2luZQo=",
&path));
ScopedPathUnlinker unlinker(path.value());
string expected_contents = "Update Engine\n";
string contents;
EXPECT_TRUE(utils::ReadFile(path.value(), &contents));
EXPECT_EQ(contents, expected_contents);
EXPECT_EQ(utils::FileSize(path.value()), expected_contents.size());
}
TEST(UtilsTest, ConvertToOmahaInstallDate) {
// The Omaha Epoch starts at Jan 1, 2007 0:00 PST which is a
// Monday. In Unix time, this point in time is easily obtained via
// the date(1) command like this:
//
// $ date +"%s" --date="Jan 1, 2007 0:00 PST"
const time_t omaha_epoch = 1167638400;
int value;
// Points in time *on and after* the Omaha epoch should not fail.
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch), &value));
EXPECT_GE(value, 0);
// Anything before the Omaha epoch should fail. We test it for two points.
EXPECT_FALSE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch - 1), &value));
EXPECT_FALSE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch - 100*24*3600), &value));
// Check that we jump from 0 to 7 exactly on the one-week mark, e.g.
// on Jan 8, 2007 0:00 PST.
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch + 7*24*3600 - 1), &value));
EXPECT_EQ(value, 0);
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch + 7*24*3600), &value));
EXPECT_EQ(value, 7);
// Check a couple of more values.
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch + 10*24*3600), &value));
EXPECT_EQ(value, 7);
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch + 20*24*3600), &value));
EXPECT_EQ(value, 14);
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch + 26*24*3600), &value));
EXPECT_EQ(value, 21);
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(omaha_epoch + 29*24*3600), &value));
EXPECT_EQ(value, 28);
// The date Jun 4, 2007 0:00 PDT is a Monday and is hence a point
// where the Omaha InstallDate jumps 7 days. Its unix time is
// 1180940400. Notably, this is a point in time where Daylight
// Savings Time (DST) was is in effect (e.g. it's PDT, not PST).
//
// Note that as utils::ConvertToOmahaInstallDate() _deliberately_
// ignores DST (as it's hard to implement in a thread-safe way using
// glibc, see comments in utils.h) we have to fudge by the DST
// offset which is one hour. Conveniently, if the function were
// someday modified to be DST aware, this test would have to be
// modified as well.
const time_t dst_time = 1180940400; // Jun 4, 2007 0:00 PDT.
const time_t fudge = 3600;
int value1, value2;
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(dst_time + fudge - 1), &value1));
EXPECT_TRUE(utils::ConvertToOmahaInstallDate(
base::Time::FromTimeT(dst_time + fudge), &value2));
EXPECT_EQ(value1, value2 - 7);
}
TEST(UtilsTest, WallclockDurationHelper) {
FakeSystemState fake_system_state;
FakeClock fake_clock;
base::TimeDelta duration;
string state_variable_key = "test-prefs";
string temp_dir;
Prefs fake_prefs;
EXPECT_TRUE(utils::MakeTempDirectory("DurationPrefs.XXXXXX", &temp_dir));
fake_prefs.Init(base::FilePath(temp_dir));
fake_system_state.set_clock(&fake_clock);
fake_system_state.set_prefs(&fake_prefs);
// Initialize wallclock to 1 sec.
fake_clock.SetWallclockTime(base::Time::FromInternalValue(1000000));
// First time called so no previous measurement available.
EXPECT_FALSE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
// Next time, we should get zero since the clock didn't advance.
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// We can also call it as many times as we want with it being
// considered a failure.
