blob: 70c4b481a2f1d863e61a7055cbde958d46c4dbed [file] [log] [blame]
//===-- asan_report.cc ----------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// This file contains error reporting code.
//===----------------------------------------------------------------------===//
#include "asan_flags.h"
#include "asan_internal.h"
#include "asan_mapping.h"
#include "asan_report.h"
#include "asan_stack.h"
#include "asan_thread.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_symbolizer.h"
namespace __asan {
// -------------------- User-specified callbacks ----------------- {{{1
static void (*error_report_callback)(const char*);
static char *error_message_buffer = 0;
static uptr error_message_buffer_pos = 0;
static uptr error_message_buffer_size = 0;
void AppendToErrorMessageBuffer(const char *buffer) {
if (error_message_buffer) {
uptr length = internal_strlen(buffer);
CHECK_GE(error_message_buffer_size, error_message_buffer_pos);
uptr remaining = error_message_buffer_size - error_message_buffer_pos;
internal_strncpy(error_message_buffer + error_message_buffer_pos,
buffer, remaining);
error_message_buffer[error_message_buffer_size - 1] = '\0';
// FIXME: reallocate the buffer instead of truncating the message.
error_message_buffer_pos += remaining > length ? length : remaining;
}
}
// ---------------------- Decorator ------------------------------ {{{1
class Decorator: private __sanitizer::AnsiColorDecorator {
public:
Decorator() : __sanitizer::AnsiColorDecorator(PrintsToTtyCached()) { }
const char *Warning() { return Red(); }
const char *EndWarning() { return Default(); }
const char *Access() { return Blue(); }
const char *EndAccess() { return Default(); }
const char *Location() { return Green(); }
const char *EndLocation() { return Default(); }
const char *Allocation() { return Magenta(); }
const char *EndAllocation() { return Default(); }
const char *ShadowByte(u8 byte) {
switch (byte) {
case kAsanHeapLeftRedzoneMagic:
case kAsanHeapRightRedzoneMagic:
return Red();
case kAsanHeapFreeMagic:
return Magenta();
case kAsanStackLeftRedzoneMagic:
case kAsanStackMidRedzoneMagic:
case kAsanStackRightRedzoneMagic:
case kAsanStackPartialRedzoneMagic:
return Red();
case kAsanStackAfterReturnMagic:
return Magenta();
case kAsanInitializationOrderMagic:
return Cyan();
case kAsanUserPoisonedMemoryMagic:
case kAsanContiguousContainerOOBMagic:
return Blue();
case kAsanStackUseAfterScopeMagic:
return Magenta();
case kAsanGlobalRedzoneMagic:
return Red();
case kAsanInternalHeapMagic:
return Yellow();
default:
return Default();
}
}
const char *EndShadowByte() { return Default(); }
};
// ---------------------- Helper functions ----------------------- {{{1
static void PrintShadowByte(const char *before, u8 byte,
const char *after = "\n") {
Decorator d;
Printf("%s%s%x%x%s%s", before,
d.ShadowByte(byte), byte >> 4, byte & 15, d.EndShadowByte(), after);
}
static void PrintShadowBytes(const char *before, u8 *bytes,
u8 *guilty, uptr n) {
Decorator d;
if (before)
Printf("%s%p:", before, bytes);
for (uptr i = 0; i < n; i++) {
u8 *p = bytes + i;
const char *before = p == guilty ? "[" :
(p - 1 == guilty && i != 0) ? "" : " ";
const char *after = p == guilty ? "]" : "";
PrintShadowByte(before, *p, after);
}
Printf("\n");
}
static void PrintLegend() {
Printf("Shadow byte legend (one shadow byte represents %d "
"application bytes):\n", (int)SHADOW_GRANULARITY);
PrintShadowByte(" Addressable: ", 0);
Printf(" Partially addressable: ");
