blob: 7fe09e8d605e0436c4e641770f98b8bd25760f20 [file] [log] [blame]
/* reducer_min_max.h -*- C++ -*-
*
* @copyright
* Copyright (C) 2009-2013, Intel Corporation
* All rights reserved.
*
* @copyright
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* @copyright
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** @file reducer_min_max.h
*
* @brief Defines classes for doing parallel minimum and maximum reductions.
*
* @ingroup ReducersMinMax
*
* @see ReducersMinMax
*/
#ifndef REDUCER_MIN_MAX_H_INCLUDED
#define REDUCER_MIN_MAX_H_INCLUDED
#include <cilk/reducer.h>
#ifdef __cplusplus
#include <algorithm>
#include <limits>
/** @defgroup ReducersMinMax Minimum and Maximum Reducers
*
* Minimum and maximum reducers allow the computation of the minimum or
* maximum of a set of values in parallel.
*
* @ingroup Reducers
*
* You should be familiar with @ref pagereducers "Cilk reducers", described in
* file `reducers.md`, and particularly with @ref reducers_using, before trying
* to use the information in this file.
*
* @section redminmax_usage Usage Examples
*
* cilk::reducer< cilk::op_max<int> > rm;
* cilk_for (int i = 0; i < ARRAY_SIZE; ++i)
* {
* rm->calc_max(a[i]); // or *rm = cilk::max_of(*max, a[i])
* }
* std::cout << "maximum value is " << rm.get_value() << std::endl;
*
* and
*
* cilk::reducer< cilk::op_min_index<int, double> > rmi;
* cilk_for (int i = 0; i < ARRAY_SIZE; ++i)
* {
* rmi->calc_min(i, a[i]) // or *rmi = cilk::min_of(*rmi, i, a[i]);
* }
* std::cout << "minimum value a[" << rmi.get_value().first << "] = "
* << rmi.get_value().second << std::endl;
*
* @section redminmax_monoid The Monoid
*
* @subsection redminmax_monoid_values Value Set
*
* The value set of a minimum or maximum reducer is the set of values of
* `Type`, possibly augmented with a special identity value which is greater
* than (less than) any value of `Type`.
*
* @subsection redminmax_monoid_operator Operator
*
* In the most common case, the operator of a minimum reducer is defined as
*
* x MIN y == (x < y) ? x : y
*
* Thus, `a1 MIN a2 MIN … an` is the first `ai` which is not greater than any
* other `ai`.
*
* The operator of a maximum reducer is defined as
*
* x MAX y == (x > y) ? x : y
*
* Thus, `a1 MAX a2 MAX … an` is the first `ai` which is not less than any
* other `ai`.
*
* @subsection redminmax_monoid_comparators Comparators
*
* Min/max reducers are not limited to finding the minimum or maximum value
* determined by the `<` or `>` operator. In fact, all min/max reducers use a
* _comparator_, which is either a function or an object of a function class
* that defines a [strict weak ordering]
* (http://en.wikipedia.org/wiki/Strict_weak_ordering#Strict_weak_orderings)
* on a set of values. (This is exactly the same as the requirement for the
* comparison predicate for STL associative containers and sorting
* algorithms.)
*
* Just as with STL algorithms and containers, the comparator type parameter
* for min/max reducers is optional. If it is omitted, it defaults to
* `std::less`, which gives the behavior described in the previous section.
* Using non-default comparators (anything other than `std::less`) with
* min/max reducers is just like using them with STL containers and
* algorithms.
*
* Taking comparator objects into account, the reduction operation `MIN` for a
* minimum reducer is defined as
*
* x MIN y == compare(x, y) ? x : y
*
* where `compare()` is the reducer’s comparator. Similarly, the reduction
* operation MAX for a maximum reducer is defined as
*
* x MAX y == compare(y, x) ? x : y
*
* (If `compare(x, y) == x < y`, then `compare(y, x) == x > y`.)
*
* @subsection redminmax_monoid_identity Identity
*
* The identity value of the reducer is the value which is greater than (less
* than) any other value in the value set of the reducer. This is the
* [“special identity value”](#redminmax_monoid_values) if the reducer has
* one, or the largest (smallest) value in the value set otherwise.
*
* @section redminmax_index Value and Index Reducers
*
* Min/max reducers come in two families. The _value_ reducers, using `op_min`
* and `op_max` monoids, simply find the smallest or largest value from a set
* of values. The _index_ reducers, using `op_min_index` and `op_max_index`
* monoids, also record an index value associated with the first occurrence of
* the smallest or largest value.
*
* In the `%op_min_index` usage example [above](#redminmax_usage), the values
* are taken from an array, and the index of a value is the index of the array
* element it comes from. More generally, though, an index can be any sort of
* key which identifies a particular value in a collection of values. For
* example, if the values were taken from the nodes of a tree, then the
* “index” of a value might be a pointer to the node containing that value.
*
* A min/max index reducer is essentially the same as a min/max value reducer
* whose value type is an (index, value) pair, and whose comparator ignores
* the index part of the pair. (index, value) pairs are represented by
* `std::pair<Index, Type>` objects. This has the consequence that wherever
* the interface of a min/max value reducer has a `Type`, the interface of the
* corresponding min/max index reducer has a `std::pair<Index, Type>`. (There
* are convenience variants of the `reducer(Type)` constructor and the
* `calc_min()`, `calc_max()`, `%min_of()`, and `%max_of()` functions that
* take an index argument and a value argument instead of an index/value
* pair.)
*
* @section redminmax_operations Operations
*
* @subsection redminmax_constructors Constructors
*
* @subsubsection redminmax_constructors_value Min/Max Value Reducers
*
* reducer() // identity
* reducer(const Compare& compare) // identity
* reducer(const Type& value)
* reducer(move_in(Type& variable))
* reducer(const Type& value, const Compare& compare)
* reducer(move_in(Type& variable), const Compare& compare)
*
* @subsubsection redminmax_constructors_index Min/Max Index Reducers
*
* reducer() // identity
* reducer(const Compare& compare) // identity
* reducer(const std::pair<Index, Type>& pair)
* reducer(const Index& index, const Type& value)
* reducer(move_in(std::pair<Index, Type>& variable))
* reducer(const std::pair<Index, Type>& pair, const Compare& compare)
* reducer(const Index& index, const Type& value, const Compare& compare)
* reducer(move_in(std::pair<Index, Type>& variable), const Compare& compare)
*
* @subsection redminmax_get_set Set and Get
*
* r.set_value(const Type& value)
* Type = r.get_value() const
* r.move_in(Type& variable)
* r.move_out(Type& variable)
*
* Note that for an index reducer, the `Type` in these operations is actually a
* `std::pair<Index, Type>`. (See @ref redminmax_index.) There is _not_ a
* `set_value(value, index)` operation.
*
* @subsection redminmax_initial Initial Values and is_set()
*
* A minimum or maximum reducer without a specified initial value, before any
* MIN or MAX operation has been performed on it, represents the [identity
* value](#redminmax_monoid_identity) of its monoid. For value reducers with a
* numeric type and default comparator (`std::less`), this will be a well
* defined value. For example,
*
* reducer< op_max<unsigned> > r1;
* // r1.get_value() == 0
*
* reducer< op_min<float> > r2;
* // r2.get_value() == std::numeric_limits<float>::infinity
*
* In other cases, though (index reducers, non-numeric types, or non-default
* comparators), the actual identity value for the monoid may be unknown, or
* it may not even be a value of the reducer’s type. For example, there is no
* “largest string” to serve as the initial value for a
* `reducer< op_min<std::string> >`. In these cases, the result of calling
* `get_value()` is undefined.
*
* To avoid calling `get_value()` when its result is undefined, you can call
* the view’s `is_set()` function, which will return true if the reducer
* has a well-defined value — either because a MIN or MAX operation has been
* performed, or because it had a well-defined initial value:
*
* reducer< op_max<unsigned> > r1;
* // r1->is_set() == true
* // r1.get_value() == 0
*
* reducer< op_min<std::string> > r2;
* // r2->is_set() == false
* // r2.get_value() is undefined
* r2->calc_min("xyzzy");
* // r2->is_set() == true
* // r2.get_value() == "xyzzy"
*
* > Note: For an index reducer without a specified initial value, the
* > initial value of the index is the default value of the `Index` type.
*
* @subsection redminmax_view_ops View Operations
*
* The basic reduction operation is `x = x MIN a` for a minimum reducer, or
* `x = x MAX a` for a maximum reducer. The basic syntax for these operations
* uses the `calc_min()` and `calc_max()` member functions of the view class.
* An assignment syntax is also provided, using the %cilk::min_of() and
* %cilk::max_of() global functions:
*
* Class | Modifier | Assignment
* ---------------|---------------------|-----------
* `op_min` | `r->calc_min(x)` | `*r = min_of(*r, x)` or `*r = min_of(x, *r)`
* `op_max` | `r->calc_max(x)` | `*r = max_of(*r, x)` or `*r = max_of(x, *r)`
* `op_min_index` | `r->calc_min(i, x)` | `*r = min_of(*r, i, x)` or `*r = min_of(i, x, *r)`
* `op_max_index` | `r->calc_max(i, x)` | `*r = max_of(*r, i, x)` or `*r = max_of(i, x, *r)`
*
* Wherever an “`i`, `x`” argument pair is shown in the table above, a single
* pair argument may be passed instead. For example:
*
* Index index;
* Type value;
* std::pair<Index, Type> ind_val(index, value);
* // The following statements are all equivalent.
* r->calc_min(index, value);
* r->calc_min(ind_val);
* *r = min_of(*r, index, value);
* *r = min_of(*r, ind_val);
*
* The `calc_min()` and `calc_max()` member functions return a reference to
* the view, so they can be chained:
*
* r->calc_max(x).calc_max(y).calc_max(z);
*
* In a `%min_of()` or `%max_of()` assignment, the view on the left-hand side
* of the assignment must be the same as the view argument in the call.
* Otherwise, the behavior is undefined (but an assertion error will occur if
* the code is compiled with debugging enabled).
*
* *r = max_of(*r, x); // OK
* *r1 = max_of(*r2, y); // ERROR
*
* `%min_of()` and `%max_of()` calls can be nested:
*
* *r = max_of(max_of(max_of(*r, x), y), z);
* *r = min_of(i, a[i], min_of(j, a[j], min_of(k, a[k], *r)));
*
* @section redminmax_compatibility Compatibility Issues
*
* Most Cilk library reducers provide
* * Binary compatibility between `reducer_KIND` reducers compiled with Cilk
* library version 0.9 (distributed with Intel® C++ Composer XE version
* 13.0 and earlier) and the same reducers compiled with Cilk library
* version 1.0 and later.
* * Transparent casting between references to `reducer<op_KIND>` and
* `reducer_KIND`.
*
* This compatibility is not available in all cases for min/max reducers.
* There are two areas of incompatibility.
*
* @subsection redminmax_compatibility_stateful Non-empty Comparators
*
* There is no way to provide binary compatibility between the 0.9 and 1.0
* definitions of min/max reducers that use a non-empty comparator class or a
* comparator function. (Empty comparator classes like `std::less` are not a
* problem.)
*
* To avoid run-time surprises, the legacy `reducer_{min|max}[_index]` classes
* have been coded in the 1.0 library so that they will not even compile when
* instantiated with a non-empty comparator class.
*
* @subsection redminmax_compatibility_optimized Numeric Optimization
*
* Min/max reducers with a numeric value type and the default comparator can
* be implemented slightly more efficiently than other min/max reducers.
* However, the optimization is incompatible with the 0.9 library
* implementation of min/max reducers.
*
* The default min/max reducers implementation in the 1.0 library uses this
* numeric optimization. Code using legacy reducers compiled with the 1.0
* library can be safely used in the same program as code compiled with the
* 0.9 library, but classes compiled with the different Cilk libraries will be
* defined in different namespaces.
*
* The simplest solution is just to recompile the code that was compiled with
* the older version of Cilk. However, if this is impossible, you can define
* the `CILK_LIBRARY_0_9_REDUCER_MINMAX` macro (on the compiler command line,
* or in your source code before including `reducer_min_max.h`) when compiling
* with the new library. This will cause it to generate numeric reducers that
* will be less efficient, but will be fully compatible with previously
* compiled code. (Note that this macro has no effect on [the non-empty
* comparator incompatibility] (redminmax_compatibility_stateful).)
*
* @section redminmax_types Type Requirements
*
* `Type` and `Index` must be `Copy Constructible`, `Default Constructible`,
* and `Assignable`.
*
* `Compare` must be `Copy Constructible` if the reducer is constructed with a
* `compare` argument, and `Default Constructible` otherwise.
*
* The `Compare` function must induce a strict weak ordering on the elements
* of `Type`.
*
* @section redminmax_in_c Minimum and Maximum Reducers in C
*
* These macros can be used to do minimum and maximum reductions in C:
*
* Declaration | Type | Operation
* -----------------------------|-----------------------------------|----------
* @ref CILK_C_REDUCER_MIN |@ref CILK_C_REDUCER_MIN_TYPE |@ref CILK_C_REDUCER_MIN_CALC
* @ref CILK_C_REDUCER_MAX |@ref CILK_C_REDUCER_MAX_TYPE |@ref CILK_C_REDUCER_MAX_CALC
* @ref CILK_C_REDUCER_MIN_INDEX |@ref CILK_C_REDUCER_MIN_INDEX_TYPE |@ref CILK_C_REDUCER_MIN_INDEX_CALC
* @ref CILK_C_REDUCER_MAX_INDEX |@ref CILK_C_REDUCER_MAX_INDEX_TYPE |@ref CILK_C_REDUCER_MAX_INDEX_CALC
*
* For example:
*
* CILK_C_REDUCER_MIN(r, int, INT_MAX);
* CILK_C_REGISTER_REDUCER(r);
* cilk_for(int i = 0; i != n; ++i) {
* CILK_C_REDUCER_MIN_CALC(r, a[i]);
* }
* CILK_C_UNREGISTER_REDUCER(r);
* printf("The smallest value in a is %d\n", REDUCER_VIEW(r));
*
*
* CILK_C_REDUCER_MAX_INDEX(r, uint, 0);
* CILK_C_REGISTER_REDUCER(r);
* cilk_for(int i = 0; i != n; ++i) {
* CILK_C_REDUCER_MAX_INDEX_CALC(r, i, a[i]);
* }
* CILK_C_UNREGISTER_REDUCER(r);
* printf("The largest value in a is %u at %d\n",
* REDUCER_VIEW (r).value, REDUCER_VIEW(r).index);
*
* See @ref reducers_c_predefined.
