blob: 67304d2017afcfcbb606e643090e810601daddba [file] [log] [blame]
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2018-2019 Intel Corporation. All rights reserved.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <errno.h>
#include <string.h>
#include <sys/time.h>
#include <ell/ell.h>
#include "monitor/bt.h"
#include "src/shared/hci.h"
#include "lib/bluetooth.h"
#include "lib/mgmt.h"
#include "mesh/mesh-defs.h"
#include "mesh/mesh-mgmt.h"
#include "mesh/mesh-io.h"
#include "mesh/mesh-io-api.h"
#include "mesh/mesh-io-generic.h"
struct mesh_io_private {
struct bt_hci *hci;
void *user_data;
mesh_io_ready_func_t ready_callback;
struct l_timeout *tx_timeout;
struct l_queue *rx_regs;
struct l_queue *tx_pkts;
struct tx_pkt *tx;
uint16_t index;
uint16_t interval;
bool sending;
bool active;
};
struct pvt_rx_reg {
mesh_io_recv_func_t cb;
void *user_data;
uint8_t len;
uint8_t filter[0];
};
struct process_data {
struct mesh_io_private *pvt;
const uint8_t *data;
uint8_t len;
struct mesh_io_recv_info info;
};
struct tx_pkt {
struct mesh_io_send_info info;
bool delete;
uint8_t len;
uint8_t pkt[30];
};
struct tx_pattern {
const uint8_t *data;
uint8_t len;
};
static uint32_t get_instant(void)
{
struct timeval tm;
uint32_t instant;
gettimeofday(&tm, NULL);
instant = tm.tv_sec * 1000;
instant += tm.tv_usec / 1000;
return instant;
}
static uint32_t instant_remaining_ms(uint32_t instant)
{
instant -= get_instant();
return instant;
}
static void process_rx_callbacks(void *v_reg, void *v_rx)
{
struct pvt_rx_reg *rx_reg = v_reg;
struct process_data *rx = v_rx;
if (!memcmp(rx->data, rx_reg->filter, rx_reg->len))
rx_reg->cb(rx_reg->user_data, &rx->info, rx->data, rx->len);
}
static void process_rx(struct mesh_io_private *pvt, int8_t rssi,
uint32_t instant, const uint8_t *addr,
const uint8_t *data, uint8_t len)
{
struct process_data rx = {
.pvt = pvt,
.data = data,
.len = len,
.info.instant = instant,
.info.addr = addr,
.info.chan = 7,
.info.rssi = rssi,
};
l_queue_foreach(pvt->rx_regs, process_rx_callbacks, &rx);
}
static void event_adv_report(struct mesh_io *io, const void *buf, uint8_t size)
{
const struct bt_hci_evt_le_adv_report *evt = buf;
const uint8_t *adv;
const uint8_t *addr;
uint32_t instant;
uint8_t adv_len;
uint16_t len = 0;
int8_t rssi;
if (evt->event_type != 0x03)
return;
instant = get_instant();
adv = evt->data;
adv_len = evt->data_len;
addr = evt->addr;
/* rssi is just beyond last byte of data */
rssi = (int8_t) adv[adv_len];
while (len < adv_len - 1) {
uint8_t field_len = adv[0];
/* Check for the end of advertising data */
if (field_len == 0)
break;
len += field_len + 1;
/* Do not continue data parsing if got incorrect length */
if (len > adv_len)
break;
/* TODO: Create an Instant to use */
process_rx(io->pvt, rssi, instant, addr, adv + 1, adv[0]);
adv += field_len + 1;
}
}
static void event_callback(const void *buf, uint8_t size, void *user_data)
{
uint8_t event = l_get_u8(buf);
struct mesh_io *io = user_data;
switch (event) {
case BT_HCI_EVT_LE_ADV_REPORT:
event_adv_report(io, buf + 1, size - 1);
break;
default:
l_debug("Other Meta Evt - %d", event);
}
}
static void local_commands_callback(const void *data, uint8_t size,
void *user_data)
{
const struct bt_hci_rsp_read_local_commands *rsp = data;
if (rsp->status)
l_error("Failed to read local commands");
}
static void local_features_callback(const void *data, uint8_t size,
void *user_data)
{
const struct bt_hci_rsp_read_local_features *rsp = data;
if (rsp->status)
l_error("Failed to read local features");
}
static void hci_generic_callback(const void *data, uint8_t size,
void *user_data)
{
uint8_t status = l_get_u8(data);
if (status)
l_error("Failed to initialize HCI");
}
static void configure_hci(struct mesh_io_private *io)
{
struct bt_hci_cmd_le_set_scan_parameters cmd;
struct bt_hci_cmd_set_event_mask cmd_sem;
struct bt_hci_cmd_le_set_event_mask cmd_slem;
struct bt_hci_cmd_le_set_random_address cmd_raddr;
/* Set scan parameters */
cmd.type = 0x00; /* Passive Scanning. No scanning PDUs shall be sent */
cmd.interval = 0x0030; /* Scan Interval = N * 0.625ms */
cmd.window = 0x0030; /* Scan Window = N * 0.625ms */
cmd.own_addr_type = 0x00; /* Public Device Address */
/* Accept all advertising packets except directed advertising packets
* not addressed to this device (default).