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// Advance the clock one second, then we should get 1 sec on the
// next call and 0 sec on the subsequent call.
fake_clock.SetWallclockTime(base::Time::FromInternalValue(2000000));
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 1);
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// Advance clock two seconds and we should get 2 sec and then 0 sec.
fake_clock.SetWallclockTime(base::Time::FromInternalValue(4000000));
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 2);
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// There's a possibility that the wallclock can go backwards (NTP
// adjustments, for example) so check that we properly handle this
// case.
fake_clock.SetWallclockTime(base::Time::FromInternalValue(3000000));
EXPECT_FALSE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
fake_clock.SetWallclockTime(base::Time::FromInternalValue(4000000));
EXPECT_TRUE(utils::WallclockDurationHelper(&fake_system_state,
state_variable_key,
&duration));
EXPECT_EQ(duration.InSeconds(), 1);
EXPECT_TRUE(utils::RecursiveUnlinkDir(temp_dir));
}
TEST(UtilsTest, MonotonicDurationHelper) {
int64_t storage = 0;
FakeSystemState fake_system_state;
FakeClock fake_clock;
base::TimeDelta duration;
fake_system_state.set_clock(&fake_clock);
// Initialize monotonic clock to 1 sec.
fake_clock.SetMonotonicTime(base::Time::FromInternalValue(1000000));
// First time called so no previous measurement available.
EXPECT_FALSE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
// Next time, we should get zero since the clock didn't advance.
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// We can also call it as many times as we want with it being
// considered a failure.
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// Advance the clock one second, then we should get 1 sec on the
// next call and 0 sec on the subsequent call.
fake_clock.SetMonotonicTime(base::Time::FromInternalValue(2000000));
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 1);
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
// Advance clock two seconds and we should get 2 sec and then 0 sec.
fake_clock.SetMonotonicTime(base::Time::FromInternalValue(4000000));
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 2);
EXPECT_TRUE(utils::MonotonicDurationHelper(&fake_system_state,
&storage,
&duration));
EXPECT_EQ(duration.InSeconds(), 0);
}
TEST(UtilsTest, GetConnectionType) {
// Check that expected combinations map to the right value.
EXPECT_EQ(metrics::ConnectionType::kUnknown,
utils::GetConnectionType(kNetUnknown,
NetworkTethering::kUnknown));
EXPECT_EQ(metrics::ConnectionType::kEthernet,
utils::GetConnectionType(kNetEthernet,
NetworkTethering::kUnknown));
EXPECT_EQ(metrics::ConnectionType::kWifi,
utils::GetConnectionType(kNetWifi,
NetworkTethering::kUnknown));
EXPECT_EQ(metrics::ConnectionType::kWimax,
utils::GetConnectionType(kNetWimax,
NetworkTethering::kUnknown));
EXPECT_EQ(metrics::ConnectionType::kBluetooth,
utils::GetConnectionType(kNetBluetooth,
NetworkTethering::kUnknown));
EXPECT_EQ(metrics::ConnectionType::kCellular,
utils::GetConnectionType(kNetCellular,
NetworkTethering::kUnknown));
EXPECT_EQ(metrics::ConnectionType::kTetheredEthernet,
utils::GetConnectionType(kNetEthernet,
NetworkTethering::kConfirmed));
EXPECT_EQ(metrics::ConnectionType::kTetheredWifi,
utils::GetConnectionType(kNetWifi,
NetworkTethering::kConfirmed));
// Ensure that we don't report tethered ethernet unless it's confirmed.
EXPECT_EQ(metrics::ConnectionType::kEthernet,
utils::GetConnectionType(kNetEthernet,
NetworkTethering::kNotDetected));
EXPECT_EQ(metrics::ConnectionType::kEthernet,
utils::GetConnectionType(kNetEthernet,
NetworkTethering::kSuspected));
EXPECT_EQ(metrics::ConnectionType::kEthernet,
utils::GetConnectionType(kNetEthernet,
NetworkTethering::kUnknown));
// Ditto for tethered wifi.
EXPECT_EQ(metrics::ConnectionType::kWifi,
utils::GetConnectionType(kNetWifi,
NetworkTethering::kNotDetected));
EXPECT_EQ(metrics::ConnectionType::kWifi,
utils::GetConnectionType(kNetWifi,
NetworkTethering::kSuspected));
EXPECT_EQ(metrics::ConnectionType::kWifi,
utils::GetConnectionType(kNetWifi,
NetworkTethering::kUnknown));
}
} // namespace chromeos_update_engine