blob: 9cb0aa31d5b7ed04d78f3a3cf944aabae554148f [file] [log] [blame]
/* Calculate branch probabilities, and basic block execution counts.
Copyright (C) 2012. Free Software Foundation, Inc.
Contributed by Dehao Chen (dehao@google.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Read and annotate call graph profile from the auto profile data
file. */
#include <string.h>
#include <map>
#include <vector>
#include <set>
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "flags.h" /* for auto_profile_file. */
#include "basic-block.h" /* for gcov_type. */
#include "diagnostic-core.h" /* for inform (). */
#include "gcov-io.h" /* for gcov_read_unsigned (). */
#include "input.h" /* for expanded_location. */
#include "profile.h" /* for profile_info. */
#include "langhooks.h" /* for langhooks. */
#include "opts.h" /* for in_fnames. */
#include "tree-pass.h" /* for ipa pass. */
#include "cfgloop.h" /* for loop_optimizer_init. */
#include "gimple.h"
#include "cgraph.h"
#include "tree-flow.h"
#include "value-prof.h"
#include "coverage.h"
#include "params.h"
#include "l-ipo.h"
#include "ipa-utils.h"
#include "ipa-inline.h"
#include "auto-profile.h"
/* The following routines implements AutoFDO optimization.
This optimization uses sampling profiles to annotate basic block counts
and uses heuristics to estimate branch probabilities.
There are three phases in AutoFDO:
Phase 1: Read profile from the profile data file.
The following info is read from the profile datafile:
* function_name_map: a map between function name and its index.
* autofdo_source_profile: a map from function_instance name to
function_instance. This is represented as a forest of
function_instances.
* autofdo_module_profile: a map from module name to its
compilation/aux-module info.
* WorkingSet: a histogram of how many instructions are covered for a
given percentage of total cycles.
Phase 2: Early inline.
Early inline uses autofdo_source_profile to find if a callsite is:
* inlined in the profiled binary.
* callee body is hot in the profiling run.
If both condition satisfies, early inline will inline the callsite
regardless of the code growth.
Phase 3: Annotate control flow graph.
AutoFDO uses a separate pass to:
* Annotate basic block count
* Estimate branch probability
After the above 3 phases, all profile is readily annotated on the GCC IR.
AutoFDO tries to reuse all FDO infrastructure as much as possible to make
use of the profile. E.g. it uses existing mechanism to calculate the basic
block/edge frequency, as well as the cgraph node/edge count.
*/
#define DEFAULT_AUTO_PROFILE_FILE "fbdata.afdo"
namespace autofdo {
/* Represent a source location: (function_decl, lineno). */
typedef std::pair<tree, unsigned> decl_lineno;
/* Represent an inline stack. vector[0] is the leaf node. */
typedef std::vector<decl_lineno> inline_stack;
/* String array that stores function names. */
typedef std::vector<const char *> string_vector;
/* Map from function name's index in function_name_map to target's
execution count. */
typedef std::map<unsigned, gcov_type> icall_target_map;
/* Represent profile count of an inline stack, profile count is represented as
(execution_count, value_profile_histogram). */
typedef std::pair<gcov_type, icall_target_map> count_info;
/* Set of inline_stack. Used to track if the profile is already used to
annotate the program. */
typedef std::set<inline_stack> location_set;
/* Set of gimple stmts. Used to track if the stmt has already been promoted
to direct call. */
typedef std::set<gimple> stmt_set;
struct string_compare
{
bool operator() (const char *a, const char *b) const
{ return strcmp (a, b) < 0; }
};
/* Store a string array, indexed by string position in the array. */
class function_name_map {
public:
static function_name_map *create ();
/* For a given string, returns its index. */
int get_index (const char *name) const;
/* For a given decl, returns the index of the decl name. */
int get_index_by_decl (tree decl) const;
/* For a given index, returns the string. */
const char *get_name (int index) const;
private:
function_name_map () {}
bool read ();
typedef std::map<const char *, unsigned, string_compare> string_index_map;
string_vector vector_;
string_index_map map_;
};
/* Profile of a function copy:
1. total_count of the copy.
2. head_count of the copy (only valid when the copy is a top-level
function_instance, i.e. it is the original copy instead of the
inlined copy).
3. map from source location (decl_lineno) of the inlined callsite to
profile (count_info).