*/
cmd.filter_policy = 0x00;
/* Set event mask
*
* Mask: 0x2000800002008890
* Disconnection Complete
* Encryption Change
* Read Remote Version Information Complete
* Hardware Error
* Data Buffer Overflow
* Encryption Key Refresh Complete
* LE Meta
*/
cmd_sem.mask[0] = 0x90;
cmd_sem.mask[1] = 0x88;
cmd_sem.mask[2] = 0x00;
cmd_sem.mask[3] = 0x02;
cmd_sem.mask[4] = 0x00;
cmd_sem.mask[5] = 0x80;
cmd_sem.mask[6] = 0x00;
cmd_sem.mask[7] = 0x20;
/* Set LE event mask
*
* Mask: 0x000000000000087f
* LE Connection Complete
* LE Advertising Report
* LE Connection Update Complete
* LE Read Remote Used Features Complete
* LE Long Term Key Request
* LE Remote Connection Parameter Request
* LE Data Length Change
* LE PHY Update Complete
*/
cmd_slem.mask[0] = 0x7f;
cmd_slem.mask[1] = 0x08;
cmd_slem.mask[2] = 0x00;
cmd_slem.mask[3] = 0x00;
cmd_slem.mask[4] = 0x00;
cmd_slem.mask[5] = 0x00;
cmd_slem.mask[6] = 0x00;
cmd_slem.mask[7] = 0x00;
/* Set LE random address */
l_getrandom(cmd_raddr.addr, 6);
cmd_raddr.addr[5] |= 0xc0;
/* TODO: Move to suitable place. Set suitable masks */
/* Reset Command */
bt_hci_send(io->hci, BT_HCI_CMD_RESET, NULL, 0, hci_generic_callback,
NULL, NULL);
/* Read local supported commands */
bt_hci_send(io->hci, BT_HCI_CMD_READ_LOCAL_COMMANDS, NULL, 0,
local_commands_callback, NULL, NULL);
/* Read local supported features */
bt_hci_send(io->hci, BT_HCI_CMD_READ_LOCAL_FEATURES, NULL, 0,
local_features_callback, NULL, NULL);
/* Set event mask */
bt_hci_send(io->hci, BT_HCI_CMD_SET_EVENT_MASK, &cmd_sem,
sizeof(cmd_sem), hci_generic_callback, NULL, NULL);
/* Set LE event mask */
bt_hci_send(io->hci, BT_HCI_CMD_LE_SET_EVENT_MASK, &cmd_slem,
sizeof(cmd_slem), hci_generic_callback, NULL, NULL);
/* Set LE random address */
bt_hci_send(io->hci, BT_HCI_CMD_LE_SET_RANDOM_ADDRESS, &cmd_raddr,
sizeof(cmd_raddr), hci_generic_callback, NULL, NULL);
/* Scan Params */
bt_hci_send(io->hci, BT_HCI_CMD_LE_SET_SCAN_PARAMETERS, &cmd,
sizeof(cmd), hci_generic_callback, NULL, NULL);
}
static void scan_enable_rsp(const void *buf, uint8_t size,
void *user_data)
{
uint8_t status = *((uint8_t *) buf);
if (status)
l_error("LE Scan enable failed (0x%02x)", status);
}
static void set_recv_scan_enable(const void *buf, uint8_t size,
void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct bt_hci_cmd_le_set_scan_enable cmd;
cmd.enable = 0x01; /* Enable scanning */
cmd.filter_dup = 0x00; /* Report duplicates */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_SCAN_ENABLE,
&cmd, sizeof(cmd), scan_enable_rsp, pvt, NULL);
}
static void scan_disable_rsp(const void *buf, uint8_t size,
void *user_data)
{
struct bt_hci_cmd_le_set_scan_parameters cmd;
struct mesh_io_private *pvt = user_data;
uint8_t status = *((uint8_t *) buf);
if (status)
l_error("LE Scan disable failed (0x%02x)", status);
cmd.type = pvt->active ? 0x01 : 0x00; /* Passive/Active scanning */
cmd.interval = L_CPU_TO_LE16(0x0010); /* 10 ms */
cmd.window = L_CPU_TO_LE16(0x0010); /* 10 ms */
cmd.own_addr_type = 0x01; /* ADDR_TYPE_RANDOM */