*/
namespace cilk {
/** @defgroup ReducersMinMaxBinComp Binary compatibility
*
* If the macro CILK_LIBRARY_0_9_REDUCER_MINMAX is defined, then we generate
* reducer code and data structures which are binary-compatible with code that
* was compiled with the old min/max wrapper definitions, so we want the
* mangled names of the legacy min/max reducer wrapper classes to be the
* same as the names produced by the old definitions.
*
* Conversely, if the macro is not defined, then we generate binary-
* incompatible code, so we want different mangled names, to make sure that
* the linker does not allow new and old compiled legacy wrappers to be passed
* to one another. (Global variables are a different, and probably insoluble,
* problem.)
*
* Similarly, min/max classes compiled with and without
* CILK_LIBRARY_0_9_REDUCER_MINMAX are binary-incompatible, and must get
* different mangled names.
*
* The trick is, when compiling in normal (non-compatibility) mode, wrap
* everything in an extra namespace, and then `use` it into the top-level cilk
* namespace. Then
*
* * Classes and functions compiled in normal mode will be in
* different namespaces from the same classes and functions compiled in
* compatibility mode.
* * The legacy wrapper classes and functions will be in the same namespace
* as the same classes and functions compiled with the0.9 library if and
* only if the are compiled in compatibility mode.
*
* @ingroup ReducersMinMax
*/
#ifndef CILK_LIBRARY_0_9_REDUCER_MINMAX
/** Namespace to wrap min/max reducer definitions when not compiling in “binary
* compatibility” mode.
*
* By default, all of the min/max reducer definitions are defined in this
* namespace and then imported into namespace ::cilk, so that they do not
* clash with the legacy definitions with the same names. However, if the
* macro `CILK_LIBRARY_0_9_REDUCER_MINMAX` is defined, then the min/max
* definitions go directly into namespace ::cilk, so that, for example,
* cilk::reducer_max defined with the 1.0 library is equivalent (to the
* linker) to cilk::reducer_max defined with the 0.9 library.
*
* @ingroup ReducersMinMaxBinComp
* @ingroup ReducersMinMax
*/
namespace cilk_lib_1_0 {
#endif
/** Namespace containing internal implementation classes and functions for
* min/max reducers.
*
* @ingroup ReducersMinMax
*/
namespace min_max_internal {
using ::cilk::internal::binary_functor;
using ::cilk::internal::typed_indirect_binary_function;
using ::cilk::internal::class_is_empty;
/** @defgroup ReducersMinMaxIsSet The “is_set optimization”
*
* The obvious definition of the identity value for a max or min reducer is as
* the smallest (or largest) value of the value type. However, for an
* arbitrary comparator and/or an arbitrary value type, the largest / smallest
* value may not be known. It may not even be defined — what is the largest
* string?
*
* Therefore, min/max reducers represent their value internally as a pair
* `(value, is_set)`. When `is_set` is true, the pair represents the known
* value `value`; when `is_set` is false, the pair represents the identity
* value.
*
* This is an effective solution, but the most common use of min/max reducers
* is probably with numeric types and the default definition of minimum or
* maximum (using `std::less`), in which case there are well-defined, knowable
* smallest and largest values. Testing `is_set` for every comparison is then
* unnecessary and wasteful.
*
* The “is_set optimization” just means generating code that doesn’t use
* `is_set` when it isn’t needed. It is implemented using two metaprogramming
* classes:
*
* - do_is_set_optimization tests whether the optimization is applicable.
* - identity_value gets the appropriate identity value for a type.
*
* The is_set optimization is the reason that min/max reducers compiled with
* Cilk library 1.0 are binary-incompatible with the same reducers compiled
* with library 0.9, and therefore the optimization is suppressed when
* compiling in
* ReducersMinMaxBinComp "binary compatibility mode".
*
* @ingroup ReducersMinMax
*/
/** Test whether the ReducersMinMaxIsSet "is_set optimization" is
* applicable.
*
* The @ref do_is_set_optimization class is used to test whether the is_set
* optimization should be applied for a particular reducer. It is instantiated
* with a value type and a comparator, and defines a boolean constant,
* `value`. Then `%do_is_set_optimization<Type, Comp>::%value` can be used as
* a boolean template parameter to control the specialization of another
* class.
*
* In ReducersMinMaxBinComp "binary compatibility mode", when the
* `CILK_LIBRARY_0_9_REDUCER_MINMAX` macro is defined, `value` will always
* be false.
*
* @tparam Type The value type for the reducer.
* @tparam Compare The comparator type for the reducer.
*
* @result The `value` data member will be `true` if @a Type is a numeric
* type, @a Compare is `std::less<Type>`, and
* `CILK_LIBRARY_0_9_REDUCER_MINMAX` is not defined.
*
* @see ReducersMinMaxIsSet
* @see @ref view_content
*
* @ingroup ReducersMinMaxIsSet
*/
template < typename Type,
typename Compare >
struct do_is_set_optimization
{
/// `True` if the is_set optimization should be applied to min/max reducers
/// with this value type and comparator; `false` otherwise.
static const bool value = false;
};
#ifndef CILK_LIBRARY_0_9_REDUCER_MINMAX
/// @cond
template <typename Type>
struct do_is_set_optimization<Type, std::less<Type> >
{
/// True in the special case where optimization is possible.
static const bool value = std::numeric_limits<Type>::is_specialized;
};
/// @endcond
#endif
/** Get the identity value when using the ReducersMinMaxIsSet
* "is_set optimization".
*
* This class defines a function which assigns the appropriate identity value
* to a variable when the is_set optimization is applicable.
*
* @tparam Type The value type for the reducer.
* @tparam Compare The comparator type for the reducer.
* @tparam ForMax `true` to get the identity value for a max reducer (i.e.,
* the smallest value of @a Type), `false` to get the identity
* value for a min reducer (i.e., the largest value of
* @a Type).
*
* @result If @a Type and @a Compare qualify for the is_set optimization, the
* `set_identity()' function will set its argument variable to the
* smallest or largest value of @a Type, depending on @a ForMax.
* Otherwise, `set_identity()` will be a no-op.
*
* @see ReducersMinMaxIsSet
*
* @ingroup ReducersMinMaxIsSet
* @see @ref view_content
*/
template < typename Type,
typename Compare,
bool ForMax,
bool = std::numeric_limits<Type>::is_specialized,
bool = std::numeric_limits<Type>::has_infinity >
struct identity_value {
/// Assign the identity value to the reference parameter.
static void set_identity(Type&) {}
};
/// @cond
template <typename Type>
struct identity_value<Type, std::less<Type>, true, true, true> {
/// Floating max identity is negative infinity.
static void set_identity(Type& id)
{ id = -std::numeric_limits<Type>::infinity(); }
};
template <typename Type>
struct identity_value<Type, std::less<Type>, true, true, false> {
/// Integer max identity is minimum value of type.
static void set_identity(Type& id)
{ id = std::numeric_limits<Type>::min(); }
};
template <typename Type>
struct identity_value<Type, std::less<Type>, false, true, true> {
/// Floating min identity is positive infinity.
static void set_identity(Type& id)
{ id = std::numeric_limits<Type>::infinity(); }
};
template <typename Type>
struct identity_value<Type, std::less<Type>, false, true, false> {
/// Integer min identity is maximum value of type.
static void set_identity(Type& id)
{ id = std::numeric_limits<Type>::max(); }
};
/// @endcond
/** Adapter class to reverse the arguments of a predicate.
*
* Observe that:
*
* (x < y) == (y > x)
* max(x, y) == (x < y) ? y : x
* min(x, y) == (y < x) ? y : x == (x > y) ? y : x
*
* More generally, if `c` is a predicate defining a `Strict Weak Ordering`,
* and `c*(x, y) == c(y, x)`, then
*
* max(x, y, c) == c(x, y) ? y : x
* min(x, y, c) == c(y, x) ? y : x == c*(x, y) ? y : x == max(x, y, c*)
*
* For any predicate `C` with argument type `T`, the template class
* `%reverse_predicate<C, T>` defines a predicate which is identical to `C`,
* except that its arguments are reversed. Thus, for example, we could
* implement `%op_min_view<Type, Compare>` as
* `%op_max_view<Type, %reverse_predicate<Compare, Type> >`.
* (Actually, op_min_view and op_max_view are both implemented as subclasses
* of a common base class, view_base.)
*
* @note If `C` is an empty functor class, then `reverse_predicate(C)` will
* also be an empty functor class.
*
* @tparam Predicate The predicate whose arguments are to be reversed.
* @tparam Argument @a Predicate’s argument type.
*
* @ingroup ReducersMinMax
*/
template <typename Predicate,
typename Argument = typename Predicate::first_argument_type>
class reverse_predicate : private binary_functor<Predicate>::type {
typedef typename binary_functor<Predicate>::type base;
public:
/// Default constructor
reverse_predicate() : base() {}
/// Constructor with predicate object
reverse_predicate(const Predicate& p) : base(p) {}
/// The reversed predicate operation
bool operator()(const Argument& x, const Argument& y) const
{ return base::operator()(y, x); }
};
/** Class to represent the comparator for a min/max view class.
*
* This class is intended to accomplish two objectives in the implementation
* of min/max views.
*
* 1. To minimize data bloat, when we have a reducer with a non-stateless
* comparator, we want to keep a single instance of the comparator object
* in the monoid, and just call it from the views.
* 2. In ReducersMinMaxBinComp "binary compatibility mode", views for
* reducers with a stateless comparator must have the same content as in
* Cilk library 0.9 — that is, they must contain only `value` and
* `is_set` data members.
*
* To achieve the first objective, we use the
* @ref internal::typed_indirect_binary_function class defined in
* metaprogramming.h to wrap a pointer to the actual comparator. If no
* pointer is needed because the actual comparator is stateless, the
* `typed_indirect_binary_function` class will be empty, too.
*
* To achieve the second objective, we make the
* `typed_indirect_binary_function` class a base class of the view rather than
* a data member, so the “empty base class” rule will ensure no that no
* additional space is allocated in the view unless it is needed.
*
* We could simply use typed_indirect_binary_function as the base class of the
* view, but this would mean writing comparisons as `(*this)(x, y)`, which is
* just weird. So, instead, we comparator_base as a subclass of
* typed_indirect_binary_function which provides function `compare()`
* as a synonym for `operator()`.
*
* @tparam Type The value type of the comparator class.
* @tparam Compare A predicate class.
*
* @see internal::typed_indirect_binary_function
*
* @ingroup ReducersMinMax
*/
template <typename Type, typename Compare>
class comparator_base : private typed_indirect_binary_function<Compare, Type, Type, bool>
{
typedef typed_indirect_binary_function<Compare, Type, Type, bool> base;
protected:
comparator_base(const Compare* f) : base(f) {} ///< Constructor.
/// Comparison function.
bool compare(const Type& a, const Type& b) const
{
return base::operator()(a, b);
}
/// Get the comparator pointer.
const Compare* compare_pointer() const { return base::pointer(); }
};
/** @defgroup ReducersMinMaxViewContent Content classes for min/max views
*
* @ingroup ReducersMinMax
*
* Minimum and maximum reducer view classes inherit from a “view content”
* class. The content class defines the actual data members for the view,
* and provides typedefs and member functions for accessing the data members
* as needed to support the view functionality.
*
* There are two content classes, which encapsulate the differences between
* simple min/max reducers and min/max with index reducers:
*
* - view_content
* - index_view_content
*
* @note An obvious, and arguably simpler, encapsulation strategy would be
* to just let the `Type` of a min/max view be an (index, value) pair
* structure for min_index and max_index reducers. Then all views
* would just have a `Type` data member and an `is_set` data member,
* and the comparator for min_index and max_index views could be
* customized to consider only the value component of the (index,
* value) `Type` pair. Unfortunately, this would break binary
* compatibility with reducer_max_index and reducer_min_index in
* Cilk library 0.9, because the memory layout of an (index, value)
* pair followed by a `bool` is different from the memory layout of an
* index data member followed by a value data member followed by a
* `bool` data member. The content class is designed to exactly
* replicate the layout of the views in library 0.9 reducers.
*
* A content class `C`, and its objects `c`, must define the following:
*
* Definition | Meaning
* ------------------------------------|--------
* `C::value_type` | A typedef for `Type` of the view. (A `std::pair<Index, Type>` for min_index and max_index views).
* `C::comp_value_type` | A typedef for the type of value compared by the view’s `compare()` function.
* `C()` | Constructs the content with the identity value.
* `C(const value_type&)` | Constructs the content with a specified value.
* `c.is_set()` | Returns true if the content has a known value.
* `c.value()` | Returns the content’s value.
* `c.set_value(const value_type&)` | Sets the content’s value. (The value becomes known.)
* `c.comp_value()` | Returns a const reference to the value or component of the value that is to be compared by the view’s comparator.
* `C::comp_value(const value_type&)` | Returns a const reference to a value or component of a value that is to be compared by the view’s comparator.
*
* @see view_base
*/
/** Content class for op_min_view and op_max_view.
*
* @tparam Type The value type of the op_min_view or op_max_view.
* @tparam Compare The comparator class specified for the op_min_view or
* op_max_view. (_Not_ the derived comparator class actually
* used by the view_base. For example, the view_content of an
* `op_min_view<int>` will have `Compare = std::less<int>`,
* but its comparator_base will have
* `Compare = reverse_predicate< std::less<int> >`.)
* @tparam ForMax `true` if this is the content class for an op_max_view,
* `false` if it is for an op_min_view.
*
* @note The general implementation of view_content uses an `is_set` data
* member. There is also a specialization which implements the
* ReducersMinMaxIsSet "is_set optimization". View classes that
* inherit from view_content do not need to know anything about the
* difference, though; the details are abstracted away in the
* view_content interface.