4. map from callsite to callee function_instance. */
class function_instance {
public:
typedef std::vector<function_instance *> function_instance_stack;
/* Read the profile and create a function_instance with head count as
HEAD_COUNT. Recursively read callsites to create nested function_instances
too. STACK is used to track the recursive creation process. */
static const function_instance *read_function_instance (
function_instance_stack *stack, gcov_type head_count);
/* Recursively deallocate all callsites (nested function_instances). */
~function_instance ();
/* Accessors. */
unsigned name () const { return name_; }
gcov_type total_count () const { return total_count_; }
gcov_type head_count () const { return head_count_; }
/* Recursively traverse STACK starting from LEVEL to find the corresponding
function_instance. */
const function_instance *get_function_instance (const inline_stack &stack,
unsigned level) const;
/* Store the profile info for LOC in INFO. Return TRUE if profile info
is found. */
bool get_count_info (location_t loc, count_info *info) const;
/* Read the inlinied indirect call target profile for STMT and store it in
MAP, return the total count for all inlined indirect calls. */
gcov_type find_icall_target_map (gimple stmt, icall_target_map *map) const;
private:
function_instance (unsigned name, gcov_type head_count)
: name_(name), total_count_(0), head_count_(head_count) {}
/* Traverse callsites of the current function_instance to find one at the
location of LINENO and callee name represented in DECL. */
const function_instance *get_function_instance_by_decl (unsigned lineno,
tree decl) const;
/* Map from callsite decl_lineno (lineno in higher 16 bits, discriminator
in lower 16 bits) to callee function_instance. */
typedef std::map<unsigned, const function_instance *> callsite_map;
/* Map from source location (decl_lineno) to profile (count_info). */
typedef std::map<unsigned, count_info> position_count_map;
/* function_instance name index in the function_name_map. */
unsigned name_;
/* The total sampled count. */
gcov_type total_count_;
/* The total sampled count in the head bb. */
gcov_type head_count_;
/* Map from callsite location to callee function_instance. */
callsite_map callsites;
/* Map from source location to count and instruction number. */
position_count_map pos_counts;
};
/* Profile for all functions. */
class autofdo_source_profile {
public:
static autofdo_source_profile *create ()
{
autofdo_source_profile *map = new autofdo_source_profile ();
if (map->read ())
return map;
delete map;
return NULL;
}
~autofdo_source_profile ();
/* For a given DECL, returns the top-level function_instance. */
const function_instance *get_function_instance_by_decl (tree decl) const;
/* Find profile info for a given gimple STMT. If found, and if the location
of STMT does not exist in ANNOTATED, store the profile info in INFO, and
return true; otherwise return false. */
bool get_count_info (gimple stmt, count_info *info,
const location_set *annotated) const;
/* Find total count of the callee of EDGE. */
gcov_type get_callsite_total_count (struct cgraph_edge *edge) const;
/* Update value profile INFO for STMT from the inlined indirect callsite.
Return true if INFO is updated. */
bool update_inlined_ind_target (gimple stmt, count_info *info);
private:
/* Map from function_instance name index (in function_name_map) to
function_instance. */
typedef std::map<unsigned, const function_instance *>
name_function_instance_map;
autofdo_source_profile () {}
bool read ();
/* Return the function_instance in the profile that correspond to the
inline STACK. */
const function_instance *get_function_instance_by_inline_stack (
const inline_stack &stack) const;
name_function_instance_map map_;
};
/* Module profile. */
class autofdo_module_profile {
public:
static autofdo_module_profile *create ()
{
autofdo_module_profile *map = new autofdo_module_profile ();
if (map->read ())
return map;
delete map;
return NULL;
}
/* For a given module NAME, returns this module's gcov_module_info. */
gcov_module_info *get_module(const char *name) const
{
name_target_map::const_iterator iter = map_.find (name);
return iter == map_.end() ? NULL : iter->second.second;
}
/* For a given module NAME, returns this module's aux-modules. */
const string_vector *get_aux_modules(const char *name) const
{
name_target_map::const_iterator iter = map_.find (name);
return iter == map_.end() ? NULL : &iter->second.first;
}
private:
autofdo_module_profile () {}
bool read ();
typedef std::pair<string_vector, gcov_module_info *> AuxInfo;
typedef std::map<const char *, AuxInfo, string_compare> name_target_map;
/* Map from module name to (aux_modules, gcov_module_info). */
name_target_map map_;
};
/* Store the strings read from the profile data file. */