for (u8 i = 1; i < SHADOW_GRANULARITY; i++)
PrintShadowByte("", i, " ");
Printf("\n");
PrintShadowByte(" Heap left redzone: ", kAsanHeapLeftRedzoneMagic);
PrintShadowByte(" Heap right redzone: ", kAsanHeapRightRedzoneMagic);
PrintShadowByte(" Freed heap region: ", kAsanHeapFreeMagic);
PrintShadowByte(" Stack left redzone: ", kAsanStackLeftRedzoneMagic);
PrintShadowByte(" Stack mid redzone: ", kAsanStackMidRedzoneMagic);
PrintShadowByte(" Stack right redzone: ", kAsanStackRightRedzoneMagic);
PrintShadowByte(" Stack partial redzone: ", kAsanStackPartialRedzoneMagic);
PrintShadowByte(" Stack after return: ", kAsanStackAfterReturnMagic);
PrintShadowByte(" Stack use after scope: ", kAsanStackUseAfterScopeMagic);
PrintShadowByte(" Global redzone: ", kAsanGlobalRedzoneMagic);
PrintShadowByte(" Global init order: ", kAsanInitializationOrderMagic);
PrintShadowByte(" Poisoned by user: ", kAsanUserPoisonedMemoryMagic);
PrintShadowByte(" Contiguous container OOB:",
kAsanContiguousContainerOOBMagic);
PrintShadowByte(" ASan internal: ", kAsanInternalHeapMagic);
}
static void PrintShadowMemoryForAddress(uptr addr) {
if (!AddrIsInMem(addr))
return;
uptr shadow_addr = MemToShadow(addr);
const uptr n_bytes_per_row = 16;
uptr aligned_shadow = shadow_addr & ~(n_bytes_per_row - 1);
Printf("Shadow bytes around the buggy address:\n");
for (int i = -5; i <= 5; i++) {
const char *prefix = (i == 0) ? "=>" : " ";
PrintShadowBytes(prefix,
(u8*)(aligned_shadow + i * n_bytes_per_row),
(u8*)shadow_addr, n_bytes_per_row);
}
if (flags()->print_legend)
PrintLegend();
}
static void PrintZoneForPointer(uptr ptr, uptr zone_ptr,
const char *zone_name) {
if (zone_ptr) {
if (zone_name) {
Printf("malloc_zone_from_ptr(%p) = %p, which is %s\n",
ptr, zone_ptr, zone_name);
} else {
Printf("malloc_zone_from_ptr(%p) = %p, which doesn't have a name\n",
ptr, zone_ptr);
}
} else {
Printf("malloc_zone_from_ptr(%p) = 0\n", ptr);
}
}
static void DescribeThread(AsanThread *t) {
if (t)
DescribeThread(t->context());
}
// ---------------------- Address Descriptions ------------------- {{{1
static bool IsASCII(unsigned char c) {
return /*0x00 <= c &&*/ c <= 0x7F;
}
static const char *MaybeDemangleGlobalName(const char *name) {
// We can spoil names of globals with C linkage, so use an heuristic
// approach to check if the name should be demangled.
return (name[0] == '_' && name[1] == 'Z')
? Symbolizer::Get()->Demangle(name)
: name;
}
// Check if the global is a zero-terminated ASCII string. If so, print it.
static void PrintGlobalNameIfASCII(const __asan_global &g) {
for (uptr p = g.beg; p < g.beg + g.size - 1; p++) {
unsigned char c = *(unsigned char*)p;
if (c == '\0' || !IsASCII(c)) return;
}
if (*(char*)(g.beg + g.size - 1) != '\0') return;
Printf(" '%s' is ascii string '%s'\n",
MaybeDemangleGlobalName(g.name), (char*)g.beg);
}
bool DescribeAddressRelativeToGlobal(uptr addr, uptr size,
const __asan_global &g) {
static const uptr kMinimalDistanceFromAnotherGlobal = 64;
if (addr <= g.beg - kMinimalDistanceFromAnotherGlobal) return false;
if (addr >= g.beg + g.size_with_redzone) return false;
Decorator d;
Printf("%s", d.Location());
if (addr < g.beg) {
Printf("%p is located %zd bytes to the left", (void*)addr, g.beg - addr);
} else if (addr + size > g.beg + g.size) {
if (addr < g.beg + g.size)
addr = g.beg + g.size;
Printf("%p is located %zd bytes to the right", (void*)addr,
addr - (g.beg + g.size));
} else {
// Can it happen?