*
* @see ReducersMinMaxViewContent
*
* @ingroup ReducersMinMaxViewContent
* @ingroup ReducersMinMax
*/
template < typename Type
, typename Compare
, bool ForMax
, bool = do_is_set_optimization<Type, Compare>::value
>
class view_content {
Type m_value;
bool m_is_set;
public:
/// The value type of the view.
typedef Type value_type;
/// The type compared by the view’s `compare()` function (which is the same
/// as the value type for view_content).
typedef Type comp_value_type;
/// Construct with the identity value.
view_content() : m_value(), m_is_set(false) {}
/// Construct with a defined value.
view_content(const value_type& value) : m_value(value), m_is_set(true) {}
/// Get the value.
value_type value() const { return m_value; }
/// Set the value.
void set_value(const value_type& value)
{
m_value = value;
m_is_set = true;
}
/// Get the comparison value (which is the same as the value for
/// view_content).
const comp_value_type& comp_value() const { return m_value; }
/// Given an arbitrary value, get the corresponding comparison value (which
/// is the same as the value for view_content).
static const comp_value_type& comp_value(const value_type& value)
{
return value;
}
/// Get a const reference to value part of the value (which is the same as
/// the value for view_content).
const Type& get_reference() const { return m_value; }
/// Get a const reference to the index part of the value (which is
/// meaningless for non-index reducers, but required for view_base.
const Type& get_index_reference() const { return m_value; }
/// Test if the value is defined.
bool is_set() const { return m_is_set; }
};
/// @cond
/* This is the specialization of the view_content class for cases where
* `AssumeIsSet` is true (i.e., where the is_set optimization is applicable).
*/
template < typename Type
, typename Compare
, bool ForMax
>
class view_content<Type, Compare, ForMax, true> {
typedef identity_value<Type, Compare, ForMax> Identity;
Type m_value;
public:
typedef Type value_type;
typedef Type comp_value_type;
/// Construct with identity value.
view_content() { Identity::set_identity(m_value); }
view_content(const value_type& value) : m_value(value) {}
value_type value() const { return m_value; }
void set_value(const value_type& value)
{
m_value = value;
}
const comp_value_type& comp_value() const { return m_value; }
static const comp_value_type& comp_value(const value_type& value)
{
return value;
}
const Type& get_reference() const { return m_value; }
const Type& get_index_reference() const { return m_value; }
/// Test if the value is defined.
bool is_set() const { return true; }
};
/// @endcond
/** Content class for op_min_index_view and op_max_index_view.
*
* @tparam Index The index type of the op_min_index_view or
op_max_index_view.
* @tparam Type The value type of the op_min_view or op_max_view. (_Not_
* the value type of the view, which will be
* `std::pair<Index, Type>`.)
* @tparam Compare The comparator class specified for the op_min_index_view or
* op_max_index_view. (_Not_ the derived comparator class
* actually used by the view_base. For example, the
* index_view_content of an `op_min_index_view<int>` will have
* `Compare = std::less<int>`, but its comparator_base will
* have `Compare = reverse_predicate< std::less<int> >`.)
* @tparam ForMax `true` if this is the content class for an
* op_max_index_view, `false` if it is for an
* op_min_index_view.
*
* @see ReducersMinMaxViewContent
*
* @ingroup ReducersMinMaxViewContent
* @ingroup ReducersMinMax
*/
template < typename Index
, typename Type
, typename Compare
, bool ForMax
>
class index_view_content {
typedef identity_value<Type, Compare, ForMax> Identity;
Index m_index;
Type m_value;
bool m_is_set;
public:
/// The value type of the view (which is an <index, value> pair for
/// index_view_content).
typedef std::pair<Index, Type> value_type;
/// The type compared by the view’s `compare()` function (which is the data
/// value type for index_view_content).
typedef Type comp_value_type;
/// Construct with the identity value.
index_view_content() : m_index(), m_value(), m_is_set(false) {}
/// Construct with an index/value pair.
index_view_content(const value_type& value) :
m_index(value.first), m_value(value.second), m_is_set(true) {}
/// Construct with an index and a value.
index_view_content(const Index& index, const Type& value) :
m_index(index), m_value(value), m_is_set(true) {}
/// Construct with just an index.
index_view_content(const Index& index) :
m_index(index), m_value(), m_is_set(false) {}
/// Get the value.
value_type value() const { return value_type(m_index, m_value); }
/// Set value.
void set_value(const value_type& value)
{
m_index = value.first;
m_value = value.second;
m_is_set = true;
}
/// Get the comparison value (which is the value component of the
/// index/value pair for index_view_content).
const comp_value_type& comp_value() const { return m_value; }
/// Given an arbitrary value (i.e., index/value pair), get the
/// corresponding comparison value (which is the value component of the
/// index/value pair for index_view_content).
static const comp_value_type& comp_value(const value_type& value)
{ return value.second; }
/// Get a const reference to value part of the value.
const Type& get_reference() const { return m_value; }
/// Get a const reference to the index part of the value.
const Index& get_index_reference() const { return m_index; }
/// Test if the value is defined.
bool is_set() const { return m_is_set; }
};
template <typename View> class rhs_proxy;
/** Create an rhs_proxy.
*/
template <typename View>
inline rhs_proxy<View>
make_proxy(const typename View::value_type& value, const View& view);
template <typename Content, typename Less, typename Compare> class view_base;
/** Class to represent the right-hand side of
* `*reducer = {min|max}_of(*reducer, value)`.
*
* The only assignment operator for a min/max view class takes a rhs_proxy as
* its operand. This results in the syntactic restriction that the only
* expressions that can be assigned to a min/max view are ones which generate
* an rhs_proxy — that is, expressions of the form `max_of(view, value)` and
* `min_of(view, value)`.
*
* @warning
* The lhs and rhs views in such an assignment must be the same; otherwise,
* the behavior will be undefined. (I.e., `*r1 = min_of(*r1, x)` is legal;
* `*r1 = min_of(*r2, x)` is illegal.) This condition will be checked with a
* runtime assertion when compiled in debug mode.
*
* @tparam View The view class (op_{min|max}[_index]_view) that this proxy
* was created from.
*
* @see view_base
*
* @ingroup ReducersMinMax
*/
template <typename View>
class rhs_proxy {
typedef typename View::less_type less_type;
typedef typename View::compare_type compare_type;
typedef typename View::value_type value_type;
typedef typename View::content_type content_type;
typedef typename content_type::comp_value_type comp_value_type;
friend class view_base<content_type, less_type, compare_type>;
friend rhs_proxy make_proxy<View>(
const typename View::value_type& value,
const View& view);
typed_indirect_binary_function<
compare_type, comp_value_type, comp_value_type, bool>
m_comp;
const View* m_view;
value_type m_value;
rhs_proxy& operator=(const rhs_proxy&); // Disable assignment operator
rhs_proxy(); // Disable default constructor
// Constructor (called from view_base::make_proxy).
rhs_proxy(const View* view,
const value_type& value,
const compare_type* compare) :
m_view(view), m_value(value), m_comp(compare) {}
// Check matching view, then return value (called from view_base::assign).
value_type value(const typename View::base* view) const
{
__CILKRTS_ASSERT(view == m_view);
return m_value;
}
public:
/** Support max_of(max_of(view, value), value) and the like.
*/
rhs_proxy calc(const value_type& x) const
{
return rhs_proxy(
m_view,
m_comp( content_type::comp_value(m_value),
content_type::comp_value(x)
) ? x : m_value,
m_comp.pointer());
}
};
template <typename View>
inline rhs_proxy<View>
make_proxy(const typename View::value_type& value, const View& view)
{
return rhs_proxy<View>(&view, value, view.compare_pointer());
}
//@}
/** Base class for min and max view classes.
*
* This class accumulates the minimum or maximum of a set of values which have
* occurred as arguments to the `calc()` function, as determined by a
* comparator. The accumulated value will be the first `calc()` argument value
* `x` such that `compare(x, y)` is false for every `calc()` argument value
* `y`.
*
* If the comparator is `std::less`, then the accumulated value is the first
* argument value which is not less than any other argument value, i.e., the
* maximum. Similarly, if the comparator is `reverse_predicate<std::less>`,
* which is equivalent to `std::greater`, then the accumulated value is the
* first argument value which is not greater than any other argument value,
* i.e., the minimum.
*
* @note This class provides the definitions that are required for a class
* that will be used as the parameter of a
* min_max_internal::monoid_base specialization.
*
* @tparam Content A content class that provides the value types and data
* members for the view.
* @tparam Less A “less than” binary predicate that defines the min or
* max function.
* @tparam Compare A binary predicate to be used to compare the values.
* (The same as @a Less for max reducers; its reversal for
* min reducers.)
*
* @see ReducersMinMaxViewContent
* @see op_max_view
* @see op_min_view
* @see op_max_index_view
* @see op_min_index_view
* @see monoid_base
*
* @ingroup ReducersMinMax
*/
template <typename Content, typename Less, typename Compare>
class view_base :
// comparator_base comes first to ensure that it will get empty base class
// treatment
private comparator_base<typename Content::comp_value_type, Compare>,
private Content
{
typedef comparator_base<typename Content::comp_value_type, Compare> base;
using base::compare;
using Content::value;
using Content::set_value;
using Content::comp_value;
typedef Content content_type;
template <typename View> friend class rhs_proxy;
template <typename View>
friend rhs_proxy<View> make_proxy(const typename View::value_type& value, const View& view);
public:
/** @name Monoid support.
*/
//@{
/** Value type. Required by @ref monoid_with_view.
*/
typedef typename Content::value_type value_type;
/** The type of the comparator specified by the user, that defines the
* ordering on @a Type. Required by min_max::monoid_base.
*/
typedef Less less_type;
/** The type of the comparator actually used by the view. Required by
* min_max::monoid_base. (This is the same as the @ref less_type for a
* max reducer, or `reverse_predicate<less_type>` for a min reducer.)
*/
typedef Compare compare_type;
/** Reduce operation. Required by @ref monoid_with_view.
*/
void reduce(view_base* other)
{
if ( other->is_set() &&
( !this->is_set() ||
compare(this->comp_value(), other->comp_value()) ) )
{
this->set_value(other->value());
}
}
//@}
/** Default constructor. Initializes to identity value.
*/
explicit view_base(const compare_type* compare) :
base(compare), Content() {}
/** Value constructor.
*/
template <typename T1>
view_base(const T1& x1, const compare_type* compare) :
base(compare), Content(x1) {}
/** Value constructor.
*/
template <typename T1, typename T2>
view_base(const T1& x1, const T2& x2, const compare_type* compare) :
base(compare), Content(x1, x2) {}
/** Move-in constructor.
*/
explicit view_base(move_in_wrapper<value_type> w, const compare_type* compare) :
base(compare), Content(w.value()) {}
/** @name Reducer support.
*/
//@{
void view_move_in(value_type& v) { set_value(v); }
void view_move_out(value_type& v) { v = value(); }
void view_set_value(const value_type& v) { set_value(v); }
value_type view_get_value() const { return value(); }
// view_get_reference() NOT SUPPORTED
//@}
/** Is the value defined?
*/
using Content::is_set;
/** Reference to contained value data member.
* @deprecated For legacy reducers only.
*/
using Content::get_reference;
/** Reference to contained index data member.
* (Meaningless for non-index reducers.)
* @deprecated For legacy reducers only.
*/
using Content::get_index_reference;
protected:
/** Update the min/max value.
*/
void calc(const value_type& x)
{
if (!is_set() || compare(comp_value(), comp_value(x))) set_value(x);
}
/** Assign the result of a `{min|max}_of(view, value)` expression to the
* view.
*
* @see rhs_proxy
*/
template <typename View>
void assign(const rhs_proxy<View>& rhs)
{
calc(rhs.value(this));
}
};
/** Base class for min and max monoid classes.
*
* The unique characteristic of minimum and maximum reducers is that they
* incorporate a comparator functor that defines what “minimum” or “maximum”
* means. The monoid for a reducer contains the comparator that will be used
* for the reduction. If the comparator is a function or a class with state,
* then each view will have a pointer to the comparator.
*
* This means that the `construct()` functions first construct the monoid
* (possibly with an explicit comparator argument), and then construct the
* view with a pointer to the monoid’s comparator.
*
* @tparam View The view class.
* @tparam Align If true, reducers instantiated on this monoid will be
* aligned. By default, library reducers (unlike legacy
* library reducer _wrappers_) are unaligned.
*
* @see view_base
*
* @ingroup ReducersMinMax
*/
template <typename View, bool Align = false>
class monoid_base : public monoid_with_view<View, Align>
{
typedef typename View::compare_type compare_type;
typedef typename View::less_type less_type;
const compare_type m_compare;
const compare_type* compare_pointer() const { return &m_compare; }
using cilk::monoid_base<typename View::value_type, View>::provisional;
public:
/** Default constructor uses default comparator.
*/
monoid_base() : m_compare() {}
/** Constructor.
*
* @param compare The comparator to use.
*/
monoid_base(const compare_type& compare) : m_compare(compare) {}
/** Create an identity view.
*
* List view identity constructors take the list allocator as an argument.
*
* @param v The address of the uninitialized memory in which the view
* will be constructed.
*/
void identity(View *v) const { ::new((void*) v) View(compare_pointer()); }
/** @name construct functions
*
* Min/max monoid `construct()` functions optionally take one or two value
* arguments, a @ref move_in argument, and/or a comparator argument.
*/
//@{
template <typename Monoid>
static void construct(Monoid* monoid, View* view)
{ provisional( new ((void*)monoid) Monoid() ).confirm_if(
new ((void*)view) View(monoid->compare_pointer()) ); }
template <typename Monoid, typename T1>
static void construct(Monoid* monoid, View* view, const T1& x1)
{ provisional( new ((void*)monoid) Monoid() ).confirm_if(
new ((void*)view) View(x1, monoid->compare_pointer()) ); }
template <typename Monoid, typename T1, typename T2>
static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2)
{ provisional( new ((void*)monoid) Monoid() ).confirm_if(
new ((void*)view) View(x1, x2, monoid->compare_pointer()) ); }
template <typename Monoid>
static void construct(Monoid* monoid, View* view, const less_type& compare)
{ provisional( new ((void*)monoid) Monoid(compare) ).confirm_if(
new ((void*)view) View(monoid->compare_pointer()) ); }
template <typename Monoid, typename T1>
static void construct(Monoid* monoid, View* view, const T1& x1, const less_type& compare)
{ provisional( new ((void*)monoid) Monoid(compare) ).confirm_if(
new ((void*)view) View(x1, monoid->compare_pointer()) ); }
template <typename Monoid, typename T1, typename T2>
static void construct(Monoid* monoid, View* view, const T1& x1, const T2& x2, const less_type& compare)
{ provisional( new ((void*)monoid) Monoid(compare) ).confirm_if(
new ((void*)view) View(x1, x2, monoid->compare_pointer()) ); }
//@}
};
} //namespace min_max_internal
/** @defgroup ReducersMinMaxMaxValue Maximum reducers (value only)
*
* These reducers will find the largest value from a set of values.