cmd.filter_policy = 0x00; /* Accept all */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_SCAN_PARAMETERS,
&cmd, sizeof(cmd),
set_recv_scan_enable, pvt, NULL);
}
static bool simple_match(const void *a, const void *b)
{
return a == b;
}
static bool find_by_ad_type(const void *a, const void *b)
{
const struct tx_pkt *tx = a;
uint8_t ad_type = L_PTR_TO_UINT(b);
return !ad_type || ad_type == tx->pkt[0];
}
static bool find_by_pattern(const void *a, const void *b)
{
const struct tx_pkt *tx = a;
const struct tx_pattern *pattern = b;
if (tx->len < pattern->len)
return false;
return (!memcmp(tx->pkt, pattern->data, pattern->len));
}
static bool find_active(const void *a, const void *b)
{
const struct pvt_rx_reg *rx_reg = a;
/* Mesh specific AD types do *not* require active scanning,
* so do not turn on Active Scanning on their account.
*/
if (rx_reg->filter[0] < MESH_AD_TYPE_PROVISION ||
rx_reg->filter[0] > MESH_AD_TYPE_BEACON)
return true;
return false;
}
static void restart_scan(struct mesh_io_private *pvt)
{
struct bt_hci_cmd_le_set_scan_enable cmd;
if (l_queue_isempty(pvt->rx_regs))
return;
pvt->active = l_queue_find(pvt->rx_regs, find_active, NULL);
cmd.enable = 0x00; /* Disable scanning */
cmd.filter_dup = 0x00; /* Report duplicates */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_SCAN_ENABLE,
&cmd, sizeof(cmd), scan_disable_rsp, pvt, NULL);
}
static void hci_init(void *user_data)
{
struct mesh_io *io = user_data;
bool result = true;
bool restarted = false;
if (io->pvt->hci) {
restarted = true;
bt_hci_unref(io->pvt->hci);
}
io->pvt->hci = bt_hci_new_user_channel(io->pvt->index);
if (!io->pvt->hci) {
l_error("Failed to start mesh io (hci %u): %s", io->pvt->index,
strerror(errno));
result = false;
}
if (result) {
configure_hci(io->pvt);
bt_hci_register(io->pvt->hci, BT_HCI_EVT_LE_META_EVENT,
event_callback, io, NULL);
l_debug("Started mesh on hci %u", io->pvt->index);
if (restarted)
restart_scan(io->pvt);
}
if (io->pvt->ready_callback)
io->pvt->ready_callback(io->pvt->user_data, result);
}
static void read_info(int index, void *user_data)
{
struct mesh_io *io = user_data;
if (io->pvt->index != MGMT_INDEX_NONE &&
index != io->pvt->index) {
l_debug("Ignore index %d", index);
return;
}
io->pvt->index = index;
hci_init(io);
}
static bool dev_init(struct mesh_io *io, void *opts,
mesh_io_ready_func_t cb, void *user_data)
{
if (!io || io->pvt)
return false;
io->pvt = l_new(struct mesh_io_private, 1);
io->pvt->index = *(int *)opts;
io->pvt->rx_regs = l_queue_new();
io->pvt->tx_pkts = l_queue_new();
io->pvt->ready_callback = cb;
io->pvt->user_data = user_data;
if (io->pvt->index == MGMT_INDEX_NONE)
return mesh_mgmt_list(read_info, io);
l_idle_oneshot(hci_init, io, NULL);
return true;
}
static bool dev_destroy(struct mesh_io *io)
{
struct mesh_io_private *pvt = io->pvt;
if (!pvt)
return true;
bt_hci_unref(pvt->hci);
l_timeout_remove(pvt->tx_timeout);
l_queue_destroy(pvt->rx_regs, l_free);
l_queue_destroy(pvt->tx_pkts, l_free);
l_free(pvt);
