blob: cfdd15b8bd5bd2b1b0fbcd5468cfc62667535dca [file] [log] [blame]
/*
* This file is part of the flashrom project.
*
* Copyright (C) 2010 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "flash.h"
#include "libflashrom.h"
#include "chipdrivers.h"
#include "writeprotect.h"
/** Read and extract a single bit from the chip's registers */
static enum flashrom_wp_result read_bit(uint8_t *value, bool *present, struct flashctx *flash, struct reg_bit_info bit)
{
*present = bit.reg != INVALID_REG;
if (*present) {
if (spi_read_register(flash, bit.reg, value))
return FLASHROM_WP_ERR_READ_FAILED;
*value = (*value >> bit.bit_index) & 1;
} else {
/* Zero bit, it may be used by compare_ranges(). */
*value = 0;
}
return FLASHROM_WP_OK;
}
/** Read all WP configuration bits from the chip's registers. */
static enum flashrom_wp_result read_wp_bits(struct wp_bits *bits, struct flashctx *flash)
{
/*
* For each WP bit that is included in the chip's register layout, read
* the register that contains it, extracts the bit's value, and assign
* it to the appropriate field in the wp_bits structure.
*/
const struct reg_bit_map *bit_map = &flash->chip->reg_bits;
bool ignored;
size_t i;
enum flashrom_wp_result ret;
ret = read_bit(&bits->tb, &bits->tb_bit_present, flash, bit_map->tb);
if (ret != FLASHROM_WP_OK)
return ret;
ret = read_bit(&bits->sec, &bits->sec_bit_present, flash, bit_map->sec);
if (ret != FLASHROM_WP_OK)
return ret;
ret = read_bit(&bits->cmp, &bits->cmp_bit_present, flash, bit_map->cmp);
if (ret != FLASHROM_WP_OK)
return ret;
ret = read_bit(&bits->srp, &bits->srp_bit_present, flash, bit_map->srp);
if (ret != FLASHROM_WP_OK)
return ret;
ret = read_bit(&bits->srl, &bits->srl_bit_present, flash, bit_map->srl);
if (ret != FLASHROM_WP_OK)
return ret;
/* Note: WPS bit isn't read here, because it's not part of any range. */
for (i = 0; i < ARRAY_SIZE(bits->bp); i++) {
if (bit_map->bp[i].reg == INVALID_REG)
break;
bits->bp_bit_count = i + 1;
ret = read_bit(&bits->bp[i], &ignored, flash, bit_map->bp[i]);
if (ret != FLASHROM_WP_OK)
return ret;
}
return ret;
}
/** Helper function for write_wp_bits(). */
static void set_reg_bit(
uint8_t *reg_values, uint8_t *write_masks,
struct reg_bit_info bit, uint8_t value)
{
if (bit.reg != INVALID_REG) {
reg_values[bit.reg] |= value << bit.bit_index;
write_masks[bit.reg] |= 1 << bit.bit_index;
}
}
/** Write WP configuration bits to the flash's registers. */
static enum flashrom_wp_result write_wp_bits(struct flashctx *flash, struct wp_bits bits)
{
size_t i;
const struct reg_bit_map *reg_bits = &flash->chip->reg_bits;
/* Convert wp_bits to register values and write masks */
uint8_t reg_values[MAX_REGISTERS] = {0};
uint8_t write_masks[MAX_REGISTERS] = {0};
for (i = 0; i < bits.bp_bit_count; i++)
set_reg_bit(reg_values, write_masks, reg_bits->bp[i], bits.bp[i]);
set_reg_bit(reg_values, write_masks, reg_bits->tb, bits.tb);
set_reg_bit(reg_values, write_masks, reg_bits->sec, bits.sec);
set_reg_bit(reg_values, write_masks, reg_bits->cmp, bits.cmp);
set_reg_bit(reg_values, write_masks, reg_bits->srp, bits.srp);
set_reg_bit(reg_values, write_masks, reg_bits->srl, bits.srl);
/* Note: always setting WPS bit to zero until its fully supported. */
set_reg_bit(reg_values, write_masks, reg_bits->wps, 0);