Printf("%p is located %zd bytes inside", (void*)addr, addr - g.beg);
}
Printf(" of global variable '%s' from '%s' (0x%zx) of size %zu\n",
MaybeDemangleGlobalName(g.name), g.module_name, g.beg, g.size);
Printf("%s", d.EndLocation());
PrintGlobalNameIfASCII(g);
return true;
}
bool DescribeAddressIfShadow(uptr addr) {
if (AddrIsInMem(addr))
return false;
static const char kAddrInShadowReport[] =
"Address %p is located in the %s.\n";
if (AddrIsInShadowGap(addr)) {
Printf(kAddrInShadowReport, addr, "shadow gap area");
return true;
}
if (AddrIsInHighShadow(addr)) {
Printf(kAddrInShadowReport, addr, "high shadow area");
return true;
}
if (AddrIsInLowShadow(addr)) {
Printf(kAddrInShadowReport, addr, "low shadow area");
return true;
}
CHECK(0 && "Address is not in memory and not in shadow?");
return false;
}
// Return " (thread_name) " or an empty string if the name is empty.
const char *ThreadNameWithParenthesis(AsanThreadContext *t, char buff[],
uptr buff_len) {
const char *name = t->name;
if (name[0] == '\0') return "";
buff[0] = 0;
internal_strncat(buff, " (", 3);
internal_strncat(buff, name, buff_len - 4);
internal_strncat(buff, ")", 2);
return buff;
}
const char *ThreadNameWithParenthesis(u32 tid, char buff[],
uptr buff_len) {
if (tid == kInvalidTid) return "";
asanThreadRegistry().CheckLocked();
AsanThreadContext *t = GetThreadContextByTidLocked(tid);
return ThreadNameWithParenthesis(t, buff, buff_len);
}
void PrintAccessAndVarIntersection(const char *var_name,
uptr var_beg, uptr var_size,
uptr addr, uptr access_size,
uptr prev_var_end, uptr next_var_beg) {
uptr var_end = var_beg + var_size;
uptr addr_end = addr + access_size;
const char *pos_descr = 0;
// If the variable [var_beg, var_end) is the nearest variable to the
// current memory access, indicate it in the log.
if (addr >= var_beg) {
if (addr_end <= var_end)
pos_descr = "is inside"; // May happen if this is a use-after-return.
else if (addr < var_end)
pos_descr = "partially overflows";
else if (addr_end <= next_var_beg &&
next_var_beg - addr_end >= addr - var_end)
pos_descr = "overflows";
} else {
if (addr_end > var_beg)
pos_descr = "partially underflows";
else if (addr >= prev_var_end &&
addr - prev_var_end >= var_beg - addr_end)
pos_descr = "underflows";
}
Printf(" [%zd, %zd) '%s'", var_beg, var_beg + var_size, var_name);
if (pos_descr) {
Decorator d;
// FIXME: we may want to also print the size of the access here,
// but in case of accesses generated by memset it may be confusing.
Printf("%s <== Memory access at offset %zd %s this variable%s\n",
d.Location(), addr, pos_descr, d.EndLocation());
} else {
Printf("\n");
}
}
struct StackVarDescr {
uptr beg;
uptr size;
const char *name_pos;
uptr name_len;
};
bool DescribeAddressIfStack(uptr addr, uptr access_size) {
AsanThread *t = FindThreadByStackAddress(addr);
if (!t) return false;
const uptr kBufSize = 4095;
char buf[kBufSize];
uptr offset = 0;
uptr frame_pc = 0;
char tname[128];
const char *frame_descr = t->GetFrameNameByAddr(addr, &offset, &frame_pc);
#ifdef __powerpc64__
// On PowerPC64, the address of a function actually points to a
// three-doubleword data structure with the first field containing
// the address of the function's code.
frame_pc = *reinterpret_cast<uptr *>(frame_pc);
#endif
// This string is created by the compiler and has the following form:
// "n alloc_1 alloc_2 ... alloc_n"
// where alloc_i looks like "offset size len ObjectName ".
CHECK(frame_descr);
Decorator d;
Printf("%s", d.Location());
Printf("Address %p is located in stack of thread T%d%s "
"at offset %zu in frame\n",
addr, t->tid(),
ThreadNameWithParenthesis(t->tid(), tname, sizeof(tname)),
offset);
// Now we print the frame where the alloca has happened.