io->pvt = NULL;
return true;
}
static bool dev_caps(struct mesh_io *io, struct mesh_io_caps *caps)
{
struct mesh_io_private *pvt = io->pvt;
if (!pvt || !caps)
return false;
caps->max_num_filters = 255;
caps->window_accuracy = 50;
return true;
}
static void send_cancel_done(const void *buf, uint8_t size,
void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct bt_hci_cmd_le_set_random_address cmd;
if (!pvt)
return;
pvt->sending = false;
/* At end of any burst of ADVs, change random address */
l_getrandom(cmd.addr, 6);
cmd.addr[5] |= 0xc0;
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_RANDOM_ADDRESS,
&cmd, sizeof(cmd), NULL, NULL, NULL);
}
static void send_cancel(struct mesh_io_private *pvt)
{
struct bt_hci_cmd_le_set_adv_enable cmd;
if (!pvt)
return;
if (!pvt->sending) {
send_cancel_done(NULL, 0, pvt);
return;
}
cmd.enable = 0x00; /* Disable advertising */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_ADV_ENABLE,
&cmd, sizeof(cmd),
send_cancel_done, pvt, NULL);
}
static void set_send_adv_enable(const void *buf, uint8_t size,
void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct bt_hci_cmd_le_set_adv_enable cmd;
if (!pvt)
return;
pvt->sending = true;
cmd.enable = 0x01; /* Enable advertising */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_ADV_ENABLE,
&cmd, sizeof(cmd), NULL, NULL, NULL);
}
static void set_send_adv_data(const void *buf, uint8_t size,
void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct tx_pkt *tx;
struct bt_hci_cmd_le_set_adv_data cmd;
if (!pvt || !pvt->tx)
return;
tx = pvt->tx;
if (tx->len >= sizeof(cmd.data))
goto done;
memset(&cmd, 0, sizeof(cmd));
cmd.len = tx->len + 1;
cmd.data[0] = tx->len;
memcpy(cmd.data + 1, tx->pkt, tx->len);
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_ADV_DATA,
&cmd, sizeof(cmd),
set_send_adv_enable, pvt, NULL);
done:
if (tx->delete) {
l_queue_remove_if(pvt->tx_pkts, simple_match, tx);
l_free(tx);
}
pvt->tx = NULL;
}
static void set_send_adv_params(const void *buf, uint8_t size,
void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct bt_hci_cmd_le_set_adv_parameters cmd;
uint16_t hci_interval;
if (!pvt)
return;
hci_interval = (pvt->interval * 16) / 10;
cmd.min_interval = L_CPU_TO_LE16(hci_interval);
cmd.max_interval = L_CPU_TO_LE16(hci_interval);
cmd.type = 0x03; /* ADV_NONCONN_IND */
cmd.own_addr_type = 0x01; /* ADDR_TYPE_RANDOM */
cmd.direct_addr_type = 0x00;
memset(cmd.direct_addr, 0, 6);
cmd.channel_map = 0x07;
cmd.filter_policy = 0x03;
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_ADV_PARAMETERS,
&cmd, sizeof(cmd),
set_send_adv_data, pvt, NULL);
}
static void send_pkt(struct mesh_io_private *pvt, struct tx_pkt *tx,
uint16_t interval)
{
struct bt_hci_cmd_le_set_adv_enable cmd;
/* Delete superseded packet in favor of new packet */
if (pvt->tx && pvt->tx != tx && pvt->tx->delete) {
l_queue_remove_if(pvt->tx_pkts, simple_match, pvt->tx);
l_free(pvt->tx);
}
pvt->tx = tx;
pvt->interval = interval;
if (!pvt->sending) {
set_send_adv_params(NULL, 0, pvt);