static function_name_map *afdo_function_name_map;
static autofdo_source_profile *afdo_source_profile;
static autofdo_module_profile *afdo_module_profile;
/* gcov_ctr_summary structure to store the profile_info. */
static struct gcov_ctr_summary *afdo_profile_info;
/* Helper functions. */
/* Return the original name of NAME: strip the suffix that starts
with '.' */
static const char *get_original_name (const char *name)
{
char *ret = xstrdup (name);
char *find = strchr (ret, '.');
if (find != NULL)
*find = 0;
return ret;
}
/* Return the combined location, which is a 32bit integer in which
higher 16 bits stores the line offset of LOC to the start lineno
of DECL, The lower 16 bits stores the discrimnator. */
static unsigned
get_combined_location (location_t loc, tree decl)
{
return ((LOCATION_LINE (loc) - DECL_SOURCE_LINE (decl)) << 16)
| get_discriminator_from_locus (loc);
}
/* Return the function decl of a given lexical BLOCK. */
static tree
get_function_decl_from_block (tree block)
{
tree decl;
if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (block) == UNKNOWN_LOCATION))
return NULL_TREE;
for (decl = BLOCK_ABSTRACT_ORIGIN (block);
decl && (TREE_CODE (decl) == BLOCK);
decl = BLOCK_ABSTRACT_ORIGIN (decl))
if (TREE_CODE (decl) == FUNCTION_DECL)
break;
return decl;
}
/* Store inline stack for STMT in STACK. */
static void
get_inline_stack (gimple stmt, inline_stack *stack)
{
location_t locus = gimple_location (stmt);
if (LOCATION_LOCUS (locus) == UNKNOWN_LOCATION)
return;
tree block = gimple_block (stmt);
if (!block || TREE_CODE (block) != BLOCK)
return;
int level = 0;
for (block = BLOCK_SUPERCONTEXT (block);
block && (TREE_CODE (block) == BLOCK);
block = BLOCK_SUPERCONTEXT (block))
{
location_t tmp_locus = BLOCK_SOURCE_LOCATION (block);
if (LOCATION_LOCUS (tmp_locus) == UNKNOWN_LOCATION)
continue;
tree decl = get_function_decl_from_block (block);
stack->push_back (std::make_pair (
decl, get_combined_location (locus, decl)));
locus = tmp_locus;
level++;
}
stack->push_back (std::make_pair (
current_function_decl,
get_combined_location (locus, current_function_decl)));
}
/* Return STMT's combined location, which is a 32bit integer in which
higher 16 bits stores the line offset of LOC to the start lineno
of DECL, The lower 16 bits stores the discrimnator. */
static unsigned
get_relative_location_for_stmt (gimple stmt)
{
location_t locus = gimple_location (stmt);
if (LOCATION_LOCUS (locus) == UNKNOWN_LOCATION)
return UNKNOWN_LOCATION;
for (tree block = gimple_block (stmt);
block && (TREE_CODE (block) == BLOCK);
block = BLOCK_SUPERCONTEXT (block))
if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (block)) != UNKNOWN_LOCATION)
return get_combined_location (
locus, get_function_decl_from_block (block));
return get_combined_location (locus, current_function_decl);
}
/* Return true if BB contains indirect call. */
static bool
has_indirect_call (basic_block bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (gimple_code (stmt) == GIMPLE_CALL
&& TREE_CODE (gimple_call_fn (stmt)) != FUNCTION_DECL)
return true;
}
return false;
}
/* Member functions for function_name_map. */
function_name_map *function_name_map::create ()
{
function_name_map *map = new function_name_map();
if (map->read ())
return map;
delete map;
return NULL;
}
int function_name_map::get_index (const char *name) const
{
if (name == NULL)
return -1;
string_index_map::const_iterator iter = map_.find (name);
if (iter == map_.end())
return -1;
else
return iter->second;
}
int function_name_map::get_index_by_decl (tree decl) const
{
const char *name = get_original_name (
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
int ret = get_index (name);
if (ret != -1)
return ret;
ret = get_index (lang_hooks.dwarf_name (decl, 0));
if (ret != -1)
return ret;
if (DECL_ABSTRACT_ORIGIN (decl))
return get_index_by_decl (DECL_ABSTRACT_ORIGIN (decl));
else
return -1;
}
const char *function_name_map::get_name (int index) const
{
gcc_assert (index > 0 && index < (int) vector_.size());
return vector_[index];
}
bool function_name_map::read ()
{
if (gcov_read_unsigned () != GCOV_TAG_AFDO_FILE_NAMES)
return false;
/* Skip the length of the section. */
gcov_read_unsigned ();
/* Read in the file name table. */
unsigned string_num = gcov_read_unsigned ();
for (unsigned i = 0; i < string_num; i++)
{
vector_.push_back (get_original_name (gcov_read_string ()));
map_[vector_.back()] = i;
}
return true;
}
/* Member functions for function_instance. */
function_instance::~function_instance ()
{
for (callsite_map::iterator iter = callsites.begin();
iter != callsites.end(); ++iter)
delete iter->second;
}
/* Traverse callsites of the current function_instance to find one at the
location of LINENO and callee name represented in DECL. */
const function_instance *function_instance::get_function_instance_by_decl (