// We print this frame as a stack trace with one element.
// The symbolizer may print more than one frame if inlining was involved.
// The frame numbers may be different than those in the stack trace printed
// previously. That's unfortunate, but I have no better solution,
// especially given that the alloca may be from entirely different place
// (e.g. use-after-scope, or different thread's stack).
StackTrace alloca_stack;
alloca_stack.trace[0] = frame_pc + 16;
alloca_stack.size = 1;
Printf("%s", d.EndLocation());
PrintStack(&alloca_stack);
// Report the number of stack objects.
char *p;
uptr n_objects = (uptr)internal_simple_strtoll(frame_descr, &p, 10);
CHECK_GT(n_objects, 0);
Printf(" This frame has %zu object(s):\n", n_objects);
// Report all objects in this frame.
InternalScopedBuffer<StackVarDescr> vars(n_objects);
for (uptr i = 0; i < n_objects; i++) {
uptr beg, size;
uptr len;
beg = (uptr)internal_simple_strtoll(p, &p, 10);
size = (uptr)internal_simple_strtoll(p, &p, 10);
len = (uptr)internal_simple_strtoll(p, &p, 10);
if (beg == 0 || size == 0 || *p != ' ') {
Printf("AddressSanitizer can't parse the stack frame "
"descriptor: |%s|\n", frame_descr);
break;
}
p++;
vars[i].beg = beg;
vars[i].size = size;
vars[i].name_pos = p;
vars[i].name_len = len;
p += len;
}
for (uptr i = 0; i < n_objects; i++) {
buf[0] = 0;
internal_strncat(buf, vars[i].name_pos,
static_cast<uptr>(Min(kBufSize, vars[i].name_len)));
uptr prev_var_end = i ? vars[i - 1].beg + vars[i - 1].size : 0;
uptr next_var_beg = i + 1 < n_objects ? vars[i + 1].beg : ~(0UL);
PrintAccessAndVarIntersection(buf, vars[i].beg, vars[i].size,
offset, access_size,
prev_var_end, next_var_beg);
}
Printf("HINT: this may be a false positive if your program uses "
"some custom stack unwind mechanism or swapcontext\n"
" (longjmp and C++ exceptions *are* supported)\n");
DescribeThread(t);
return true;
}
static void DescribeAccessToHeapChunk(AsanChunkView chunk, uptr addr,
uptr access_size) {
sptr offset;
Decorator d;
Printf("%s", d.Location());
if (chunk.AddrIsAtLeft(addr, access_size, &offset)) {
Printf("%p is located %zd bytes to the left of", (void*)addr, offset);
} else if (chunk.AddrIsAtRight(addr, access_size, &offset)) {
if (offset < 0) {
addr -= offset;
offset = 0;
}
Printf("%p is located %zd bytes to the right of", (void*)addr, offset);
} else if (chunk.AddrIsInside(addr, access_size, &offset)) {
Printf("%p is located %zd bytes inside of", (void*)addr, offset);
} else {
Printf("%p is located somewhere around (this is AddressSanitizer bug!)",
(void*)addr);
}
Printf(" %zu-byte region [%p,%p)\n", chunk.UsedSize(),
(void*)(chunk.Beg()), (void*)(chunk.End()));
Printf("%s", d.EndLocation());
}
void DescribeHeapAddress(uptr addr, uptr access_size) {
AsanChunkView chunk = FindHeapChunkByAddress(addr);
if (!chunk.IsValid()) {
Printf("AddressSanitizer can not describe address in more detail "
"(wild memory access suspected).\n");
return;
}
DescribeAccessToHeapChunk(chunk, addr, access_size);
CHECK(chunk.AllocTid() != kInvalidTid);
asanThreadRegistry().CheckLocked();
AsanThreadContext *alloc_thread =
GetThreadContextByTidLocked(chunk.AllocTid());
StackTrace alloc_stack;
chunk.GetAllocStack(&alloc_stack);
char tname[128];
Decorator d;
AsanThreadContext *free_thread = 0;
if (chunk.FreeTid() != kInvalidTid) {
free_thread = GetThreadContextByTidLocked(chunk.FreeTid());
Printf("%sfreed by thread T%d%s here:%s\n", d.Allocation(),
free_thread->tid,
ThreadNameWithParenthesis(free_thread, tname, sizeof(tname)),
d.EndAllocation());
StackTrace free_stack;
chunk.GetFreeStack(&free_stack);
PrintStack(&free_stack);
Printf("%spreviously allocated by thread T%d%s here:%s\n",
d.Allocation(), alloc_thread->tid,
ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)),
d.EndAllocation());
} else {
Printf("%sallocated by thread T%d%s here:%s\n", d.Allocation(),
alloc_thread->tid,
ThreadNameWithParenthesis(alloc_thread, tname, sizeof(tname)),
d.EndAllocation());
}
PrintStack(&alloc_stack);
DescribeThread(GetCurrentThread());
if (free_thread)
DescribeThread(free_thread);
DescribeThread(alloc_thread);
}
void DescribeAddress(uptr addr, uptr access_size) {
// Check if this is shadow or shadow gap.