*
* @ingroup ReducersMinMax
*/
//@{
/** The maximum reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_max<Type, Compare> >`. It accumulates the maximum,
* as determined by a comparator, of a set of values which have occurred as
* arguments to the `calc_max()` function. The accumulated value will be the
* first argument `x` such that `compare(x, y)` is false for every argument
* `y`.
*
* If the comparator is `std::less`, then the accumulated value is the first
* argument value which is not less than any other argument value, i.e., the
* maximum.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view class’s
* `calc_max()` function would be used in an expression like
* `r->calc_max(a)` where `r` is an op_max reducer variable.
*
* @tparam Type The type of the values compared by the reducer. This will
* be the value type of a monoid_with_view that is
* instantiated with this view.
* @tparam Compare A `Strict Weak Ordering` whose argument type is @a Type. It
* defines the “less than” relation used to compute the
* maximum.
*
* @see ReducersMinMax
* @see op_max
*/
template <typename Type, typename Compare>
class op_max_view : public min_max_internal::view_base<
min_max_internal::view_content<Type, Compare, true>,
Compare,
Compare>
{
typedef min_max_internal::view_base<
min_max_internal::view_content<Type, Compare, true>,
Compare,
Compare> base;
using base::calc;
using base::assign;
friend class min_max_internal::rhs_proxy<op_max_view>;
public:
/** @name Constructors.
*
* All op_max_view constructors simply pass their arguments on to the
* @ref view_base base class.
*/
//@{
op_max_view() : base() {}
template <typename T1>
op_max_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_max_view(const T1& x1, const T2& x2) : base(x1, x2) {}
//@}
/** @name View modifier operations.
*/
//@{
/** Maximize with a value.
*
* If @a x is greater than the current value of the view (as defined by
* the reducer’s comparator), or if the view was created without an
* initial value and its value has never been updated (with `calc_max()`
* or `= max_of()`), then the value of the view is set to @a x.
*
* @param x The value to maximize the view’s value with.
*
* @return A reference to the view. (Allows chaining
* `view.comp_max(a).comp_max(b)…`.)
*/
op_max_view& calc_max(const Type& x) { calc(x); return *this; }
/** Assign the result of a `max_of(view, value)` expression to the view.
*
* @param rhs An rhs_proxy value created by a `max_of(view, value)`
* expression.
*
* @return A reference to the view.
*
* @see min_max_internal::view_base::rhs_proxy
*/
op_max_view& operator=(const min_max_internal::rhs_proxy<op_max_view>& rhs)
{ assign(rhs); return *this; }
//@}
};
/** Compute the maximum of the value in an op_max_view and another value.
*
* The result of this computation can only be assigned back to the original
* view or used in another max_of() call. For example,
*
* *reducer = max_of(*reducer, x);
* *reducer = max_of(x, *reducer);
*
* @see min_max_internal::rhs_proxy
*/
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_view<Type, Compare> >
max_of(const op_max_view<Type, Compare>& view, const Type& value)
{
return min_max_internal::make_proxy(value, view);
}
/// @copydoc max_of(const op_max_view<Type, Compare>&, const Type&)
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_view<Type, Compare> >
max_of(const Type& value, const op_max_view<Type, Compare>& view)
{
return min_max_internal::make_proxy(value, view);
}
/** Nested maximum computation.
*
* Compute the maximum of the result of a max_of() call and another value.
*
* The result of this computation can only be assigned back to the original
* view or wrapper, or used in another max_of() call. For example,
*
* *reducer = max_of(x, max_of(y, *reducer));
* wrapper = max_of(max_of(wrapper, x), y);
*
* @see min_max_internal::rhs_proxy
*/
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_view<Type, Compare> >
max_of(const min_max_internal::rhs_proxy< op_max_view<Type, Compare> >& proxy,
const Type& value)
{
return proxy.calc(value);
}
/// @copydoc max_of(const min_max_internal::rhs_proxy< op_max_view<Type, Compare> >&, const Type&)
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_view<Type, Compare> >
max_of(const Type& value,
const min_max_internal::rhs_proxy< op_max_view<Type, Compare> >& proxy)
{
return proxy.calc(value);
}
/** Monoid class for maximum reductions. Instantiate the cilk::reducer template
* class with an op_max monoid to create a maximum reducer class. For example,
* to compute the maximum of a set of `int` values:
*
* cilk::reducer< cilk::op_max<int> > r;
*
* @see ReducersMinMax
* @see op_max_view
*/
template <typename Type, typename Compare=std::less<Type>, bool Align = false>
class op_max :
public min_max_internal::monoid_base<op_max_view<Type, Compare>, Align>
{
typedef min_max_internal::monoid_base<op_max_view<Type, Compare>, Align>
base;
public:
/// Construct with default comparator.
op_max() {}
/// Construct with specified comparator.
op_max(const Compare& compare) : base(compare) {}
};
//@}
/** @defgroup ReducersMinMaxMinValue Minimum reducers (value only)
*
* These reducers will find the smallest value from a set of values.
*
* @ingroup ReducersMinMax
*/
//@{
/** The minimum reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_min<Type, Compare> >`. It accumulates the minimum,
* as determined by a comparator, of a set of values which have occurred as
* arguments to the `calc_min()` function. The accumulated value will be the
* first argument `x` such that `compare(y, x)` is false for every argument
* `y`.
*
* If the comparator is `std::less`, then the accumulated value is the first
* argument value which no other argument value is less than, i.e., the
* minimum.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view class’s
* `calc_min()` function would be used in an expression like
* `r->calc_min(a)` where `r` is an op_min reducer variable.
*
* @tparam Type The type of the values compared by the reducer. This will
* be the value type of a monoid_with_view that is
* instantiated with this view.
* @tparam Compare A `Strict Weak Ordering` whose argument type is @a Type. It
* defines the “less than” relation used to compute the
* minimum.
*
* @see ReducersMinMax
* @see op_min
*/
template <typename Type, typename Compare>
class op_min_view : public min_max_internal::view_base<
min_max_internal::view_content<Type, Compare, false>,
Compare,
min_max_internal::reverse_predicate<Compare, Type> >
{
typedef min_max_internal::view_base<
min_max_internal::view_content<Type, Compare, false>,
Compare,
min_max_internal::reverse_predicate<Compare, Type> > base;
using base::calc;
using base::assign;
friend class min_max_internal::rhs_proxy<op_min_view>;
public:
/** @name Constructors.
*
* All op_min_view constructors simply pass their arguments on to the
* @ref view_base base class.
*/
//@{
op_min_view() : base() {}
template <typename T1>
op_min_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_min_view(const T1& x1, const T2& x2) : base(x1, x2) {}
//@}
/** @name View modifier operations.
*/
//@{
/** Minimize with a value.
*
* If @a x is less than the current value of the view (as defined by the
* reducer’s comparator), or if the view was created without an initial
* value and its value has never been updated (with `calc_min()` or
* `= min_of()`), then the value of the view is set to @a x.
*
* @param x The value to minimize the view’s value with.
*
* @return A reference to the view. (Allows chaining
* `view.comp_min(a).comp_min(b)…`.)
*/
op_min_view& calc_min(const Type& x) { calc(x); return *this; }
/** Assign the result of a `min_of(view, value)` expression to the view.
*
* @param rhs An rhs_proxy value created by a `min_of(view, value)`
* expression.
*
* @return A reference to the view.
*
* @see min_max_internal::view_base::rhs_proxy
*/
op_min_view& operator=(const min_max_internal::rhs_proxy<op_min_view>& rhs)
{ assign(rhs); return *this; }
};
/** Compute the minimum of the value in a view and another value.
*
* The result of this computation can only be assigned back to the original
* view or used in another min_of() call. For example,
*
* *reducer = min_of(*reducer, x);
* *reducer = min_of(x, *reducer);
*
* @see min_max_internal::view_base::rhs_proxy
*/
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_view<Type, Compare> >
min_of(const op_min_view<Type, Compare>& view, const Type& value)
{
return min_max_internal::make_proxy(value, view);
}
/// @copydoc min_of(const op_min_view<Type, Compare>&, const Type&)
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_view<Type, Compare> >
min_of(const Type& value, const op_min_view<Type, Compare>& view)
{
return min_max_internal::make_proxy(value, view);
}
/** Nested minimum computation.
*
* Compute the minimum of the result of a min_of() call and another value.
*
* The result of this computation can only be assigned back to the original
* view or wrapper, or used in another min_of() call. For example,
*
* *reducer = min_of(x, min_of(y, *reducer));
* wrapper = min_of(min_of(wrapper, x), y);
*
* @see min_max_internal::rhs_proxy
*/
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_view<Type, Compare> >
min_of(const min_max_internal::rhs_proxy< op_min_view<Type, Compare> >& proxy,
const Type& value)
{
return proxy.calc(value);
}
/// @copydoc min_of(const min_max_internal::rhs_proxy< op_min_view<Type, Compare> >&, const Type&)
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_view<Type, Compare> >
min_of(const Type& value,
const min_max_internal::rhs_proxy< op_min_view<Type, Compare> >& proxy)
{
return proxy.calc(value);
}
/** Monoid class for minimum reductions. Instantiate the cilk::reducer template
* class with an op_min monoid to create a minimum reducer class. For example,
* to compute the minimum of a set of `int` values:
*
* cilk::reducer< cilk::op_min<int> > r;
*
* @see ReducersMinMax
* @see op_min_view
*/
template <typename Type, typename Compare=std::less<Type>, bool Align = false>
class op_min : public min_max_internal::monoid_base<op_min_view<Type, Compare>, Align> {
typedef min_max_internal::monoid_base<op_min_view<Type, Compare>, Align> base;
public:
/// Construct with default comparator.
op_min() {}
/// Construct with specified comparator.
op_min(const Compare& compare) : base(compare) {}
};
//@}
/** @defgroup ReducersMinMaxMaxIndex Maximum reducers (value and index)
*
* These reducers will find the largest value from a set of values, and its
* index in the set.
*
* @ingroup ReducersMinMax
*/
//@{
/** The maximum index reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer< cilk::op_max_index<Index, Type, Compare> >`. It accumulates
* the maximum, as determined by a comparator, of a set of values which have
* occurred as arguments to the `calc_max()` function, and records the index
* of the maximum value. The accumulated value will be the first argument `x`
* such that `compare(x, y)` is false for every argument `y`.
*
* If the comparator is `std::less`, then the accumulated value is the first
* argument value which is not less than any other argument value, i.e., the
* maximum.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view class’s
* `calc_max()` function would be used in an expression like
* `r->calc_max(i, a)`where `r` is an op_max_index reducer
* variable.
*
* @note The word “index” suggests an integer index into an array, but there
* is no restriction on the index type or how it should be used. In
* general, it may be convenient to use it for any kind of key that
* can be used to locate the maximum value in the collection that it
* came from — for example:
* - An index into an array.
* - A key into an STL map.
* - An iterator into any STL container.
*
* @note A max_index reducer is essentially a max reducer whose value type
* is a `std::pair<Index, Type>`. This fact is camouflaged in the view
* `calc_max` function, the global `max_of` functions, and the reducer
* value constructor, which can all take an index argument and a value
* argument as an alternative to a single `std::pair` argument.
* However, the reducer `set_value()`, `get_value()`, `move_in()`, and
* `move_out()` functions work only with pairs, not with individual
* value and/or index arguments.
*
* @tparam Index The type of the indices associated with the values.
* @tparam Type The type of the values compared by the reducer. This will
* be the value type of a monoid_with_view that is
* instantiated with this view.
* @tparam Compare Used to compare the values. It must be a binary predicate.
* If it is omitted, then the view computes the conventional
* arithmetic maximum.
*
* @see ReducersMinMax
* @see op_max_index
*/
template <typename Index, typename Type, typename Compare>
class op_max_index_view : public min_max_internal::view_base<
min_max_internal::index_view_content<Index, Type, Compare, true>,
Compare,
Compare>
{
typedef min_max_internal::view_base<
min_max_internal::index_view_content<Index, Type, Compare, true>,
Compare,
Compare> base;
using base::calc;
using base::assign;
typedef std::pair<Index, Type> pair_type;
friend class min_max_internal::rhs_proxy<op_max_index_view>;
public:
/** @name Constructors.
*
* All op_max_index_view constructors simply pass their arguments on to the
* @ref view_base base class, except for the `(index, value [, compare])`
* constructors, which create a `std::pair` containing the index and value.
*/
//@{
op_max_index_view() : base() {}
template <typename T1>
op_max_index_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_max_index_view(const T1& x1, const T2& x2) : base(x1, x2) {}
template <typename T1, typename T2, typename T3>
op_max_index_view(const T1& x1, const T2& x2, const T3& x3) : base(x1, x2, x3) {}
op_max_index_view(const Index& i, const Type& v) : base(pair_type(i, v)) {}
op_max_index_view(const Index& i, const Type& v, const typename base::compare_type* c) :
base(pair_type(i, v), c) {}
//@}
/** Maximize with a value and index.
*
* If @a x is greater than the current value of the view (as defined by
* the reducer’s comparator), or if the view was created without an
* initial value and its value has never been updated (with `calc_max()`
* or `= max_of()`), then the value of the view is set to @a x, and the
* index is set to @a i..
*
* @param i The index of the value @a x.
* @param x The value to maximize the view’s value with.
*
* @return A reference to the view. (Allows
* `view.comp_max(i, a).comp_max(j, b)…`.)
*/
op_max_index_view& calc_max(const Index& i, const Type& x)
{ calc(pair_type(i, x)); return *this; }
/** Maximize with an index/value pair.