unsigned lineno, tree decl) const
{
int func_name_idx = afdo_function_name_map->get_index_by_decl (decl);
if (func_name_idx != -1)
{
callsite_map::const_iterator ret = callsites.find (lineno);
if (ret != callsites.end ())
return ret->second;
}
func_name_idx = afdo_function_name_map->get_index (
lang_hooks.dwarf_name (decl, 0));
if (func_name_idx != -1)
{
callsite_map::const_iterator ret = callsites.find (lineno);
if (ret != callsites.end ())
return ret->second;
}
if (DECL_ABSTRACT_ORIGIN (decl))
return get_function_instance_by_decl (lineno, DECL_ABSTRACT_ORIGIN (decl));
else
return NULL;
}
/* Recursively traverse STACK starting from LEVEL to find the corresponding
function_instance. */
const function_instance *function_instance::get_function_instance (
const inline_stack &stack, unsigned level) const
{
if (level == 0)
return this;
const function_instance *s =
get_function_instance_by_decl (stack[level].second, stack[level - 1].first);
if (s)
return s->get_function_instance (stack, level - 1);
else
return NULL;
}
/* Store the profile info for LOC in INFO. Return TRUE if profile info
is found. */
bool function_instance::get_count_info (location_t loc, count_info *info) const
{
position_count_map::const_iterator iter = pos_counts.find (loc);
if (iter == pos_counts.end ())
return false;
*info = iter->second;
return true;
}
/* Read the inlinied indirect call target profile for STMT and store it in
MAP, return the total count for all inlined indirect calls. */
gcov_type
function_instance::find_icall_target_map (
gimple stmt, icall_target_map *map) const
{
gcov_type ret = 0;
unsigned stmt_offset = get_relative_location_for_stmt (stmt);
for (callsite_map::const_iterator iter = callsites.begin();
iter != callsites.end(); ++iter)
{
unsigned callee = iter->second->name();
/* Check if callsite location match the stmt. */
if (iter->first != stmt_offset)
continue;
struct cgraph_node *node = find_func_by_global_id (
(unsigned long long) afdo_function_name_map->get_name (callee), true);
if (node == NULL)
continue;
if (!check_ic_target (stmt, node))
continue;
(*map)[callee] = iter->second->total_count ();
ret += iter->second->total_count ();
}
return ret;
}
/* Read the profile and create a function_instance with head count as
HEAD_COUNT. Recursively read callsites to create nested function_instances
too. STACK is used to track the recursive creation process. */
const function_instance *function_instance::read_function_instance (
function_instance_stack *stack, gcov_type head_count)
{
unsigned name = gcov_read_unsigned ();
unsigned num_pos_counts = gcov_read_unsigned ();
unsigned num_callsites = gcov_read_unsigned ();
function_instance *s = new function_instance (name, head_count);
stack->push_back(s);
for (unsigned i = 0; i < num_pos_counts; i++)
{
unsigned offset = gcov_read_unsigned ();
unsigned num_targets = gcov_read_unsigned ();
gcov_type count = gcov_read_counter ();
s->pos_counts[offset].first = count;
for (unsigned j = 0; j < stack->size(); j++)
(*stack)[j]->total_count_ += count;
for (unsigned j = 0; j < num_targets; j++)
{
/* Only indirect call target histogram is supported now. */
gcov_read_unsigned ();
gcov_type target_idx = gcov_read_counter ();
s->pos_counts[offset].second[target_idx] =
gcov_read_counter ();
}
}
for (unsigned i = 0; i < num_callsites; i++) {
unsigned offset = gcov_read_unsigned ();
s->callsites[offset] = read_function_instance (stack, 0);
}
stack->pop_back();
return s;
}
/* Member functions for autofdo_source_profile. */
autofdo_source_profile::~autofdo_source_profile ()
{
for (name_function_instance_map::const_iterator iter = map_.begin ();
iter != map_.end (); ++iter)
delete iter->second;
}
/* For a given DECL, returns the top-level function_instance. */
const function_instance *autofdo_source_profile::get_function_instance_by_decl (
tree decl) const
{
int index = afdo_function_name_map->get_index_by_decl (decl);
if (index == -1)
return NULL;
name_function_instance_map::const_iterator ret = map_.find (index);
return ret == map_.end() ? NULL : ret->second;
}
/* Find profile info for a given gimple STMT. If found, and if the location
of STMT does not exist in ANNOTATED, store the profile info in INFO, and
return true; otherwise return false. */
bool autofdo_source_profile::get_count_info (
gimple stmt, count_info *info, const location_set *annotated) const
{
if (LOCATION_LOCUS (gimple_location (stmt)) == cfun->function_end_locus)
return false;
inline_stack stack;
get_inline_stack (stmt, &stack);
if (annotated && annotated->find(stack) != annotated->end())
return false;
if (stack.size () == 0)
return false;
const function_instance *s = get_function_instance_by_inline_stack (stack);
if (s == NULL)
return false;
return s->get_count_info (stack[0].second, info);
}
/* Update value profile INFO for STMT from the inlined indirect callsite.