if (DescribeAddressIfShadow(addr))
return;
CHECK(AddrIsInMem(addr));
if (DescribeAddressIfGlobal(addr, access_size))
return;
if (DescribeAddressIfStack(addr, access_size))
return;
// Assume it is a heap address.
DescribeHeapAddress(addr, access_size);
}
// ------------------- Thread description -------------------- {{{1
void DescribeThread(AsanThreadContext *context) {
CHECK(context);
asanThreadRegistry().CheckLocked();
// No need to announce the main thread.
if (context->tid == 0 || context->announced) {
return;
}
context->announced = true;
char tname[128];
Printf("Thread T%d%s", context->tid,
ThreadNameWithParenthesis(context->tid, tname, sizeof(tname)));
Printf(" created by T%d%s here:\n",
context->parent_tid,
ThreadNameWithParenthesis(context->parent_tid,
tname, sizeof(tname)));
uptr stack_size;
const uptr *stack_trace = StackDepotGet(context->stack_id, &stack_size);
PrintStack(stack_trace, stack_size);
// Recursively described parent thread if needed.
if (flags()->print_full_thread_history) {
AsanThreadContext *parent_context =
GetThreadContextByTidLocked(context->parent_tid);
DescribeThread(parent_context);
}
}
// -------------------- Different kinds of reports ----------------- {{{1
// Use ScopedInErrorReport to run common actions just before and
// immediately after printing error report.
class ScopedInErrorReport {
public:
ScopedInErrorReport() {
static atomic_uint32_t num_calls;
static u32 reporting_thread_tid;
if (atomic_fetch_add(&num_calls, 1, memory_order_relaxed) != 0) {
// Do not print more than one report, otherwise they will mix up.
// Error reporting functions shouldn't return at this situation, as
// they are defined as no-return.
Report("AddressSanitizer: while reporting a bug found another one."
"Ignoring.\n");
u32 current_tid = GetCurrentTidOrInvalid();
if (current_tid != reporting_thread_tid) {
// ASan found two bugs in different threads simultaneously. Sleep
// long enough to make sure that the thread which started to print
// an error report will finish doing it.
SleepForSeconds(Max(100, flags()->sleep_before_dying + 1));
}
// If we're still not dead for some reason, use raw _exit() instead of
// Die() to bypass any additional checks.
internal__exit(flags()->exitcode);
}
ASAN_ON_ERROR();
// Make sure the registry and sanitizer report mutexes are locked while
// we're printing an error report.
// We can lock them only here to avoid self-deadlock in case of
// recursive reports.
asanThreadRegistry().Lock();
CommonSanitizerReportMutex.Lock();
reporting_thread_tid = GetCurrentTidOrInvalid();
Printf("===================================================="
"=============\n");
}
// Destructor is NORETURN, as functions that report errors are.
NORETURN ~ScopedInErrorReport() {
// Make sure the current thread is announced.