return;
}
cmd.enable = 0x00; /* Disable advertising */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_ADV_ENABLE,
&cmd, sizeof(cmd),
set_send_adv_params, pvt, NULL);
}
static void tx_to(struct l_timeout *timeout, void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct tx_pkt *tx;
uint16_t ms;
uint8_t count;
if (!pvt)
return;
tx = l_queue_pop_head(pvt->tx_pkts);
if (!tx) {
l_timeout_remove(timeout);
pvt->tx_timeout = NULL;
send_cancel(pvt);
return;
}
if (tx->info.type == MESH_IO_TIMING_TYPE_GENERAL) {
ms = tx->info.u.gen.interval;
count = tx->info.u.gen.cnt;
if (count != MESH_IO_TX_COUNT_UNLIMITED)
tx->info.u.gen.cnt--;
} else {
ms = 25;
count = 1;
}
tx->delete = !!(count == 1);
send_pkt(pvt, tx, ms);
if (count == 1) {
/* Recalculate wakeup if we are responding to POLL */
tx = l_queue_peek_head(pvt->tx_pkts);
if (tx && tx->info.type == MESH_IO_TIMING_TYPE_POLL_RSP) {
ms = instant_remaining_ms(tx->info.u.poll_rsp.instant +
tx->info.u.poll_rsp.delay);
}
} else
l_queue_push_tail(pvt->tx_pkts, tx);
if (timeout) {
pvt->tx_timeout = timeout;
l_timeout_modify_ms(timeout, ms);
} else
pvt->tx_timeout = l_timeout_create_ms(ms, tx_to, pvt, NULL);
}
static void tx_worker(void *user_data)
{
struct mesh_io_private *pvt = user_data;
struct tx_pkt *tx;
uint32_t delay;
tx = l_queue_peek_head(pvt->tx_pkts);
if (!tx)
return;
switch (tx->info.type) {
case MESH_IO_TIMING_TYPE_GENERAL:
if (tx->info.u.gen.min_delay == tx->info.u.gen.max_delay)
delay = tx->info.u.gen.min_delay;
else {
l_getrandom(&delay, sizeof(delay));
delay %= tx->info.u.gen.max_delay -
tx->info.u.gen.min_delay;
delay += tx->info.u.gen.min_delay;
}
break;
case MESH_IO_TIMING_TYPE_POLL:
if (tx->info.u.poll.min_delay == tx->info.u.poll.max_delay)
delay = tx->info.u.poll.min_delay;
else {
l_getrandom(&delay, sizeof(delay));
delay %= tx->info.u.poll.max_delay -
tx->info.u.poll.min_delay;
delay += tx->info.u.poll.min_delay;
}
break;
case MESH_IO_TIMING_TYPE_POLL_RSP:
/* Delay until Instant + Delay */
delay = instant_remaining_ms(tx->info.u.poll_rsp.instant +
tx->info.u.poll_rsp.delay);
if (delay > 255)
delay = 0;
break;
default:
return;
}
if (!delay)
tx_to(pvt->tx_timeout, pvt);
else if (pvt->tx_timeout)
l_timeout_modify_ms(pvt->tx_timeout, delay);
else
pvt->tx_timeout = l_timeout_create_ms(delay, tx_to, pvt, NULL);
}
static bool send_tx(struct mesh_io *io, struct mesh_io_send_info *info,
const uint8_t *data, uint16_t len)
{
struct mesh_io_private *pvt = io->pvt;
struct tx_pkt *tx;
bool sending = false;
if (!info || !data || !len || len > sizeof(tx->pkt))
return false;
tx = l_new(struct tx_pkt, 1);
memcpy(&tx->info, info, sizeof(tx->info));
memcpy(&tx->pkt, data, len);
tx->len = len;
if (info->type == MESH_IO_TIMING_TYPE_POLL_RSP)
l_queue_push_head(pvt->tx_pkts, tx);
else {
if (pvt->tx)
sending = true;
else
sending = !l_queue_isempty(pvt->tx_pkts);
l_queue_push_tail(pvt->tx_pkts, tx);
/*
* If transmitter is idle, send packets at least twice to
* guard against in-line cancelation of HCI command chain.