*
* If @a pair.second is greater than the current value of the view (as
* defined by the reducer’s comparator), or if the view was created
* without an initial value and its value has never been updated (with
* `calc_max()` or `= max_of()`), then the value of the view is set to
* @a pair.second, and the index is set to @a pair.first.
*
* @param pair A pair containing a value to maximize the view’s value
* with and its associated index.
*
* @return A reference to the view. (Allows
* `view.comp_max(p1).comp_max(p2)…`.)
*/
op_max_index_view& calc_max(const pair_type& pair)
{ calc(pair); return *this; }
/** Assign the result of a `max_of(view, index, value)` expression to the
* view.
*
* @param rhs An rhs_proxy value created by a `max_of(view, index, value)`
* expression.
*
* @return A reference to the view.
*
* @see min_max_internal::view_base::rhs_proxy
*/
op_max_index_view& operator=(const min_max_internal::rhs_proxy<op_max_index_view>& rhs)
{ assign(rhs); return *this; }
};
/** Compute the maximum of the value in a view and another value.
*
* The result of this computation can only be assigned back to the original
* view or used in another max_of() call. For example,
*
* *reducer = max_of(*reducer, i, x);
* *reducer = max_of(i, x, *reducer);
*
* @see min_max_internal::rhs_proxy
*/
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const op_max_index_view<Index, Type, Compare>& view,
const Index& index, const Type& value)
{
return min_max_internal::make_proxy(std::pair<Index, Type>(index, value), view);
}
/// @copydoc max_of(const op_max_index_view<Index, Type, Compare>&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const Index& index, const Type& value,
const op_max_index_view<Index, Type, Compare>& view)
{
return min_max_internal::make_proxy(std::pair<Index, Type>(index, value), view);
}
/// @copydoc max_of(const op_max_index_view<Index, Type, Compare>&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const op_max_index_view<Index, Type, Compare>& view,
const std::pair<Index, Type>& pair)
{
return min_max_internal::make_proxy(pair, view);
}
/// @copydoc max_of(const op_max_index_view<Index, Type, Compare>&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const std::pair<Index, Type>& pair,
const op_max_index_view<Index, Type, Compare>& view)
{
return min_max_internal::make_proxy(pair, view);
}
/** Nested computation of the maximum of the value in a view and other values.
*
* Compute the maximum of the result of a max_of() call and another value.
*
* The result of this computation can only be assigned back to the original
* view or used in another max_of() call. For example,
*
* *reducer = max_of(x, max_of(y, *reducer));
* *reducer = max_of(max_of(*reducer, x), y);
*
* @see min_max_internal::rhs_proxy
*/
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >& proxy,
const Index& index, const Type& value)
{
return proxy.calc(std::pair<Index, Type>(index, value));
}
/// @copydoc max_of(const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const Index& index, const Type& value,
const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >& proxy)
{
return proxy.calc(std::pair<Index, Type>(index, value));
}
/// @copydoc max_of(const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >& proxy,
const std::pair<Index, Type>& pair)
{
return proxy.calc(pair);
}
/// @copydoc max_of(const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >
max_of(const std::pair<Index, Type>& pair,
const min_max_internal::rhs_proxy< op_max_index_view<Index, Type, Compare> >& proxy)
{
return proxy.calc(pair);
}
/** Monoid class for maximum reductions with index. Instantiate the
* cilk::reducer template class with an op_max_index monoid to create a
* max_index reducer class. For example, to compute the maximum of an array of
* `double` values and the array index of the max value:
*
* cilk::reducer< cilk::op_max_index<unsigned, double> > r;
*
* @see ReducersMinMax
* @see op_max_index_view
*/
template < typename Index
, typename Type
, typename Compare=std::less<Type>
, bool Align = false
>
class op_max_index : public min_max_internal::monoid_base<op_max_index_view<Index, Type, Compare>, Align>
{
typedef min_max_internal::monoid_base<
op_max_index_view<Index, Type, Compare>, Align> base;
public:
/// Construct with default comparator.
op_max_index() {}
/// Construct with specified comparator.
op_max_index(const Compare& compare) : base(compare) {}
};
//@}
/** @defgroup ReducersMinMaxMinIndex Minimum reducers (value and index)
*
* These reducers will find the smallest value from a set of values, and its
* index in the set.
*
* @ingroup ReducersMinMax
*/
//@{
/** The minimum index reducer view class.
*
* This is the view class for reducers created with
* `cilk::reducer<cilk::op_min_index<Index, Type, Compare> >`. It accumulates
* the minimum, as determined by a comparator, of a set of values which have
* occurred as arguments to the `calc_min()` function, and records the index
* of the minimum value. The accumulated value will be the first argument `x`
* such that `compare(y, x)` is false for every argument `y`.
*
* If the comparator is `std::less`, then the accumulated value is the first
* argument value which no other argument value is less than, i.e., the
* minimum.
*
* @note The reducer “dereference” operation (`reducer::operator *()`)
* yields a reference to the view. Thus, for example, the view class’s
* `calc_min()` function would be
* used in an expression like `r->calc_min(i, a)`where `r` is an
* op_min_index reducer variable.
*
* @note The word “index” suggests an integer index into an array, but there
* is no restriction on the index type or how it should be used. In
* general, it may be convenient to use it for any kind of key that
* can be used to locate the minimum value in the collection that it
* came from — for example:
* - An index into an array.
* - A key into an STL map.
* - An iterator into any STL container.
*
* @note A min_index reducer is essentially a min reducer whose value type
* is a `std::pair<Index, Type>`. This fact is camouflaged in the view
* `calc_min` function, the global `min_of` functions, and the reducer
* value constructor, which can all take an index argument and a value
* argument as an alternative to a single `std::pair` argument.
* However, the reducer `set_value()`, `get_value()`, `move_in()`, and
* `move_out()` functions work only with pairs, not with individual
* value and/or index arguments.
*
* @tparam Index The type of the indices associated with the values.
* @tparam Type The type of the values compared by the reducer. This will
* be the value type of a monoid_with_view that is
* instantiated with this view.
* @tparam Compare Used to compare the values. It must be a binary predicate.
* If it is omitted, then the view computes the conventional
* arithmetic minimum.
*
* @see ReducersMinMax
* @see op_min_index
*/
template <typename Index, typename Type, typename Compare>
class op_min_index_view : public min_max_internal::view_base<
min_max_internal::index_view_content<Index, Type, Compare, false>,
Compare,
min_max_internal::reverse_predicate<Compare, Type> >
{
typedef min_max_internal::view_base<
min_max_internal::index_view_content<Index, Type, Compare, false>,
Compare,
min_max_internal::reverse_predicate<Compare, Type> > base;
using base::calc;
using base::assign;
typedef std::pair<Index, Type> pair_type;
friend class min_max_internal::rhs_proxy<op_min_index_view>;
public:
/** @name Constructors.
*
* All op_min_index_view constructors simply pass their arguments on to the
* @ref view_base base class, except for the `(index, value [, compare])`
* constructors, which create a `std::pair` containing the index and value.
*/
//@{
op_min_index_view() : base() {}
template <typename T1>
op_min_index_view(const T1& x1) : base(x1) {}
template <typename T1, typename T2>
op_min_index_view(const T1& x1, const T2& x2) : base(x1, x2) {}
template <typename T1, typename T2, typename T3>
op_min_index_view(const T1& x1, const T2& x2, const T3& x3) : base(x1, x2, x3) {}
op_min_index_view(const Index& i, const Type& v) : base(pair_type(i, v)) {}
op_min_index_view(const Index& i, const Type& v, const typename base::compare_type* c) :
base(pair_type(i, v), c) {}
//@}
/** Minimize with a value and index.
*
* If @a x is greater than the current value of the view (as defined by
* the reducer’s comparator), or if the view was created without an
* initial value and its value has never been updated (with `calc_min()`
* or `= min_of()`), then the value of the view is set to @a x, and the
* index is set to @a i..
*
* @param i The index of the value @a x.
* @param x The value to minimize the view’s value with.
*
* @return A reference to the view. (Allows
* `view.comp_min(i, a).comp_min(j, b)…`.)
*/
op_min_index_view& calc_min(const Index& i, const Type& x)
{ calc(pair_type(i, x)); return *this; }
/** Maximize with an index/value pair.
*
* If @a pair.second is less than the current value of the view (as
* defined by the reducer’s comparator), or if the view was created
* without an initial value and its value has never been updated (with
* `calc_min()` or `= min_of()`), then the value of the view is set to
* @a pair.second, and the index is set to @a pair.first.
*
* @param pair A pair containing a value to minimize the view’s value
* with and its associated index.
*
* @return A reference to the view. (Allows
* `view.comp_min(p1).comp_min(p2)…`.)
*/
op_min_index_view& calc_min(const pair_type& pair)
{ calc(pair); return *this; }
/** Assign the result of a `min_of(view, index, value)` expression to the
* view.
*
* @param rhs An rhs_proxy value created by a `min_of(view, index, value)`
* expression.
*
* @return A reference to the view.
*
* @see min_max_internal::view_base::rhs_proxy
*/
op_min_index_view& operator=(const min_max_internal::rhs_proxy<op_min_index_view>& rhs)
{ assign(rhs); return *this; }
};
/** Compute the minimum of the value in a view and another value.
*
* The result of this computation can only be assigned back to the original
* view or used in another min_of() call. For example,
*
* *reducer = min_of(*reducer, i, x);
* *reducer = min_of(i, x, *reducer);
*
* @see min_max_internal::min_min_view_base::rhs_proxy
*/
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const op_min_index_view<Index, Type, Compare>& view,
const Index& index, const Type& value)
{
return min_max_internal::make_proxy(std::pair<Index, Type>(index, value), view);
}
/// @copydoc min_of(const op_min_index_view<Index, Type, Compare>&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const Index& index, const Type& value,
const op_min_index_view<Index, Type, Compare>& view)
{
return min_max_internal::make_proxy(std::pair<Index, Type>(index, value), view);
}
/// @copydoc min_of(const op_min_index_view<Index, Type, Compare>&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const op_min_index_view<Index, Type, Compare>& view,
const std::pair<Index, Type>& pair)
{
return min_max_internal::make_proxy(pair, view);
}
/// @copydoc min_of(const op_min_index_view<Index, Type, Compare>&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const std::pair<Index, Type>& pair,
const op_min_index_view<Index, Type, Compare>& view)
{
return min_max_internal::make_proxy(pair, view);
}
/** Nested computation of the minimum of the value in a view and other values.
*
* Compute the minimum of the result of a min_of() call and another value.
*
* The result of this computation can only be assigned back to the original
* view or used in another min_of() call. For example,
*
* *reducer = min_of(x, min_of(y, *reducer));
* *reducer = min_of(min_of(*reducer, x), y);
*
* @see min_max_internal::min_min_view_base::rhs_proxy
*/
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >& proxy,
const Index& index, const Type& value)
{
return proxy.calc(std::pair<Index, Type>(index, value));
}
/// @copydoc min_of(const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const Index& index, const Type& value,
const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >& proxy)
{
return proxy.calc(std::pair<Index, Type>(index, value));
}
/// @copydoc min_of(const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >& proxy,
const std::pair<Index, Type>& pair)
{
return proxy.calc(pair);
}
/// @copydoc min_of(const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >&, const Index&, const Type&)
template <typename Index, typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >
min_of(const std::pair<Index, Type>& pair,
const min_max_internal::rhs_proxy< op_min_index_view<Index, Type, Compare> >& proxy)
{
return proxy.calc(pair);
}
/** Monoid class for minimum reductions with index. Instantiate the
* cilk::reducer template class with an op_min_index monoid to create a
* min_index reducer class. For example, to compute the minimum of an array of
* `double` values and the array index of the min value:
*
* cilk::reducer< cilk::op_min_index<unsigned, double> > r;
*
* @see ReducersMinMax
* @see op_min_index_view
*/
template < typename Index
, typename Type
, typename Compare=std::less<Type>
, bool Align = false
>
class op_min_index : public min_max_internal::monoid_base<op_min_index_view<Index, Type, Compare>, Align>
{
typedef min_max_internal::monoid_base<
op_min_index_view<Index, Type, Compare>, Align> base;
public:
/// Construct with default comparator.
op_min_index() {}
/// Construct with specified comparator.
op_min_index(const Compare& compare) : base(compare) {}
};
//@}
/** Deprecated maximum reducer wrapper class.
*
* reducer_max is the same as @ref reducer<@ref op_max>, except that
* reducer_max is a proxy for the contained view, so that accumulator
* variable update operations can be applied directly to the reducer. For
* example, a value is maximized with a `reducer<%op_max>` with
* `r->calc_max(a)`, but a value can be maximized with a `%reducer_max` with
* `r.calc_max(a)`.
*
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_max.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_max`
* and `reducer<%op_max>`. This allows incremental code
* conversion: old code that used `%reducer_max` can pass a
* `%reducer_max` to a converted function that now expects a
* pointer or reference to a `reducer<%op_max>`, and vice
* versa. **But see @ref redminmax_compatibility.**
*
* @tparam Type The value type of the reducer.
* @tparam Compare The “less than” comparator type for the reducer.
*
* @see op_max
* @see op_max_view
* @see reducer
* @see ReducersMinMax
* @ingroup ReducersMinMaxMaxValue
*/
template <typename Type, typename Compare=std::less<Type> >
class reducer_max : public reducer< op_max<Type, Compare, true> >
{
__CILKRTS_STATIC_ASSERT(
::cilk::internal::class_is_empty<
typename ::cilk::internal::binary_functor<Compare>::type >::value,
"cilk::reducer_max<Type, Compare> only works with "
"an empty Compare class");
typedef reducer< op_max<Type, Compare, true> > base;
public:
/// Type of data in a reducer_max.
typedef Type basic_value_type;
/// The view type for the reducer.
typedef typename base::view_type view_type;
/// The view type for the reducer.
typedef typename base::view_type View;
/// The monoid type for the reducer.
typedef typename base::monoid_type monoid_type;
/// The monoid type for the reducer.
typedef typename base::monoid_type Monoid;
/// The view’s rhs proxy type.
typedef min_max_internal::rhs_proxy<View> rhs_proxy;
using base::view;
/** @name Constructors
*/
//@{
/// Construct the wrapper in its identity state (either `!is_set()`, or
/// `value() == identity value`).
reducer_max() : base() {}
/// Construct the wrapper with a specified initial value.
explicit reducer_max(const Type& initial_value) : base(initial_value) {}
/// Construct the wrapper in its identity state with a specified
/// comparator.
explicit reducer_max(const Compare& comp) : base(comp) {}
/// Construct the wrapper with a specified initial value and a specified
/// comparator.
reducer_max(const Type& initial_value, const Compare& comp)
: base(initial_value, comp) {}
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_max_view. */
//@{
/// @copydoc cilk_lib_1_0::min_max_internal::view_content::is_set() const
bool is_set() const { return view().is_set(); }
/// @copydoc op_max_view::calc_max(const Type&)
reducer_max& calc_max(const Type& x)
{ view().calc_max(x); return *this; }
/// @copydoc op_max_view::operator=(const min_max_internal::rhs_proxy<op_max_view>&)
reducer_max& operator=(const rhs_proxy& rhs)
{ view() = rhs; return *this; }
//@}
/** Allow read-only access to the value within the current view.