DescribeThread(GetCurrentThread());
// Print memory stats.
if (flags()->print_stats)
__asan_print_accumulated_stats();
if (error_report_callback) {
error_report_callback(error_message_buffer);
}
Report("ABORTING\n");
Die();
}
};
void ReportSIGSEGV(uptr pc, uptr sp, uptr bp, uptr addr) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: SEGV on unknown address %p"
" (pc %p sp %p bp %p T%d)\n",
(void*)addr, (void*)pc, (void*)sp, (void*)bp,
GetCurrentTidOrInvalid());
Printf("%s", d.EndWarning());
GET_STACK_TRACE_FATAL(pc, bp);
PrintStack(&stack);
Printf("AddressSanitizer can not provide additional info.\n");
ReportErrorSummary("SEGV", &stack);
}
void ReportDoubleFree(uptr addr, StackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
char tname[128];
u32 curr_tid = GetCurrentTidOrInvalid();
Report("ERROR: AddressSanitizer: attempting double-free on %p in "
"thread T%d%s:\n",
addr, curr_tid,
ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s", d.EndWarning());
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
PrintStack(&stack);
DescribeHeapAddress(addr, 1);
ReportErrorSummary("double-free", &stack);
}
void ReportFreeNotMalloced(uptr addr, StackTrace *free_stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
char tname[128];
u32 curr_tid = GetCurrentTidOrInvalid();
Report("ERROR: AddressSanitizer: attempting free on address "
"which was not malloc()-ed: %p in thread T%d%s\n", addr,
curr_tid, ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)));
Printf("%s", d.EndWarning());
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
PrintStack(&stack);
DescribeHeapAddress(addr, 1);
ReportErrorSummary("bad-free", &stack);
}
void ReportAllocTypeMismatch(uptr addr, StackTrace *free_stack,
AllocType alloc_type,
AllocType dealloc_type) {
static const char *alloc_names[] =
{"INVALID", "malloc", "operator new", "operator new []"};
static const char *dealloc_names[] =
{"INVALID", "free", "operator delete", "operator delete []"};
CHECK_NE(alloc_type, dealloc_type);
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: alloc-dealloc-mismatch (%s vs %s) on %p\n",
alloc_names[alloc_type], dealloc_names[dealloc_type], addr);
Printf("%s", d.EndWarning());
CHECK_GT(free_stack->size, 0);
GET_STACK_TRACE_FATAL(free_stack->trace[0], free_stack->top_frame_bp);
PrintStack(&stack);
DescribeHeapAddress(addr, 1);
ReportErrorSummary("alloc-dealloc-mismatch", &stack);
Report("HINT: if you don't care about these warnings you may set "
"ASAN_OPTIONS=alloc_dealloc_mismatch=0\n");
}
void ReportMallocUsableSizeNotOwned(uptr addr, StackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: attempting to call "
"malloc_usable_size() for pointer which is "
"not owned: %p\n", addr);
Printf("%s", d.EndWarning());
PrintStack(stack);
DescribeHeapAddress(addr, 1);
ReportErrorSummary("bad-malloc_usable_size", stack);
}
void ReportAsanGetAllocatedSizeNotOwned(uptr addr, StackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: attempting to call "
"__asan_get_allocated_size() for pointer which is "
"not owned: %p\n", addr);
Printf("%s", d.EndWarning());
PrintStack(stack);
DescribeHeapAddress(addr, 1);
ReportErrorSummary("bad-__asan_get_allocated_size", stack);
}
void ReportStringFunctionMemoryRangesOverlap(
const char *function, const char *offset1, uptr length1,
const char *offset2, uptr length2, StackTrace *stack) {
ScopedInErrorReport in_report;
Decorator d;
char bug_type[100];
internal_snprintf(bug_type, sizeof(bug_type), "%s-param-overlap", function);
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: %s: "
"memory ranges [%p,%p) and [%p, %p) overlap\n", \
bug_type, offset1, offset1 + length1, offset2, offset2 + length2);
Printf("%s", d.EndWarning());
PrintStack(stack);
DescribeAddress((uptr)offset1, length1);
DescribeAddress((uptr)offset2, length2);
ReportErrorSummary(bug_type, stack);
}
// ----------------------- Mac-specific reports ----------------- {{{1
void WarnMacFreeUnallocated(
uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) {
// Just print a warning here.