*/
if (info->type == MESH_IO_TIMING_TYPE_GENERAL && !sending &&
tx->info.u.gen.cnt == 1)
tx->info.u.gen.cnt++;
}
if (!sending) {
l_timeout_remove(pvt->tx_timeout);
pvt->tx_timeout = NULL;
l_idle_oneshot(tx_worker, pvt, NULL);
}
return true;
}
static bool tx_cancel(struct mesh_io *io, const uint8_t *data, uint8_t len)
{
struct mesh_io_private *pvt = io->pvt;
struct tx_pkt *tx;
if (!data)
return false;
if (len == 1) {
do {
tx = l_queue_remove_if(pvt->tx_pkts, find_by_ad_type,
L_UINT_TO_PTR(data[0]));
l_free(tx);
if (tx == pvt->tx)
pvt->tx = NULL;
} while (tx);
} else {
struct tx_pattern pattern = {
.data = data,
.len = len
};
do {
tx = l_queue_remove_if(pvt->tx_pkts, find_by_pattern,
&pattern);
l_free(tx);
if (tx == pvt->tx)
pvt->tx = NULL;
} while (tx);
}
if (l_queue_isempty(pvt->tx_pkts)) {
send_cancel(pvt);
l_timeout_remove(pvt->tx_timeout);
pvt->tx_timeout = NULL;
}
return true;
}
static bool find_by_filter(const void *a, const void *b)
{
const struct pvt_rx_reg *rx_reg = a;
const uint8_t *filter = b;
return !memcmp(rx_reg->filter, filter, rx_reg->len);
}
static bool recv_register(struct mesh_io *io, const uint8_t *filter,
uint8_t len, mesh_io_recv_func_t cb, void *user_data)
{
struct bt_hci_cmd_le_set_scan_enable cmd;
struct mesh_io_private *pvt = io->pvt;
struct pvt_rx_reg *rx_reg;
bool already_scanning;
bool active = false;
if (!cb || !filter || !len)
return false;
rx_reg = l_queue_remove_if(pvt->rx_regs, find_by_filter, filter);
l_free(rx_reg);
rx_reg = l_malloc(sizeof(*rx_reg) + len);
memcpy(rx_reg->filter, filter, len);
rx_reg->len = len;
rx_reg->cb = cb;
rx_reg->user_data = user_data;
already_scanning = !l_queue_isempty(pvt->rx_regs);
l_queue_push_head(pvt->rx_regs, rx_reg);
/* Look for any AD types requiring Active Scanning */
if (l_queue_find(pvt->rx_regs, find_active, NULL))
active = true;
if (!already_scanning || pvt->active != active) {
pvt->active = active;
cmd.enable = 0x00; /* Disable scanning */
cmd.filter_dup = 0x00; /* Report duplicates */
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_SCAN_ENABLE,
&cmd, sizeof(cmd), scan_disable_rsp, pvt, NULL);
}
return true;
}
static bool recv_deregister(struct mesh_io *io, const uint8_t *filter,
uint8_t len)
{
struct bt_hci_cmd_le_set_scan_enable cmd = {0, 0};
struct mesh_io_private *pvt = io->pvt;
struct pvt_rx_reg *rx_reg;
bool active = false;
rx_reg = l_queue_remove_if(pvt->rx_regs, find_by_filter, filter);
if (rx_reg)
l_free(rx_reg);
/* Look for any AD types requiring Active Scanning */
if (l_queue_find(pvt->rx_regs, find_active, NULL))
active = true;
if (l_queue_isempty(pvt->rx_regs)) {
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_SCAN_ENABLE,
&cmd, sizeof(cmd), NULL, NULL, NULL);
} else if (active != pvt->active) {
pvt->active = active;
bt_hci_send(pvt->hci, BT_HCI_CMD_LE_SET_SCAN_ENABLE,
&cmd, sizeof(cmd), scan_disable_rsp, pvt, NULL);
}
return true;
}
const struct mesh_io_api mesh_io_generic = {
.init = dev_init,
.destroy = dev_destroy,
.caps = dev_caps,
.send = send_tx,
.reg = recv_register,
.dereg = recv_deregister,
.cancel = tx_cancel,
};