*
* @returns A const reference to the value within the current view.
*/
const Type& get_reference() const { return view().get_reference(); }
/// @name Dereference
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_max<int> > r;
* r->calc_max(a); // *r returns the view
* // calc_max is a view member function
*
* reducer_max<int> w;
* w->calc_max(a); // *w returns the wrapper
* // calc_max is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_max& operator*() { return *this; }
reducer_max const& operator*() const { return *this; }
reducer_max* operator->() { return this; }
reducer_max const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_max<Type, Compare, false> >& ()
{
return *reinterpret_cast< reducer< op_max<Type, Compare, false> >* >(this);
}
operator const reducer< op_max<Type, Compare, false> >& () const
{
return *reinterpret_cast< const reducer< op_max<Type, Compare, false> >* >(this);
}
//@}
};
/// @cond internal
// The legacy definition of max_of(reducer_max, value) has different
// behavior and a different return type than this definition. We add an
// unused third argument to this version of the function to give it a different
// signature, so that they won’t end up sharing a single object file entry.
struct max_of_1_0_t {};
const max_of_1_0_t max_of_1_0 = {};
/// @endcond
/** Compute the maximum of the value in a reducer_max and another value.
*
* @deprecated Because reducer_max is deprecated.
*
* The result of this computation can only be assigned back to the original
* reducer or used in another max_of() call. For example,
*
* reducer = max_of(reducer, x);
* reducer = max_of(x, reducer);
*
* @see min_max_internal::rhs_proxy
*
* @ingroup ReducersMinMaxMaxValue
*/
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_view<Type, Compare> >
max_of(const reducer_max<Type, Compare>& r, const Type& value,
const max_of_1_0_t& = max_of_1_0)
{
return min_max_internal::make_proxy(value, r.view());
}
/// @copydoc max_of(const reducer_max<Type, Compare>&, const Type&, const max_of_1_0_t&)
/// @ingroup ReducersMinMaxMaxValue
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_max_view<Type, Compare> >
max_of(const Type& value, const reducer_max<Type, Compare>& r,
const max_of_1_0_t& = max_of_1_0)
{
return min_max_internal::make_proxy(value, r.view());
}
/** Deprecated minimum reducer wrapper class.
*
* reducer_min is the same as @ref reducer<@ref op_min>, except that
* reducer_min is a proxy for the contained view, so that accumulator
* variable update operations can be applied directly to the reducer. For
* example, a value is minimized with a `reducer<%op_min>` with
* `r->calc_min(a)`, but a value can be minimized with a `%reducer_min` with
* `r.calc_min(a)`.
*
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_min.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_min`
* and `reducer<%op_min>`. This allows incremental code
* conversion: old code that used `%reducer_min` can pass a
* `%reducer_min` to a converted function that now expects a
* pointer or reference to a `reducer<%op_min>`, and vice
* versa. **But see @ref redminmax_compatibility.**
*
* @tparam Type The value type of the reducer.
* @tparam Compare The “less than” comparator type for the reducer.
*
* @see op_min
* @see op_min_view
* @see reducer
* @see ReducersMinMax
* @ingroup ReducersMinMaxMinValue
*/
template <typename Type, typename Compare=std::less<Type> >
class reducer_min : public reducer< op_min<Type, Compare, true> >
{
__CILKRTS_STATIC_ASSERT(
::cilk::internal::class_is_empty<
typename ::cilk::internal::binary_functor<Compare>::type >::value,
"cilk::reducer_min<Type, Compare> only works with "
"an empty Compare class");
typedef reducer< op_min<Type, Compare, true> > base;
public:
/// Type of data in a reducer_min.
typedef Type basic_value_type;
/// The view type for the reducer.
typedef typename base::view_type view_type;
/// The view type for the reducer.
typedef typename base::view_type View;
/// The monoid type for the reducer.
typedef typename base::monoid_type monoid_type;
/// The monoid type for the reducer.
typedef typename base::monoid_type Monoid;
/// The view’s rhs proxy type.
typedef min_max_internal::rhs_proxy<View> rhs_proxy;
using base::view;
/** @name Constructors
*/
//@{
/// Construct the wrapper in its identity state (either `!is_set()`, or
/// `value() == identity value`).
reducer_min() : base() {}
/// Construct the wrapper with a specified initial value.
explicit reducer_min(const Type& initial_value) : base(initial_value) {}
/// Construct the wrapper in its identity state with a specified
/// comparator.
explicit reducer_min(const Compare& comp) : base(comp) {}
/// Construct the wrapper with a specified initial value and a specified
/// comparator.
reducer_min(const Type& initial_value, const Compare& comp)
: base(initial_value, comp) {}
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_min_view. */
//@{
/// @copydoc cilk_lib_1_0::min_max_internal::view_content::is_set() const
bool is_set() const { return view().is_set(); }
/// @copydoc op_min_view::calc_min(const Type&)
reducer_min& calc_min(const Type& x)
{ view().calc_min(x); return *this; }
/// @copydoc op_min_view::operator=(const min_max_internal::rhs_proxy<op_min_view>&)
reducer_min& operator=(const rhs_proxy& rhs)
{ view() = rhs; return *this; }
//@}
/** Allow read-only access to the value within the current view.
*
* @returns A const reference to the value within the current view.
*/
const Type& get_reference() const { return view().get_reference(); }
/// @name Dereference
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_min<int> > r;
* r->calc_min(a); // *r returns the view
* // calc_min is a view member function
*
* reducer_min<int> w;
* w->calc_min(a); // *w returns the wrapper
* // calc_min is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_min& operator*() { return *this; }
reducer_min const& operator*() const { return *this; }
reducer_min* operator->() { return this; }
reducer_min const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_min<Type, Compare, false> >& ()
{
return *reinterpret_cast< reducer< op_min<Type, Compare, false> >* >(this);
}
operator const reducer< op_min<Type, Compare, false> >& () const
{
return *reinterpret_cast< const reducer< op_min<Type, Compare, false> >* >(this);
}
//@}
};
/** Compute the minimum of a reducer and a value.
*
* @deprecated Because reducer_min is deprecated.
*/
//@{
// The legacy definition of min_of(reducer_min, value) has different
// behavior and a different return type than this definition. We add an
// unused third argument to this version of the function to give it a different
// signature, so that they won’t end up sharing a single object file entry.
struct min_of_1_0_t {};
const min_of_1_0_t min_of_1_0 = {};
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_view<Type, Compare> >
min_of(const reducer_min<Type, Compare>& r, const Type& value,
const min_of_1_0_t& = min_of_1_0)
{
return min_max_internal::make_proxy(value, r.view());
}
template <typename Type, typename Compare>
inline min_max_internal::rhs_proxy< op_min_view<Type, Compare> >
min_of(const Type& value, const reducer_min<Type, Compare>& r,
const min_of_1_0_t& = min_of_1_0)
{
return min_max_internal::make_proxy(value, r.view());
}
//@}
/** Deprecated maximum with index reducer wrapper class.
*
* reducer_max_index is the same as @ref reducer<@ref op_max_index>, except
* that reducer_max_index is a proxy for the contained view, so that
* accumulator variable update operations can be applied directly to the
* reducer. For example, a value is maximized with a `reducer<%op_max_index>`
* with `r->calc_max(i, a)`, but a value can be maximized with a
* `%reducer_max` with `r.calc_max(i, aa)`.
*
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_max.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_max_index`
* and `reducer<%op_max_index>`. This allows incremental code
* conversion: old code that used `%reducer_max_index` can pass a
* `%reducer_max_index` to a converted function that now expects a
* pointer or reference to a `reducer<%op_max_index>`, and vice
* versa. **But see @ref redminmax_compatibility.**
*
* @tparam Index The index type of the reducer.
* @tparam Type The value type of the reducer.
* @tparam Compare The “less than” comparator type for the reducer.
*
* @see op_max_index
* @see op_max_index_view
* @see reducer
* @see ReducersMinMax
* @ingroup ReducersMinMaxMaxIndex
*/
template < typename Index
, typename Type
, typename Compare = std::less<Type>
>
class reducer_max_index :
public reducer< op_max_index<Index, Type, Compare, true> >
{
__CILKRTS_STATIC_ASSERT(
::cilk::internal::class_is_empty<
typename ::cilk::internal::binary_functor<Compare>::type >::value,
"cilk::reducer_max_index<Type, Compare> only works with "
"an empty Compare class");
typedef reducer< op_max_index<Index, Type, Compare, true> > base;
public:
/// Type of data in a reducer_max_index.
typedef Type basic_value_type;
/// The view type for the reducer.
typedef typename base::view_type view_type;
/// The view type for the reducer.
typedef typename base::view_type View;
/// The monoid type for the reducer.
typedef typename base::monoid_type monoid_type;
/// The monoid type for the reducer.
typedef typename base::monoid_type Monoid;
/// The view’s rhs proxy type.
typedef min_max_internal::rhs_proxy<View> rhs_proxy;
using base::view;
/** @name Constructors
*/
//@{
/// Construct the wrapper in its identity state (`!is_set()`).
reducer_max_index() : base() {}
/// Construct with a specified initial index and value.
reducer_max_index(const Index& initial_index,
const Type& initial_value)
: base(initial_index, initial_value) {}
/// Construct the wrapper with a specified comparator.
explicit reducer_max_index(const Compare& comp) : base(comp) {}
/// Construct the wrapper with a specified initial index, value,
/// and comparator.
reducer_max_index(const Index& initial_index,
const Type& initial_value,
const Compare& comp)
: base(initial_index, initial_value, comp) {}
//@}
/** @name Set / Get
*/
//@{
/// Set the index and value of this object.
void set_value(const Index& index, const Type& value)
{ base::set_value(std::make_pair(index, value)); }
/// Return the maximum value.
const Type& get_value() const
{ return view().get_reference(); }
/// Return the maximum index.
const Index& get_index() const
{ return view().get_index_reference(); }
/// Return a const reference to value data member in the view.
const Type& get_reference() const
{ return view().get_reference(); }
/// Return a const reference to index data member in the view.
const Index& get_index_reference() const
{ return view().get_index_reference(); }
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_max_view. */
//@{
/// @copydoc cilk_lib_1_0::min_max_internal::view_content::is_set() const
bool is_set() const { return view().is_set(); }
/// @copydoc op_max_index_view::calc_max(const Index&, const Type&)
reducer_max_index& calc_max(const Index& i, const Type& x)
{ view().calc_max(i, x); return *this; }
/// @copydoc op_max_view::operator=(const min_max_internal::rhs_proxy<op_max_view>&)
reducer_max_index& operator=(const rhs_proxy& rhs)
{ view() = rhs; return *this; }
//@}
/// @name Dereference
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_max_index<int, int> > r;
* r->calc_max(i, a); // *r returns the view
* // calc_max is a view member function
*
* reducer_max_index<int, int> w;
* w->calc_max(i, a); // *w returns the wrapper
* // calc_max is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_max_index& operator*() { return *this; }
reducer_max_index const& operator*() const { return *this; }
reducer_max_index* operator->() { return this; }
reducer_max_index const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_max_index<Index, Type, Compare, false> >& ()
{
return *reinterpret_cast< reducer< op_max_index<Index, Type, Compare, false> >* >(this);
}
operator const reducer< op_max_index<Index, Type, Compare, false> >& () const
{
return *reinterpret_cast< const reducer< op_max_index<Index, Type, Compare, false> >* >(this);
}
//@}
};
/** Deprecated minimum with index reducer wrapper class.
*
* reducer_min_index is the same as @ref reducer<@ref op_min_index>, except
* that reducer_min_index is a proxy for the contained view, so that
* accumulator variable update operations can be applied directly to the
* reducer. For example, a value is minimized with a `reducer<%op_min_index>`
* with `r->calc_min(i, a)`, but a value can be minimized with a
* `%reducer_min` with `r.calc_min(i, aa)`.
*
*
* @deprecated Users are strongly encouraged to use `reducer<monoid>`
* reducers rather than the old wrappers like reducer_min.
* The `reducer<monoid>` reducers show the reducer/monoid/view
* architecture more clearly, are more consistent in their
* implementation, and present a simpler model for new
* user-implemented reducers.
*
* @note Implicit conversions are provided between `%reducer_min_index`
* and `reducer<%op_min_index>`. This allows incremental code
* conversion: old code that used `%reducer_min_index` can pass a
* `%reducer_min_index` to a converted function that now expects a
* pointer or reference to a `reducer<%op_min_index>`, and vice
* versa. **But see @ref redminmax_compatibility.**
*
* @tparam Index The index type of the reducer.
* @tparam Type The value type of the reducer.
* @tparam Compare The “less than” comparator type for the reducer.