Return true if INFO is updated. */
bool
autofdo_source_profile::update_inlined_ind_target (
gimple stmt, count_info *info)
{
if (LOCATION_LOCUS (gimple_location (stmt)) == cfun->function_end_locus)
return false;
count_info old_info;
get_count_info (stmt, &old_info, NULL);
gcov_type total = 0;
for (icall_target_map::const_iterator iter = old_info.second.begin();
iter != old_info.second.end(); ++iter)
total += iter->second;
/* Program behavior changed, original promoted (and inlined) target is not
hot any more. Will avoid promote the original target.
To check if original promoted target is still hot, we check the total
count of the unpromoted targets (stored in old_info). If it is no less
than half of the callsite count (stored in INFO), the original promoted
target is considered not hot any more. */
if (total >= info->first * 0.5)
return false;
inline_stack stack;
get_inline_stack (stmt, &stack);
if (stack.size () == 0)
return false;
const function_instance *s = get_function_instance_by_inline_stack (stack);
if (s == NULL)
return false;
icall_target_map map;
if (s->find_icall_target_map (stmt, &map) == 0)
return false;
for (icall_target_map::const_iterator iter = map.begin();
iter != map.end(); ++iter)
info->second[iter->first] = iter->second;
return true;
}
/* Find total count of the callee of EDGE. */
gcov_type autofdo_source_profile::get_callsite_total_count (
struct cgraph_edge *edge) const
{
inline_stack stack;
stack.push_back (std::make_pair(edge->callee->symbol.decl, 0));
get_inline_stack (edge->call_stmt, &stack);
const function_instance *s = get_function_instance_by_inline_stack (stack);
if (s == NULL)
return 0;
else
return s->total_count ();
}
/* Read source profile. */
bool autofdo_source_profile::read ()
{
if (gcov_read_unsigned () != GCOV_TAG_AFDO_FUNCTION)
{
inform (0, "Not expected TAG.");
return false;
}
/* Skip the length of the section. */
gcov_read_unsigned ();
/* Read in the function/callsite profile, and store it in local
data structure. */
unsigned function_num = gcov_read_unsigned ();
for (unsigned i = 0; i < function_num; i++)
{
function_instance::function_instance_stack stack;
const function_instance *s = function_instance::read_function_instance (
&stack, gcov_read_counter ());
afdo_profile_info->sum_all += s->total_count ();
map_[s->name ()] = s;
}
return true;
}
/* Return the function_instance in the profile that correspond to the
inline STACK. */
const function_instance *
autofdo_source_profile::get_function_instance_by_inline_stack (
const inline_stack &stack) const
{
name_function_instance_map::const_iterator iter = map_.find (
afdo_function_name_map->get_index_by_decl (
stack[stack.size() - 1].first));
return iter == map_.end()
? NULL : iter->second->get_function_instance (stack, stack.size() - 1);
}
/* Member functions for autofdo_module_profile. */
bool autofdo_module_profile::read ()
{
/* Read in the module info. */
if (gcov_read_unsigned () != GCOV_TAG_AFDO_MODULE_GROUPING)
{
inform (0, "Not expected TAG.");
return false;
}
/* Skip the length of the section. */
gcov_read_unsigned ();
/* Read in the file name table. */
unsigned total_module_num = gcov_read_unsigned ();
for (unsigned i = 0; i < total_module_num; i++)
{
char *name = xstrdup (gcov_read_string ());
unsigned total_num = 0;
unsigned num_array[7];
unsigned exported = gcov_read_unsigned ();
unsigned lang = gcov_read_unsigned ();
unsigned ggc_memory = gcov_read_unsigned ();
for (unsigned j = 0; j < 7; j++)
{
num_array[j] = gcov_read_unsigned ();
total_num += num_array[j];
}
gcov_module_info *module = XCNEWVAR (
gcov_module_info,
sizeof (gcov_module_info) + sizeof (char *) * total_num);
std::pair<name_target_map::iterator, bool> ret = map_.insert(
name_target_map::value_type (name, AuxInfo()));
gcc_assert (ret.second);
ret.first->second.second = module;
module->ident = i + 1;
module->lang = lang;
module->ggc_memory = ggc_memory;
module->num_quote_paths = num_array[1];
module->num_bracket_paths = num_array[2];
module->num_system_paths = num_array[3];
module->num_cpp_defines = num_array[4];
module->num_cpp_includes = num_array[5];
module->num_cl_args = num_array[6];
module->source_filename = name;
module->is_primary = strcmp (name, in_fnames[0]) == 0;
module->flags = module->is_primary ? exported : 1;