Printf("free_common(%p) -- attempting to free unallocated memory.\n"
"AddressSanitizer is ignoring this error on Mac OS now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportMacMzReallocUnknown(
uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) {
ScopedInErrorReport in_report;
Printf("mz_realloc(%p) -- attempting to realloc unallocated memory.\n"
"This is an unrecoverable problem, exiting now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
void ReportMacCfReallocUnknown(
uptr addr, uptr zone_ptr, const char *zone_name, StackTrace *stack) {
ScopedInErrorReport in_report;
Printf("cf_realloc(%p) -- attempting to realloc unallocated memory.\n"
"This is an unrecoverable problem, exiting now.\n",
addr);
PrintZoneForPointer(addr, zone_ptr, zone_name);
PrintStack(stack);
DescribeHeapAddress(addr, 1);
}
} // namespace __asan
// --------------------------- Interface --------------------- {{{1
using namespace __asan; // NOLINT
void __asan_report_error(uptr pc, uptr bp, uptr sp,
uptr addr, bool is_write, uptr access_size) {
ScopedInErrorReport in_report;
// Determine the error type.
const char *bug_descr = "unknown-crash";
if (AddrIsInMem(addr)) {
u8 *shadow_addr = (u8*)MemToShadow(addr);
// If we are accessing 16 bytes, look at the second shadow byte.
if (*shadow_addr == 0 && access_size > SHADOW_GRANULARITY)
shadow_addr++;
// If we are in the partial right redzone, look at the next shadow byte.
if (*shadow_addr > 0 && *shadow_addr < 128)
shadow_addr++;
switch (*shadow_addr) {
case kAsanHeapLeftRedzoneMagic:
case kAsanHeapRightRedzoneMagic:
bug_descr = "heap-buffer-overflow";
break;
case kAsanHeapFreeMagic:
bug_descr = "heap-use-after-free";
break;
case kAsanStackLeftRedzoneMagic:
bug_descr = "stack-buffer-underflow";
break;
case kAsanInitializationOrderMagic:
bug_descr = "initialization-order-fiasco";
break;
case kAsanStackMidRedzoneMagic:
case kAsanStackRightRedzoneMagic:
case kAsanStackPartialRedzoneMagic:
bug_descr = "stack-buffer-overflow";
break;
case kAsanStackAfterReturnMagic:
bug_descr = "stack-use-after-return";
break;
case kAsanUserPoisonedMemoryMagic:
bug_descr = "use-after-poison";
break;
case kAsanContiguousContainerOOBMagic:
bug_descr = "container-overflow";
break;
case kAsanStackUseAfterScopeMagic:
bug_descr = "stack-use-after-scope";
break;
case kAsanGlobalRedzoneMagic:
bug_descr = "global-buffer-overflow";
break;
}
}
Decorator d;
Printf("%s", d.Warning());
Report("ERROR: AddressSanitizer: %s on address "
"%p at pc 0x%zx bp 0x%zx sp 0x%zx\n",
bug_descr, (void*)addr, pc, bp, sp);
Printf("%s", d.EndWarning());
u32 curr_tid = GetCurrentTidOrInvalid();
char tname[128];
Printf("%s%s of size %zu at %p thread T%d%s%s\n",
d.Access(),
access_size ? (is_write ? "WRITE" : "READ") : "ACCESS",
access_size, (void*)addr, curr_tid,
ThreadNameWithParenthesis(curr_tid, tname, sizeof(tname)),
d.EndAccess());
GET_STACK_TRACE_FATAL(pc, bp);
PrintStack(&stack);
DescribeAddress(addr, access_size);
ReportErrorSummary(bug_descr, &stack);
PrintShadowMemoryForAddress(addr);
}
void NOINLINE __asan_set_error_report_callback(void (*callback)(const char*)) {
error_report_callback = callback;
if (callback) {
error_message_buffer_size = 1 << 16;
error_message_buffer =
(char*)MmapOrDie(error_message_buffer_size, __FUNCTION__);
error_message_buffer_pos = 0;
}
}
void __asan_describe_address(uptr addr) {
DescribeAddress(addr, 1);
}
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default implementation of __asan_on_error that does nothing
// and may be overriden by user.
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE NOINLINE
void __asan_on_error() {}
#endif