*
* @see op_min_index
* @see op_min_index_view
* @see reducer
* @see ReducersMinMax
* @ingroup ReducersMinMaxMinIndex
*/
template < typename Index
, typename Type
, typename Compare = std::less<Type>
>
class reducer_min_index :
public reducer< op_min_index<Index, Type, Compare, true> >
{
__CILKRTS_STATIC_ASSERT(
::cilk::internal::class_is_empty<
typename ::cilk::internal::binary_functor<Compare>::type >::value,
"cilk::reducer_min_index<Type, Compare> only works with "
"an empty Compare class");
typedef reducer< op_min_index<Index, Type, Compare, true> > base;
public:
/// Type of data in a reducer_min_index.
typedef Type basic_value_type;
/// The view type for the reducer.
typedef typename base::view_type view_type;
/// The view type for the reducer.
typedef typename base::view_type View;
/// The monoid type for the reducer.
typedef typename base::monoid_type monoid_type;
/// The monoid type for the reducer.
typedef typename base::monoid_type Monoid;
/// The view’s rhs proxy type.
typedef min_max_internal::rhs_proxy<View> rhs_proxy;
using base::view;
/** @name Constructors
*/
//@{
/// Construct the wrapper in its identity state (`!is_set()`).
reducer_min_index() : base() {}
/// Construct with a specified initial index and value.
reducer_min_index(const Index& initial_index,
const Type& initial_value)
: base(initial_index, initial_value) {}
/// Construct the wrapper with a specified comparator.
explicit reducer_min_index(const Compare& comp) : base(comp) {}
/// Construct the wrapper with a specified initial index, value,
/// and comparator.
reducer_min_index(const Index& initial_index,
const Type& initial_value,
const Compare& comp)
: base(initial_index, initial_value, comp) {}
//@}
/** @name Set / Get
*/
//@{
/// Set the index and value of this object.
void set_value(const Index& index, const Type& value)
{ base::set_value(std::make_pair(index, value)); }
/// Return the minimum value.
const Type& get_value() const
{ return view().get_reference(); }
/// Return the minimum index.
const Index& get_index() const
{ return view().get_index_reference(); }
/// Return a const reference to value data member in the view.
const Type& get_reference() const
{ return view().get_reference(); }
/// Return a const reference to index data member in the view.
const Index& get_index_reference() const
{ return view().get_index_reference(); }
//@}
/** @name Forwarded functions
* @details Functions that update the contained accumulator variable are
* simply forwarded to the contained @ref op_min_view. */
//@{
/// @copydoc cilk_lib_1_0::min_max_internal::view_content::is_set() const
bool is_set() const { return view().is_set(); }
/// @copydoc op_min_index_view::calc_min(const Index&, const Type&)
reducer_min_index& calc_min(const Index& i, const Type& x)
{ view().calc_min(i, x); return *this; }
/// @copydoc op_min_view::operator=(const min_max_internal::rhs_proxy<op_min_view>&)
reducer_min_index& operator=(const rhs_proxy& rhs)
{ view() = rhs; return *this; }
//@}
/// @name Dereference
/** Dereferencing a wrapper is a no-op. It simply returns the wrapper.
* Combined with the rule that a wrapper forwards view operations to the
* view, this means that view operations can be written the same way on
* reducers and wrappers, which is convenient for incrementally
* converting code using wrappers to code using reducers. That is:
*
* reducer< op_min_index<int, int> > r;
* r->calc_min(i, a); // *r returns the view
* // calc_min is a view member function
*
* reducer_min_index<int, int> w;
* w->calc_min(i, a); // *w returns the wrapper
* // calc_min is a wrapper member function that
* // calls the corresponding view function
*/
//@{
reducer_min_index& operator*() { return *this; }
reducer_min_index const& operator*() const { return *this; }
reducer_min_index* operator->() { return this; }
reducer_min_index const* operator->() const { return this; }
//@}
/** @name Upcast
* @details In Cilk library 0.9, reducers were always cache-aligned. In
* library 1.0, reducer cache alignment is optional. By default, reducers
* are unaligned (i.e., just naturally aligned), but legacy wrappers
* inherit from cache-aligned reducers for binary compatibility.
*
* This means that a wrapper will automatically be upcast to its aligned
* reducer base class. The following conversion operators provide
* pseudo-upcasts to the corresponding unaligned reducer class.
*/
//@{
operator reducer< op_min_index<Index, Type, Compare, false> >& ()
{
return *reinterpret_cast< reducer< op_min_index<Index, Type, Compare, false> >* >(this);
}
operator const reducer< op_min_index<Index, Type, Compare, false> >& () const
{
return *reinterpret_cast< const reducer< op_min_index<Index, Type, Compare, false> >* >(this);
}
//@}
};
#ifndef CILK_LIBRARY_0_9_REDUCER_MINMAX
} // namespace cilk_lib_1_0
using namespace cilk_lib_1_0;
#endif
/// @cond internal
/** Metafunction specialization for reducer conversion.
*
* These specializations of the @ref legacy_reducer_downcast template class
* defined in reducer.h causes each `reducer< op_xxxx<Type> >` classes to have
* an `operator reducer_xxxx<Type>& ()` conversion operator that statically
* downcasts the `reducer<op_xxxx>` to the corresponding `reducer_xxxx` type.
* (The reverse conversion, from `reducer_xxxx` to `reducer<op_xxxx>`, is just
* an upcast, which is provided for free by the language.)
*/
template <typename Type, typename Compare, bool Align>
struct legacy_reducer_downcast< reducer< op_max<Type, Compare, Align> > >
{
typedef reducer_max<Type> type;
};
template <typename Type, typename Compare, bool Align>
struct legacy_reducer_downcast< reducer< op_min<Type, Compare, Align> > >
{
typedef reducer_min<Type> type;
};
template <typename Index, typename Type, typename Compare, bool Align>
struct legacy_reducer_downcast< reducer< op_max_index<Index, Type, Compare, Align> > >
{
typedef reducer_max_index<Index, Type> type;
};
template <typename Index, typename Type, typename Compare, bool Align>
struct legacy_reducer_downcast< reducer< op_min_index<Index, Type, Compare, Align> > >
{
typedef reducer_min_index<Index, Type> type;
};
/// @endcond
} // namespace cilk
#endif // __cplusplus
/** @name C language reducer macros
*
* These macros are used to declare and work with numeric minimum and maximum reducers in C
* code.
*
* @see @ref page_reducers_in_c
*/
//@{
#ifdef CILK_C_DEFINE_REDUCERS
/* Integer min/max constants */
#include <limits.h>
/* Wchar_t min/max constants */
#if defined(_MSC_VER) || defined(__ANDROID__)
# include <wchar.h>
#else
# include <stdint.h>
#endif
/* Floating-point min/max constants */
#include <math.h>
#ifndef HUGE_VALF
static const unsigned int __huge_valf[] = {0x7f800000};
# define HUGE_VALF (*((const float *)__huge_valf))
#endif
#ifndef HUGE_VALL
static const unsigned int __huge_vall[] = {0, 0, 0x00007f80, 0};
# define HUGE_VALL (*((const long double *)__huge_vall))
#endif
#endif
/** Max reducer type name.
*
* This macro expands into the identifier which is the name of the max reducer
* type for a specified numeric type.
*
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MAX_TYPE(tn) \
__CILKRTS_MKIDENT(cilk_c_reducer_max_,tn)
/** Declare a max reducer object.
*
* This macro expands into a declaration of a max reducer object for a specified numeric
* type. For example:
*
* CILK_C_REDUCER_MAX(my_reducer, double, -DBL_MAX);
*
* @param obj The variable name to be used for the declared reducer object.
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
* @param v The initial value for the reducer. (A value which can be assigned to the
* numeric type represented by @a tn.)
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MAX(obj,tn,v) \
CILK_C_REDUCER_MAX_TYPE(tn) obj = \
CILK_C_INIT_REDUCER(_Typeof(obj.value), \
__CILKRTS_MKIDENT(cilk_c_reducer_max_reduce_,tn), \
__CILKRTS_MKIDENT(cilk_c_reducer_max_identity_,tn), \
__cilkrts_hyperobject_noop_destroy, v)
/** Maximize with a value.
*
* `CILK_C_REDUCER_MAX_CALC(reducer, v)` sets the current view of the
* reducer to the max of its previous value and a specified new value.
* This is equivalent to
*
* REDUCER_VIEW(reducer) = max(REDUCER_VIEW(reducer), v)
*
* @param reducer The reducer whose contained value is to be updated.
* @param v The value that it is to be maximized with.
*/
#define CILK_C_REDUCER_MAX_CALC(reducer, v) do { \
_Typeof((reducer).value)* view = &(REDUCER_VIEW(reducer)); \
_Typeof(v) __value = (v); \
if (*view < __value) { \
*view = __value; \
} } while (0)
/// @cond internal
/** Declare the max reducer functions for a numeric type.
*
* This macro expands into external function declarations for functions which implement
* the reducer functionality for the max reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MAX_DECLARATION(t,tn,id) \
typedef CILK_C_DECLARE_REDUCER(t) CILK_C_REDUCER_MAX_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_max,tn,l,r); \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_max,tn);
/** Define the max reducer functions for a numeric type.
*
* This macro expands into function definitions for functions which implement the
* reducer functionality for the max reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MAX_DEFINITION(t,tn,id) \
typedef CILK_C_DECLARE_REDUCER(t) CILK_C_REDUCER_MAX_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_max,tn,l,r) \
{ if (*(t*)l < *(t*)r) *(t*)l = *(t*)r; } \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_max,tn) \
{ *(t*)v = id; }
//@{
/** @def CILK_C_REDUCER_MAX_INSTANCE
* @brief Declare or define implementation functions for a reducer type.
*
* In the runtime source file c_reducers.c, the macro `CILK_C_DEFINE_REDUCERS` will be defined, and
* this macro will generate reducer implementation functions. Everywhere else, `CILK_C_DEFINE_REDUCERS`
* will be undefined, and this macro will expand into external declarations for the functions.
*/
#ifdef CILK_C_DEFINE_REDUCERS
# define CILK_C_REDUCER_MAX_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MAX_DEFINITION(t,tn,id)
#else
# define CILK_C_REDUCER_MAX_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MAX_DECLARATION(t,tn,id)
#endif
//@}
/* Declare or define an instance of the reducer type and its functions for each
* numeric type.
*/
__CILKRTS_BEGIN_EXTERN_C
CILK_C_REDUCER_MAX_INSTANCE(char, char, CHAR_MIN)
CILK_C_REDUCER_MAX_INSTANCE(unsigned char, uchar, 0)
CILK_C_REDUCER_MAX_INSTANCE(signed char, schar, SCHAR_MIN)
CILK_C_REDUCER_MAX_INSTANCE(wchar_t, wchar_t, WCHAR_MIN)
CILK_C_REDUCER_MAX_INSTANCE(short, short, SHRT_MIN)
CILK_C_REDUCER_MAX_INSTANCE(unsigned short, ushort, 0)
CILK_C_REDUCER_MAX_INSTANCE(int, int, INT_MIN)
CILK_C_REDUCER_MAX_INSTANCE(unsigned int, uint, 0)
CILK_C_REDUCER_MAX_INSTANCE(unsigned int, unsigned, 0) // alternate name
CILK_C_REDUCER_MAX_INSTANCE(long, long, LONG_MIN)
CILK_C_REDUCER_MAX_INSTANCE(unsigned long, ulong, 0)
CILK_C_REDUCER_MAX_INSTANCE(long long, longlong, LLONG_MIN)
CILK_C_REDUCER_MAX_INSTANCE(unsigned long long, ulonglong, 0)
CILK_C_REDUCER_MAX_INSTANCE(float, float, -HUGE_VALF)
CILK_C_REDUCER_MAX_INSTANCE(double, double, -HUGE_VAL)
CILK_C_REDUCER_MAX_INSTANCE(long double, longdouble, -HUGE_VALL)
__CILKRTS_END_EXTERN_C
/// @endcond
/** Max_index reducer type name.
*
* This macro expands into the identifier which is the name of the max_index reducer
* type for a specified numeric type.
*
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MAX_INDEX_TYPE(tn) \
__CILKRTS_MKIDENT(cilk_c_reducer_max_index_,tn)
/** Declare an op_max_index reducer object.
*
* This macro expands into a declaration of a max_index reducer object for a specified
* numeric type. For example:
*
* CILK_C_REDUCER_MAX_INDEX(my_reducer, double, -DBL_MAX_INDEX);
*
* @param obj The variable name to be used for the declared reducer object.
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
* @param v The initial value for the reducer. (A value which can be assigned to the
* numeric type represented by @a tn.)
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MAX_INDEX(obj,tn,v) \
CILK_C_REDUCER_MAX_INDEX_TYPE(tn) obj = \
CILK_C_INIT_REDUCER(_Typeof(obj.value), \
__CILKRTS_MKIDENT(cilk_c_reducer_max_index_reduce_,tn), \
__CILKRTS_MKIDENT(cilk_c_reducer_max_index_identity_,tn), \
__cilkrts_hyperobject_noop_destroy, {0, v})
/** Maximize with a value.
*
* `CILK_C_REDUCER_MAX_INDEX_CALC(reducer, i, v)` sets the current view of the
* reducer to the max of its previous value and a specified new value.
* This is equivalent to
*
* REDUCER_VIEW(reducer) = max_index(REDUCER_VIEW(reducer), v)
*
* If the value of the reducer is changed to @a v, then the index of the reducer is
* changed to @a i.
*
* @param reducer The reducer whose contained value and index are to be updated.
* @param i The index associated with the new value.
* @param v The value that it is to be maximized with.
*/
#define CILK_C_REDUCER_MAX_INDEX_CALC(reducer, i, v) do { \
_Typeof((reducer).value)* view = &(REDUCER_VIEW(reducer)); \
_Typeof(v) __value = (v); \
if (view->value < __value) { \
view->index = (i); \
view->value = __value; \
} } while (0)
/// @cond internal
/** Declare the max_index view type.
*
* The view of a max_index reducer is a structure containing both the
* maximum value for the reducer and the index that was associated with
* that value in the sequence of input values.
*/
#define CILK_C_REDUCER_MAX_INDEX_VIEW(t,tn) \
typedef struct { \
__STDNS ptrdiff_t index; \
t value; \
} __CILKRTS_MKIDENT(cilk_c_reducer_max_index_view_,tn)
/** Declare the max_index reducer functions for a numeric type.
*
* This macro expands into external function declarations for functions which implement
* the reducer functionality for the max_index reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MAX_INDEX_DECLARATION(t,tn,id) \
CILK_C_REDUCER_MAX_INDEX_VIEW(t,tn); \
typedef CILK_C_DECLARE_REDUCER( \
__CILKRTS_MKIDENT(cilk_c_reducer_max_index_view_,tn)) \
CILK_C_REDUCER_MAX_INDEX_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_max_index,tn,l,r); \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_max_index,tn);
/** Define the max_index reducer functions for a numeric type.