for (unsigned j = 0; j < num_array[0]; j++)
ret.first->second.first.push_back (xstrdup (gcov_read_string ()));
for (unsigned j = 0; j < total_num - num_array[0]; j++)
module->string_array[j] = xstrdup (gcov_read_string ());
}
return true;
}
/* Read the profile from the profile file. */
static void
read_profile (void)
{
if (gcov_open (auto_profile_file, 1) == 0)
error ("Cannot open profile file %s.", auto_profile_file);
if (gcov_read_unsigned () != GCOV_DATA_MAGIC)
error ("AutoFDO profile magic number does not mathch.");
/* Skip the version number. */
gcov_read_unsigned ();
/* Skip the empty integer. */
gcov_read_unsigned ();
/* function_name_map. */
afdo_function_name_map = function_name_map::create ();
if (afdo_function_name_map == NULL)
error ("Cannot read string table from %s.", auto_profile_file);
/* autofdo_source_profile. */
afdo_source_profile = autofdo_source_profile::create ();
if (afdo_source_profile == NULL)
error ("Cannot read function profile from %s.", auto_profile_file);
/* autofdo_module_profile. */
afdo_module_profile = autofdo_module_profile::create ();
if (afdo_module_profile == NULL)
error ("Cannot read module profile from %s.", auto_profile_file);
/* Read in the working set. */
if (gcov_read_unsigned () != GCOV_TAG_AFDO_WORKING_SET)
error ("Cannot read working set from %s.", auto_profile_file);
/* Skip the length of the section. */
gcov_read_unsigned ();
gcov_working_set_t set[128];
for (unsigned i = 0; i < 128; i++)
{
set[i].num_counters = gcov_read_unsigned ();
set[i].min_counter = gcov_read_counter ();
}
add_working_set (set);
}
/* Read in the auxiliary modules for the current primary module. */
static void
read_aux_modules (void)
{
gcov_module_info *module = afdo_module_profile->get_module (in_fnames[0]);
if (module == NULL)
return;
const string_vector *aux_modules =
afdo_module_profile->get_aux_modules (in_fnames[0]);
unsigned num_aux_modules = aux_modules ? aux_modules->size() : 0;
module_infos = XCNEWVEC (gcov_module_info *, num_aux_modules + 1);
module_infos[0] = module;
primary_module_id = module->ident;
if (aux_modules == NULL)
return;
unsigned curr_module = 1, max_group = PARAM_VALUE (PARAM_MAX_LIPO_GROUP);
for (string_vector::const_iterator iter = aux_modules->begin();
iter != aux_modules->end(); ++iter)
{
gcov_module_info *aux_module = afdo_module_profile->get_module (*iter);
if (aux_module == module)
continue;
if (aux_module == NULL)
{
if (flag_opt_info)
inform (0, "aux module %s cannot be found.", *iter);
continue;
}
if ((aux_module->lang & GCOV_MODULE_LANG_MASK) !=
(module->lang & GCOV_MODULE_LANG_MASK))
{
if (flag_opt_info)
inform (0, "Not importing %s: source language"
" different from primary module's source language", *iter);
continue;
}
if ((aux_module->lang & GCOV_MODULE_ASM_STMTS)
&& flag_ripa_disallow_asm_modules)
{
if (flag_opt_info)
inform (0, "Not importing %s: contains "
"assembler statements", *iter);
continue;
}
if (max_group != 0 && curr_module >= max_group)
{
if (flag_opt_info)
inform (0, "Not importing %s: maximum group size reached", *iter);
continue;
}
if (incompatible_cl_args (module, aux_module))
{
if (flag_opt_info)
inform (0, "Not importing %s: command-line"
" arguments not compatible with primary module", *iter);
continue;
}
module_infos[curr_module++] = aux_module;
add_input_filename (*iter);
}
}
/* From AutoFDO profiles, find values inside STMT for that we want to measure
histograms for indirect-call optimization. */
static void
afdo_indirect_call (gimple stmt, const icall_target_map &map)
{
tree callee;
if (map.size() == 0 || gimple_code (stmt) != GIMPLE_CALL
|| gimple_call_fndecl (stmt) != NULL_TREE)
return;
callee = gimple_call_fn (stmt);
histogram_value hist = gimple_alloc_histogram_value (
cfun, HIST_TYPE_INDIR_CALL_TOPN, stmt, callee);
hist->n_counters = (GCOV_ICALL_TOPN_VAL << 2) + 1;
hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
gimple_add_histogram_value (cfun, stmt, hist);
gcov_type total = 0;
icall_target_map::const_iterator max_iter1 = map.end();
icall_target_map::const_iterator max_iter2 = map.end();
for (icall_target_map::const_iterator iter = map.begin();
iter != map.end(); ++iter)
{
total += iter->second;
if (max_iter1 == map.end() || max_iter1->second < iter->second)
{
max_iter2 = max_iter1;
max_iter1 = iter;
}