/* Write each register */
for (enum flash_reg reg = STATUS1; reg < MAX_REGISTERS; reg++) {
if (!write_masks[reg])
continue;
uint8_t value;
if (spi_read_register(flash, reg, &value))
return FLASHROM_WP_ERR_READ_FAILED;
value = (value & ~write_masks[reg]) | (reg_values[reg] & write_masks[reg]);
if (spi_write_register(flash, reg, value))
return FLASHROM_WP_ERR_WRITE_FAILED;
}
/* Verify each register */
for (enum flash_reg reg = STATUS1; reg < MAX_REGISTERS; reg++) {
if (!write_masks[reg])
continue;
uint8_t value;
if (spi_read_register(flash, reg, &value))
return FLASHROM_WP_ERR_READ_FAILED;
uint8_t actual = value & write_masks[reg];
uint8_t expected = reg_values[reg] & write_masks[reg];
if (actual != expected)
return FLASHROM_WP_ERR_VERIFY_FAILED;
}
return FLASHROM_WP_OK;
}
/** Get the range selected by a WP configuration. */
static enum flashrom_wp_result get_wp_range(struct wp_range *range, struct flashctx *flash, const struct wp_bits *bits)
{
flash->chip->decode_range(&range->start, &range->len, bits, flashrom_flash_getsize(flash));
return FLASHROM_WP_OK;
}
/** Write protect bit values and the range they will activate. */
struct wp_range_and_bits {
struct wp_bits bits;
struct wp_range range;
};
/**
* Comparator used for sorting ranges in get_ranges_and_wp_bits().
*
* Ranges are ordered by these attributes, in decreasing significance:
* (range length, range start, cmp bit, sec bit, tb bit, bp bits)
*/
static int compare_ranges(const void *aa, const void *bb)
{
const struct wp_range_and_bits
*a = (const struct wp_range_and_bits *)aa,
*b = (const struct wp_range_and_bits *)bb;
int ord = 0;
if (ord == 0)
ord = a->range.len - b->range.len;
if (ord == 0)
ord = a->range.start - b->range.start;
if (ord == 0)
ord = a->bits.cmp - b->bits.cmp;
if (ord == 0)
ord = a->bits.sec - b->bits.sec;
if (ord == 0)
ord = a->bits.tb - b->bits.tb;
for (int i = a->bits.bp_bit_count - 1; i >= 0; i--) {
if (ord == 0)
ord = a->bits.bp[i] - b->bits.bp[i];
}
return ord;
}
static bool can_write_bit(const struct reg_bit_info bit)
{
/*
* TODO: check if the programmer supports writing the register that the
* bit is in. For example, some chipsets may only allow SR1 to be
* written.
*/
return bit.reg != INVALID_REG && bit.writability == RW;
}
/**
* Enumerate all protection ranges that the chip supports and that are able to
* be activated, given limitations such as OTP bits or programmer-enforced
* restrictions. Returns a list of deduplicated wp_range_and_bits structures.
*
* Allocates a buffer that must be freed by the caller with free().
*/
static enum flashrom_wp_result get_ranges_and_wp_bits(struct flashctx *flash, struct wp_bits bits, struct wp_range_and_bits **ranges, size_t *count)
{
const struct reg_bit_map *reg_bits = &flash->chip->reg_bits;
/*
* Create a list of bits that affect the chip's protection range in
* range_bits. Each element is a pointer to a member of the wp_bits
* structure that will be modified.
*
* Some chips have range bits that cannot be changed (e.g. MX25L6473E
* has a one-time programmable TB bit). Rather than enumerating all
* possible values for unwritable bits, just read their values from the
* chip to ensure we only enumerate ranges that are actually available.