*
* This macro expands into function definitions for functions which implement the
* reducer functionality for the max_index reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MAX_INDEX_DEFINITION(t,tn,id) \
CILK_C_REDUCER_MAX_INDEX_VIEW(t,tn); \
typedef CILK_C_DECLARE_REDUCER( \
__CILKRTS_MKIDENT(cilk_c_reducer_max_index_view_,tn)) \
CILK_C_REDUCER_MAX_INDEX_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_max_index,tn,l,r) \
{ typedef __CILKRTS_MKIDENT(cilk_c_reducer_max_index_view_,tn) view_t; \
if (((view_t*)l)->value < ((view_t*)r)->value) \
*(view_t*)l = *(view_t*)r; } \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_max_index,tn) \
{ typedef __CILKRTS_MKIDENT(cilk_c_reducer_max_index_view_,tn) view_t; \
((view_t*)v)->index = 0; ((view_t*)v)->value = id; }
//@{
/** @def CILK_C_REDUCER_MAX_INDEX_INSTANCE
* @brief Declare or define implementation functions for a reducer type.
*
* In the runtime source file c_reducers.c, the macro `CILK_C_DEFINE_REDUCERS` will be defined, and
* this macro will generate reducer implementation functions. Everywhere else, `CILK_C_DEFINE_REDUCERS`
* will be undefined, and this macro will expand into external declarations for the functions.
*/
#ifdef CILK_C_DEFINE_REDUCERS
# define CILK_C_REDUCER_MAX_INDEX_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MAX_INDEX_DEFINITION(t,tn,id)
#else
# define CILK_C_REDUCER_MAX_INDEX_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MAX_INDEX_DECLARATION(t,tn,id)
#endif
//@}
/* Declare or define an instance of the reducer type and its functions for each
* numeric type.
*/
__CILKRTS_BEGIN_EXTERN_C
CILK_C_REDUCER_MAX_INDEX_INSTANCE(char, char, CHAR_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(unsigned char, uchar, 0)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(signed char, schar, SCHAR_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(wchar_t, wchar_t, WCHAR_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(short, short, SHRT_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(unsigned short, ushort, 0)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(int, int, INT_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(unsigned int, uint, 0)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(unsigned int, unsigned, 0) // alternate name
CILK_C_REDUCER_MAX_INDEX_INSTANCE(long, long, LONG_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(unsigned long, ulong, 0)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(long long, longlong, LLONG_MIN)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(unsigned long long, ulonglong, 0)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(float, float, -HUGE_VALF)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(double, double, -HUGE_VAL)
CILK_C_REDUCER_MAX_INDEX_INSTANCE(long double, longdouble, -HUGE_VALL)
__CILKRTS_END_EXTERN_C
/// @endcond
/** Min reducer type name.
*
* This macro expands into the identifier which is the name of the min reducer
* type for a specified numeric type.
*
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MIN_TYPE(tn) \
__CILKRTS_MKIDENT(cilk_c_reducer_min_,tn)
/** Declare a min reducer object.
*
* This macro expands into a declaration of a min reducer object for a specified numeric
* type. For example:
*
* CILK_C_REDUCER_MIN(my_reducer, double, DBL_MAX);
*
* @param obj The variable name to be used for the declared reducer object.
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
* @param v The initial value for the reducer. (A value which can be assigned to the
* numeric type represented by @a tn.)
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MIN(obj,tn,v) \
CILK_C_REDUCER_MIN_TYPE(tn) obj = \
CILK_C_INIT_REDUCER(_Typeof(obj.value), \
__CILKRTS_MKIDENT(cilk_c_reducer_min_reduce_,tn), \
__CILKRTS_MKIDENT(cilk_c_reducer_min_identity_,tn), \
__cilkrts_hyperobject_noop_destroy, v)
/** Minimize with a value.
*
* `CILK_C_REDUCER_MIN_CALC(reducer, v)` sets the current view of the
* reducer to the min of its previous value and a specified new value.
* This is equivalent to
*
* REDUCER_VIEW(reducer) = min(REDUCER_VIEW(reducer), v)
*
* @param reducer The reducer whose contained value is to be updated.
* @param v The value that it is to be minimized with.
*/
#define CILK_C_REDUCER_MIN_CALC(reducer, v) do { \
_Typeof((reducer).value)* view = &(REDUCER_VIEW(reducer)); \
_Typeof(v) __value = (v); \
if (*view > __value) { \
*view = __value; \
} } while (0)
/// @cond internal
/** Declare the min reducer functions for a numeric type.
*
* This macro expands into external function declarations for functions which implement
* the reducer functionality for the min reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MIN_DECLARATION(t,tn,id) \
typedef CILK_C_DECLARE_REDUCER(t) CILK_C_REDUCER_MIN_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_min,tn,l,r); \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_min,tn);
/** Define the min reducer functions for a numeric type.
*
* This macro expands into function definitions for functions which implement the
* reducer functionality for the min reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MIN_DEFINITION(t,tn,id) \
typedef CILK_C_DECLARE_REDUCER(t) CILK_C_REDUCER_MIN_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_min,tn,l,r) \
{ if (*(t*)l > *(t*)r) *(t*)l = *(t*)r; } \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_min,tn) \
{ *(t*)v = id; }
//@{
/** @def CILK_C_REDUCER_MIN_INSTANCE
* @brief Declare or define implementation functions for a reducer type.
*
* In the runtime source file c_reducers.c, the macro `CILK_C_DEFINE_REDUCERS` will be defined, and
* this macro will generate reducer implementation functions. Everywhere else, `CILK_C_DEFINE_REDUCERS`
* will be undefined, and this macro will expand into external declarations for the functions.
*/
#ifdef CILK_C_DEFINE_REDUCERS
# define CILK_C_REDUCER_MIN_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MIN_DEFINITION(t,tn,id)
#else
# define CILK_C_REDUCER_MIN_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MIN_DECLARATION(t,tn,id)
#endif
//@}
/* Declare or define an instance of the reducer type and its functions for each
* numeric type.
*/
__CILKRTS_BEGIN_EXTERN_C
CILK_C_REDUCER_MIN_INSTANCE(char, char, CHAR_MAX)
CILK_C_REDUCER_MIN_INSTANCE(unsigned char, uchar, CHAR_MAX)
CILK_C_REDUCER_MIN_INSTANCE(signed char, schar, SCHAR_MAX)
CILK_C_REDUCER_MIN_INSTANCE(wchar_t, wchar_t, WCHAR_MAX)
CILK_C_REDUCER_MIN_INSTANCE(short, short, SHRT_MAX)
CILK_C_REDUCER_MIN_INSTANCE(unsigned short, ushort, USHRT_MAX)
CILK_C_REDUCER_MIN_INSTANCE(int, int, INT_MAX)
CILK_C_REDUCER_MIN_INSTANCE(unsigned int, uint, UINT_MAX)
CILK_C_REDUCER_MIN_INSTANCE(unsigned int, unsigned, UINT_MAX) // alternate name
CILK_C_REDUCER_MIN_INSTANCE(long, long, LONG_MAX)
CILK_C_REDUCER_MIN_INSTANCE(unsigned long, ulong, ULONG_MAX)
CILK_C_REDUCER_MIN_INSTANCE(long long, longlong, LLONG_MAX)
CILK_C_REDUCER_MIN_INSTANCE(unsigned long long, ulonglong, ULLONG_MAX)
CILK_C_REDUCER_MIN_INSTANCE(float, float, HUGE_VALF)
CILK_C_REDUCER_MIN_INSTANCE(double, double, HUGE_VAL)
CILK_C_REDUCER_MIN_INSTANCE(long double, longdouble, HUGE_VALL)
__CILKRTS_END_EXTERN_C
/// @endcond
/** Min_index reducer type name.
*
* This macro expands into the identifier which is the name of the min_index reducer
* type for a specified numeric type.
*
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MIN_INDEX_TYPE(tn) \
__CILKRTS_MKIDENT(cilk_c_reducer_min_index_,tn)
/** Declare an op_min_index reducer object.
*
* This macro expands into a declaration of a min_index reducer object for a specified
* numeric type. For example:
*
* CILK_C_REDUCER_MIN_INDEX(my_reducer, double, -DBL_MIN_INDEX);
*
* @param obj The variable name to be used for the declared reducer object.
* @param tn The @ref reducers_c_type_names "numeric type name" specifying the type of the
* reducer.
* @param v The initial value for the reducer. (A value which can be assigned to the
* numeric type represented by @a tn.)
*
* @see @ref reducers_c_predefined
*/
#define CILK_C_REDUCER_MIN_INDEX(obj,tn,v) \
CILK_C_REDUCER_MIN_INDEX_TYPE(tn) obj = \
CILK_C_INIT_REDUCER(_Typeof(obj.value), \
__CILKRTS_MKIDENT(cilk_c_reducer_min_index_reduce_,tn), \
__CILKRTS_MKIDENT(cilk_c_reducer_min_index_identity_,tn), \
__cilkrts_hyperobject_noop_destroy, {0, v})
/** Minimize with a value.
*
* `CILK_C_REDUCER_MIN_INDEX_CALC(reducer, i, v)` sets the current view of the
* reducer to the min of its previous value and a specified new value.
* This is equivalent to
*
* REDUCER_VIEW(reducer) = min_index(REDUCER_VIEW(reducer), v)
*
* If the value of the reducer is changed to @a v, then the index of the reducer is
* changed to @a i.
*
* @param reducer The reducer whose contained value and index are to be updated.
* @param i The index associated with the new value.
* @param v The value that it is to be minimized with.
*/
#define CILK_C_REDUCER_MIN_INDEX_CALC(reducer, i, v) do { \
_Typeof((reducer).value)* view = &(REDUCER_VIEW(reducer)); \
_Typeof(v) __value = (v); \
if (view->value > __value) { \
view->index = (i); \
view->value = __value; \
} } while (0)
/// @cond internal
/** Declare the min_index view type.
*
* The view of a min_index reducer is a structure containing both the
* minimum value for the reducer and the index that was associated with
* that value in the sequence of input values.
*/
#define CILK_C_REDUCER_MIN_INDEX_VIEW(t,tn) \
typedef struct { \
__STDNS ptrdiff_t index; \
t value; \
} __CILKRTS_MKIDENT(cilk_c_reducer_min_index_view_,tn)
/** Declare the min_index reducer functions for a numeric type.
*
* This macro expands into external function declarations for functions which implement
* the reducer functionality for the min_index reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MIN_INDEX_DECLARATION(t,tn,id) \
CILK_C_REDUCER_MIN_INDEX_VIEW(t,tn); \
typedef CILK_C_DECLARE_REDUCER( \
__CILKRTS_MKIDENT(cilk_c_reducer_min_index_view_,tn)) \
CILK_C_REDUCER_MIN_INDEX_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_min_index,tn,l,r); \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_min_index,tn);
/** Define the min_index reducer functions for a numeric type.
*
* This macro expands into function definitions for functions which implement the
* reducer functionality for the min_index reducer type for a specified numeric type.
*
* @param t The value type of the reducer.
* @param tn The value “type name” identifier, used to construct the reducer type name,
* function names, etc.
*/
#define CILK_C_REDUCER_MIN_INDEX_DEFINITION(t,tn,id) \
CILK_C_REDUCER_MIN_INDEX_VIEW(t,tn); \
typedef CILK_C_DECLARE_REDUCER( \
__CILKRTS_MKIDENT(cilk_c_reducer_min_index_view_,tn)) \
CILK_C_REDUCER_MIN_INDEX_TYPE(tn); \
__CILKRTS_DECLARE_REDUCER_REDUCE(cilk_c_reducer_min_index,tn,l,r) \
{ typedef __CILKRTS_MKIDENT(cilk_c_reducer_min_index_view_,tn) view_t; \
if (((view_t*)l)->value > ((view_t*)r)->value) \
*(view_t*)l = *(view_t*)r; } \
__CILKRTS_DECLARE_REDUCER_IDENTITY(cilk_c_reducer_min_index,tn) \
{ typedef __CILKRTS_MKIDENT(cilk_c_reducer_min_index_view_,tn) view_t; \
((view_t*)v)->index = 0; ((view_t*)v)->value = id; }
//@{
/** @def CILK_C_REDUCER_MIN_INDEX_INSTANCE
* @brief Declare or define implementation functions for a reducer type.
*
* In the runtime source file c_reducers.c, the macro `CILK_C_DEFINE_REDUCERS` will be defined, and
* this macro will generate reducer implementation functions. Everywhere else, `CILK_C_DEFINE_REDUCERS`
* will be undefined, and this macro will expand into external declarations for the functions.
*/
#ifdef CILK_C_DEFINE_REDUCERS
# define CILK_C_REDUCER_MIN_INDEX_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MIN_INDEX_DEFINITION(t,tn,id)
#else
# define CILK_C_REDUCER_MIN_INDEX_INSTANCE(t,tn,id) \
CILK_C_REDUCER_MIN_INDEX_DECLARATION(t,tn,id)
#endif
//@}
/* Declare or define an instance of the reducer type and its functions for each
* numeric type.
*/
__CILKRTS_BEGIN_EXTERN_C
CILK_C_REDUCER_MIN_INDEX_INSTANCE(char, char, CHAR_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(unsigned char, uchar, CHAR_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(signed char, schar, SCHAR_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(wchar_t, wchar_t, WCHAR_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(short, short, SHRT_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(unsigned short, ushort, USHRT_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(int, int, INT_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(unsigned int, uint, UINT_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(unsigned int, unsigned, UINT_MAX) // alternate name
CILK_C_REDUCER_MIN_INDEX_INSTANCE(long, long, LONG_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(unsigned long, ulong, ULONG_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(long long, longlong, LLONG_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(unsigned long long, ulonglong, ULLONG_MAX)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(float, float, HUGE_VALF)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(double, double, HUGE_VAL)
CILK_C_REDUCER_MIN_INDEX_INSTANCE(long double, longdouble, HUGE_VALL)
__CILKRTS_END_EXTERN_C
/// @endcond
//@}
#endif // defined REDUCER_MAX_H_INCLUDED