else if (max_iter2 == map.end() || max_iter2->second < iter->second)
max_iter2 = iter;
}
hist->hvalue.counters[0] = total;
hist->hvalue.counters[1] = (unsigned long long)
afdo_function_name_map->get_name (max_iter1->first);
hist->hvalue.counters[2] = max_iter1->second;
if (max_iter2 != map.end())
{
hist->hvalue.counters[3] = (unsigned long long)
afdo_function_name_map->get_name (max_iter2->first);
hist->hvalue.counters[4] = max_iter2->second;
}
else
{
hist->hvalue.counters[3] = 0;
hist->hvalue.counters[4] = 0;
}
}
/* From AutoFDO profiles, find values inside STMT for that we want to measure
histograms and adds them to list VALUES. */
static void
afdo_vpt (gimple stmt, const icall_target_map &map)
{
afdo_indirect_call (stmt, map);
}
/* For a given BB, return its execution count. Add the location of annotated
stmt to ANNOTATED. Attach value profile if a stmt is not in PROMOTED,
because we only want to promot an indirect call once. */
static gcov_type
afdo_get_bb_count (basic_block bb, location_set *annotated,
const stmt_set &promoted)
{
gimple_stmt_iterator gsi;
gcov_type max_count = 0;
bool has_annotated = false;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
count_info info;
gimple stmt = gsi_stmt (gsi);
if (afdo_source_profile->get_count_info (stmt, &info, annotated))
{
if (info.first > max_count)
max_count = info.first;
has_annotated = true;
if (info.second.size() > 0 && promoted.find (stmt) == promoted.end ())
afdo_vpt (stmt, info.second);
}
}
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
inline_stack stack;
get_inline_stack (gsi_stmt (gsi), &stack);
if (stack.size() > 0)
annotated->insert(stack);
}
if (has_annotated)
{
bb->flags |= BB_ANNOTATED;
return max_count;
}
else
return 0;
}
/* BB1 and BB2 are in an equivalent class iff:
1. BB1 dominates BB2.
2. BB2 post-dominates BB1.
3. BB1 and BB2 are in the same loop nest.
This function finds the equivalent class for each basic block, and
stores a pointer to the first BB in its equivalent class. Meanwhile,
set bb counts for the same equivalent class to be idenical. */
static void
afdo_find_equiv_class (void)
{
basic_block bb;
FOR_ALL_BB (bb)
bb->aux = NULL;
FOR_ALL_BB (bb)
{
vec<basic_block> dom_bbs;
basic_block bb1;
int i;
if (bb->aux != NULL)
continue;
bb->aux = bb;
dom_bbs = get_all_dominated_blocks (CDI_DOMINATORS, bb);
FOR_EACH_VEC_ELT (dom_bbs, i, bb1)
if (bb1->aux == NULL
&& dominated_by_p (CDI_POST_DOMINATORS, bb, bb1)
&& bb1->loop_father == bb->loop_father)
{
bb1->aux = bb;
if (bb1->count > bb->count && (bb1->flags & BB_ANNOTATED) != 0)
{
bb->count = MAX (bb->count, bb1->count);
bb->flags |= BB_ANNOTATED;
}
}
dom_bbs = get_all_dominated_blocks (CDI_POST_DOMINATORS, bb);
FOR_EACH_VEC_ELT (dom_bbs, i, bb1)
if (bb1->aux == NULL
&& dominated_by_p (CDI_DOMINATORS, bb, bb1)
&& bb1->loop_father == bb->loop_father)
{
bb1->aux = bb;
if (bb1->count > bb->count && (bb1->flags & BB_ANNOTATED) != 0)
{
bb->count = MAX (bb->count, bb1->count);
bb->flags |= BB_ANNOTATED;
}
}
}
}
/* If a basic block's count is known, and only one of its in/out edges' count
is unknown, its count can be calculated.
Meanwhile, if all of the in/out edges' counts are known, then the basic
block's unknown count can also be calculated.
IS_SUCC is true if out edges of a basic blocks are examined.
Return TRUE if any basic block/edge count is changed. */
static bool
afdo_propagate_edge (bool is_succ)
{
basic_block bb;
bool changed = false;
FOR_EACH_BB (bb)
{
edge e, unknown_edge = NULL;
edge_iterator ei;
int num_unknown_edge = 0;
gcov_type total_known_count = 0;
FOR_EACH_EDGE (e, ei, is_succ ? bb->succs : bb->preds)
if ((e->flags & EDGE_ANNOTATED) == 0)
num_unknown_edge ++, unknown_edge = e;
else
total_known_count += e->count;
if (num_unknown_edge == 0)
{
if (total_known_count > bb->count)
{
bb->count = total_known_count;
changed = true;
}
if ((bb->flags & BB_ANNOTATED) == 0)
{
bb->flags |= BB_ANNOTATED;
changed = true;
}
}
else if (num_unknown_edge == 1
&& (bb->flags & BB_ANNOTATED) != 0)
{
if (bb->count >= total_known_count)
unknown_edge->count = bb->count - total_known_count;
else
unknown_edge->count = 0;
unknown_edge->flags |= EDGE_ANNOTATED;
changed = true;
}
}
return changed;
}
/* Special propagation for circuit expressions. Because GCC translates
control flow into data flow for circuit expressions. E.g.
