blob: 8ba3f4aab4096b7683213c13f7acb9992128e404 [file] [log] [blame]
/* FPU-related code for x86 and x86_64 processors.
Copyright (C) 2005-2014 Free Software Foundation, Inc.
Contributed by Francois-Xavier Coudert <coudert@clipper.ens.fr>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef __SSE_MATH__
#include "cpuid.h"
#endif
#if defined(__sun__) && defined(__svr4__)
#include <signal.h>
#include <ucontext.h>
static volatile sig_atomic_t sigill_caught;
static void
sigill_hdlr (int sig __attribute((unused)),
siginfo_t *sip __attribute__((unused)),
ucontext_t *ucp)
{
sigill_caught = 1;
/* Set PC to the instruction after the faulting one to skip over it,
otherwise we enter an infinite loop. 3 is the size of the movaps
instruction. */
ucp->uc_mcontext.gregs[EIP] += 3;
setcontext (ucp);
}
#endif
static int
has_sse (void)
{
#ifndef __SSE_MATH__
unsigned int eax, ebx, ecx, edx;
if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
return 0;
#if defined(__sun__) && defined(__svr4__)
/* Solaris 2 before Solaris 9 4/04 cannot execute SSE instructions even
if the CPU supports them. Programs receive SIGILL instead, so check
for that at runtime. */
if (edx & bit_SSE)
{
struct sigaction act, oact;
act.sa_handler = sigill_hdlr;
sigemptyset (&act.sa_mask);
/* Need to set SA_SIGINFO so a ucontext_t * is passed to the handler. */
act.sa_flags = SA_SIGINFO;
sigaction (SIGILL, &act, &oact);
/* We need a single SSE instruction here so the handler can safely skip
over it. */
__asm__ __volatile__ ("movaps\t%xmm0,%xmm0");
sigaction (SIGILL, &oact, NULL);
if (sigill_caught)
return 0;
}
#endif /* __sun__ && __svr4__ */
return edx & bit_SSE;
#else
return 1;
#endif
}
/* i387 exceptions -- see linux <fpu_control.h> header file for details. */
#define _FPU_MASK_IM 0x01
#define _FPU_MASK_DM 0x02
#define _FPU_MASK_ZM 0x04
#define _FPU_MASK_OM 0x08
#define _FPU_MASK_UM 0x10
#define _FPU_MASK_PM 0x20
#define _FPU_MASK_ALL 0x3f
#define _FPU_EX_ALL 0x3f
/* i387 rounding modes. */
#define _FPU_RC_NEAREST 0x0
#define _FPU_RC_DOWN 0x1
#define _FPU_RC_UP 0x2
#define _FPU_RC_ZERO 0x3
#define _FPU_RC_MASK 0x3
void
set_fpu (void)
{
int excepts = 0;
unsigned short cw;
__asm__ __volatile__ ("fstcw\t%0" : "=m" (cw));
if (options.fpe & GFC_FPE_INVALID) excepts |= _FPU_MASK_IM;
if (options.fpe & GFC_FPE_DENORMAL) excepts |= _FPU_MASK_DM;
if (options.fpe & GFC_FPE_ZERO) excepts |= _FPU_MASK_ZM;
if (options.fpe & GFC_FPE_OVERFLOW) excepts |= _FPU_MASK_OM;
if (options.fpe & GFC_FPE_UNDERFLOW) excepts |= _FPU_MASK_UM;
if (options.fpe & GFC_FPE_INEXACT) excepts |= _FPU_MASK_PM;
cw |= _FPU_MASK_ALL;
cw &= ~excepts;
__asm__ __volatile__ ("fnclex\n\tfldcw\t%0" : : "m" (cw));
if (has_sse())
{
unsigned int cw_sse;
__asm__ __volatile__ ("%vstmxcsr\t%0" : "=m" (cw_sse));
/* The SSE exception masks are shifted by 7 bits. */
cw_sse |= _FPU_MASK_ALL << 7;
cw_sse &= ~(excepts << 7);
/* Clear stalled exception flags. */
cw_sse &= ~_FPU_EX_ALL;
__asm__ __volatile__ ("%vldmxcsr\t%0" : : "m" (cw_sse));
}
}
int
get_fpu_except_flags (void)
{
unsigned short cw;
int excepts;
int result = 0;
__asm__ __volatile__ ("fnstsw\t%0" : "=a" (cw));
excepts = cw;
if (has_sse())
{
unsigned int cw_sse;
__asm__ __volatile__ ("%vstmxcsr\t%0" : "=m" (cw_sse));
excepts |= cw_sse;
}
excepts &= _FPU_EX_ALL;
if (excepts & _FPU_MASK_IM) result |= GFC_FPE_INVALID;
if (excepts & _FPU_MASK_DM) result |= GFC_FPE_DENORMAL;
if (excepts & _FPU_MASK_ZM) result |= GFC_FPE_ZERO;
if (excepts & _FPU_MASK_OM) result |= GFC_FPE_OVERFLOW;
if (excepts & _FPU_MASK_UM) result |= GFC_FPE_UNDERFLOW;
if (excepts & _FPU_MASK_PM) result |= GFC_FPE_INEXACT;
return result;
}
void
set_fpu_rounding_mode (int round)
{
int round_mode;
unsigned short cw;
switch (round)
{
case GFC_FPE_TONEAREST:
round_mode = _FPU_RC_NEAREST;
break;
case GFC_FPE_UPWARD:
round_mode = _FPU_RC_UP;
break;
case GFC_FPE_DOWNWARD:
round_mode = _FPU_RC_DOWN;
break;
case GFC_FPE_TOWARDZERO:
round_mode = _FPU_RC_ZERO;
break;
default:
return; /* Should be unreachable. */
}
__asm__ __volatile__ ("fnstcw\t%0" : "=m" (cw));
/* The x87 round control bits are shifted by 10 bits. */
cw &= ~(_FPU_RC_MASK << 10);
cw |= round_mode << 10;
__asm__ __volatile__ ("fldcw\t%0" : : "m" (cw));
if (has_sse())
{
unsigned int cw_sse;
__asm__ __volatile__ ("%vstmxcsr\t%0" : "=m" (cw_sse));
/* The SSE round control bits are shifted by 13 bits. */
cw_sse &= ~(_FPU_RC_MASK << 13);
cw_sse |= round_mode << 13;
__asm__ __volatile__ ("%vldmxcsr\t%0" : : "m" (cw_sse));
}
}
int
get_fpu_rounding_mode (void)
{
int round_mode;
#ifdef __SSE_MATH__
unsigned int cw;
__asm__ __volatile__ ("%vstmxcsr\t%0" : "=m" (cw));
/* The SSE round control bits are shifted by 13 bits. */
round_mode = cw >> 13;
#else
unsigned short cw;
__asm__ __volatile__ ("fnstcw\t%0" : "=m" (cw));
/* The x87 round control bits are shifted by 10 bits. */
round_mode = cw >> 10;
#endif
round_mode &= _FPU_RC_MASK;
switch (round_mode)
{
case _FPU_RC_NEAREST:
return GFC_FPE_TONEAREST;
case _FPU_RC_UP:
return GFC_FPE_UPWARD;
case _FPU_RC_DOWN:
return GFC_FPE_DOWNWARD;
case _FPU_RC_ZERO:
return GFC_FPE_TOWARDZERO;
default:
return GFC_FPE_INVALID; /* Should be unreachable. */
}
}