*/
uint8_t *range_bits[ARRAY_SIZE(bits.bp) + 1 /* TB */ + 1 /* SEC */ + 1 /* CMP */];
size_t bit_count = 0;
for (size_t i = 0; i < ARRAY_SIZE(bits.bp); i++) {
if (can_write_bit(reg_bits->bp[i]))
range_bits[bit_count++] = &bits.bp[i];
}
if (can_write_bit(reg_bits->tb))
range_bits[bit_count++] = &bits.tb;
if (can_write_bit(reg_bits->sec))
range_bits[bit_count++] = &bits.sec;
if (can_write_bit(reg_bits->cmp))
range_bits[bit_count++] = &bits.cmp;
/* Allocate output buffer */
*count = 1 << bit_count;
*ranges = calloc(*count, sizeof(struct wp_range_and_bits));
/* TODO: take WPS bit into account. */
for (size_t range_index = 0; range_index < *count; range_index++) {
/*
* Extract bits from the range index and assign them to members
* of the wp_bits structure. The loop bounds ensure that all
* bit combinations will be enumerated.
*/
for (size_t i = 0; i < bit_count; i++)
*range_bits[i] = (range_index >> i) & 1;
struct wp_range_and_bits *output = &(*ranges)[range_index];
output->bits = bits;
enum flashrom_wp_result ret = get_wp_range(&output->range, flash, &bits);
if (ret != FLASHROM_WP_OK) {
free(*ranges);
return ret;
}
/* Debug: print range bits and range */
msg_gspew("Enumerated range: ");
if (bits.cmp_bit_present)
msg_gspew("CMP=%u ", bits.cmp);
if (bits.sec_bit_present)
msg_gspew("SEC=%u ", bits.sec);
if (bits.tb_bit_present)
msg_gspew("TB=%u ", bits.tb);
for (size_t i = 0; i < bits.bp_bit_count; i++) {
size_t j = bits.bp_bit_count - i - 1;
msg_gspew("BP%zu=%u ", j, bits.bp[j]);
}
msg_gspew(" start=0x%08zx length=0x%08zx ",
output->range.start, output->range.len);
}
/* Sort ranges. Ensures consistency if there are duplicate ranges. */
qsort(*ranges, *count, sizeof(struct wp_range_and_bits), compare_ranges);
/* Remove duplicates */
size_t output_index = 0;
struct wp_range *last_range = NULL;
for (size_t i = 0; i < *count; i++) {
bool different_to_last =
(last_range == NULL) ||
((*ranges)[i].range.start != last_range->start) ||
((*ranges)[i].range.len != last_range->len);
if (different_to_last) {
/* Move range to the next free position */
(*ranges)[output_index] = (*ranges)[i];
output_index++;
/* Keep track of last non-duplicate range */
last_range = &(*ranges)[i].range;
}
}
/* Reduce count to only include non-duplicate ranges */
*count = output_index;
return FLASHROM_WP_OK;
}
static bool ranges_equal(struct wp_range a, struct wp_range b)
{
return (a.start == b.start) && (a.len == b.len);
}
/*
* Modify the range-related bits in a wp_bits structure so they select a given
* protection range. Bits that control the protection mode are not changed.
*/
static int set_wp_range(struct wp_bits *bits, struct flashctx *flash, const struct wp_range range)
{
struct wp_range_and_bits *ranges = NULL;
size_t count;
enum flashrom_wp_result ret = get_ranges_and_wp_bits(flash, *bits, &ranges, &count);
if (ret != FLASHROM_WP_OK)
return ret;
/* Search for matching range */
ret = FLASHROM_WP_ERR_RANGE_UNSUPPORTED;
for (size_t i = 0; i < count; i++) {
if (ranges_equal(ranges[i].range, range)) {
*bits = ranges[i].bits;
ret = 0;
break;
}
}
free(ranges);
return ret;
}
/** Get the mode selected by a WP configuration. */
static int get_wp_mode(enum flashrom_wp_mode *mode, const struct wp_bits *bits)
{
const enum flashrom_wp_mode wp_modes[2][2] = {
{
FLASHROM_WP_MODE_DISABLED, /* srl=0, srp=0 */
FLASHROM_WP_MODE_HARDWARE, /* srl=0, srp=1 */
}, {
FLASHROM_WP_MODE_POWER_CYCLE, /* srl=1, srp=0 */
FLASHROM_WP_MODE_PERMANENT, /* srl=1, srp=1 */
},
};
*mode = wp_modes[bits->srl][bits->srp];
return FLASHROM_WP_OK;
}
/** Modify a wp_bits structure such that it will select a specified protection mode. */
static int set_wp_mode(struct wp_bits *bits, const enum flashrom_wp_mode mode)
{
switch (mode) {
case FLASHROM_WP_MODE_DISABLED:
bits->srl = 0;
bits->srp = 0;
return FLASHROM_WP_OK;
case FLASHROM_WP_MODE_HARDWARE:
if (!bits->srp_bit_present)
return FLASHROM_WP_ERR_CHIP_UNSUPPORTED;
bits->srl = 0;
bits->srp = 1;
return FLASHROM_WP_OK;
case FLASHROM_WP_MODE_POWER_CYCLE:
case FLASHROM_WP_MODE_PERMANENT:
default:
/*
* Don't try to enable power cycle or permanent protection for
* now. Those modes may be possible to activate on some chips,
* but they are usually unavailable by default or require special
* commands to activate.
*/
return FLASHROM_WP_ERR_MODE_UNSUPPORTED;
}
}
static bool chip_supported(struct flashctx *flash)
{
return (flash->chip != NULL) && (flash->chip->decode_range != NULL);
}
enum flashrom_wp_result wp_read_cfg(struct flashrom_wp_cfg *cfg, struct flashctx *flash)
{
struct wp_bits bits;
enum flashrom_wp_result ret = FLASHROM_WP_OK;
if (!chip_supported(flash))
ret = FLASHROM_WP_ERR_CHIP_UNSUPPORTED;
if (ret == FLASHROM_WP_OK)
ret = read_wp_bits(&bits, flash);
if (ret == FLASHROM_WP_OK)
ret = get_wp_range(&cfg->range, flash, &bits);
if (ret == FLASHROM_WP_OK)
ret = get_wp_mode(&cfg->mode, &bits);
return ret;
}
enum flashrom_wp_result wp_write_cfg(struct flashctx *flash, const struct flashrom_wp_cfg *cfg)
{
struct wp_bits bits;
enum flashrom_wp_result ret = FLASHROM_WP_OK;
if (!chip_supported(flash))
ret = FLASHROM_WP_ERR_CHIP_UNSUPPORTED;
if (ret == FLASHROM_WP_OK)
ret = read_wp_bits(&bits, flash);
/* Set protection range */
if (ret == FLASHROM_WP_OK)
ret = set_wp_range(&bits, flash, cfg->range);
if (ret == FLASHROM_WP_OK)
ret = write_wp_bits(flash, bits);
/* Set protection mode */
if (ret == FLASHROM_WP_OK)
ret = set_wp_mode(&bits, cfg->mode);
if (ret == FLASHROM_WP_OK)
ret = write_wp_bits(flash, bits);
return ret;
}
enum flashrom_wp_result wp_get_available_ranges(struct flashrom_wp_ranges **list, struct flashrom_flashctx *flash)
{
struct wp_bits bits;
struct wp_range_and_bits *range_pairs = NULL;
size_t count;
if (!chip_supported(flash))
return FLASHROM_WP_ERR_CHIP_UNSUPPORTED;
enum flashrom_wp_result ret = read_wp_bits(&bits, flash);
if (ret != FLASHROM_WP_OK)
return ret;
ret = get_ranges_and_wp_bits(flash, bits, &range_pairs, &count);
if (ret != FLASHROM_WP_OK)
return ret;
*list = calloc(1, sizeof(struct flashrom_wp_ranges));
struct wp_range *ranges = calloc(count, sizeof(struct wp_range));
if (!(*list) || !ranges) {
free(*list);
free(ranges);
ret = FLASHROM_WP_ERR_OTHER;
goto out;
}
(*list)->count = count;
(*list)->ranges = ranges;
for (size_t i = 0; i < count; i++)
ranges[i] = range_pairs[i].range;
out:
free(range_pairs);
return ret;
}