BB1:
if (a && b)
BB2
else
BB3
will be translated into:
BB1:
if (a)
goto BB.t1
else
goto BB.t3
BB.t1:
if (b)
goto BB.t2
else
goto BB.t3
BB.t2:
goto BB.t3
BB.t3:
tmp = PHI (0 (BB1), 0 (BB.t1), 1 (BB.t2)
if (tmp)
goto BB2
else
goto BB3
In this case, we need to propagate through PHI to determine the edge
count of BB1->BB.t1, BB.t1->BB.t2. */
static void
afdo_propagate_circuit (void)
{
basic_block bb;
FOR_ALL_BB (bb)
{
gimple phi_stmt;
tree cmp_rhs, cmp_lhs;
gimple cmp_stmt = last_stmt (bb);
edge e;
edge_iterator ei;
if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
continue;
cmp_rhs = gimple_cond_rhs (cmp_stmt);
cmp_lhs = gimple_cond_lhs (cmp_stmt);
if (!TREE_CONSTANT (cmp_rhs)
|| !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
continue;
if (TREE_CODE (cmp_lhs) != SSA_NAME)
continue;
if ((bb->flags & BB_ANNOTATED) == 0)
continue;
phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
while (phi_stmt && gimple_code (phi_stmt) == GIMPLE_ASSIGN
&& gimple_assign_single_p (phi_stmt)
&& TREE_CODE (gimple_assign_rhs1 (phi_stmt)) == SSA_NAME)
phi_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (phi_stmt));
if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
continue;
FOR_EACH_EDGE (e, ei, bb->succs)
{
unsigned i, total = 0;
edge only_one;
bool check_value_one = (((integer_onep (cmp_rhs))
^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
^ ((e->flags & EDGE_TRUE_VALUE) != 0));
if ((e->flags & EDGE_ANNOTATED) == 0)
continue;
for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
{
tree val = gimple_phi_arg_def (phi_stmt, i);
edge ep = gimple_phi_arg_edge (phi_stmt, i);
if (!TREE_CONSTANT (val) || !(integer_zerop (val)
|| integer_onep (val)))
continue;
if (check_value_one ^ integer_onep (val))
continue;
total++;
only_one = ep;
if (e->probability == 0 && (e->flags & EDGE_ANNOTATED) == 0)
{
ep->probability = 0;
ep->count = 0;
ep->flags |= EDGE_ANNOTATED;
}
}
if (total == 1 && (only_one->flags & EDGE_ANNOTATED) == 0)
{
only_one->probability = e->probability;
only_one->count = e->count;
only_one->flags |= EDGE_ANNOTATED;
}
}
}
}
/* Propagate the basic block count and edge count on the control flow
graph. We do the propagation iteratively until stablize. */
static void
afdo_propagate (void)
{
basic_block bb;
bool changed = true;
int i = 0;
FOR_ALL_BB (bb)
{
bb->count = ((basic_block) bb->aux)->count;
if ((((basic_block) bb->aux)->flags & BB_ANNOTATED) != 0)
bb->flags |= BB_ANNOTATED;
}
while (changed && i++ < PARAM_VALUE (PARAM_AUTOFDO_MAX_PROPAGATE_ITERATIONS))
{
changed = false;
if (afdo_propagate_edge (true))
changed = true;
if (afdo_propagate_edge (false))
changed = true;
afdo_propagate_circuit ();
}
}
/* Propagate counts on control flow graph and calculate branch
probabilities. */
static void
afdo_calculate_branch_prob (void)
{
basic_block bb;
bool has_sample = false;
FOR_EACH_BB (bb)
if (bb->count > 0)
has_sample = true;
if (!has_sample)
return;
calculate_dominance_info (CDI_POST_DOMINATORS);
calculate_dominance_info (CDI_DOMINATORS);
loop_optimizer_init (0);
afdo_find_equiv_class ();
afdo_propagate ();
FOR_EACH_BB (bb)
{
edge e;
edge_iterator ei;
int num_unknown_succ = 0;
gcov_type total_count = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if ((e->flags & EDGE_ANNOTATED) == 0)
num_unknown_succ ++;
else
total_count += e->count;
}
if (num_unknown_succ == 0 && total_count > 0)
{
FOR_EACH_EDGE (e, ei, bb->succs)
e->probability =
(double) e->count * REG_BR_PROB_BASE / total_count;
}
}
FOR_ALL_BB (bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
e->count =
(double) bb->count * e->probability / REG_BR_PROB_BASE;
bb->aux = NULL;
}
loop_optimizer_finalize ();
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
}
/* Perform value profile transformation using AutoFDO profile. Add the
promoted stmts to PROMOTED_STMTS. Return TRUE if there is any
indirect call promoted. */
static bool
afdo_vpt_for_early_inline (stmt_set *promoted_stmts)
{
basic_block bb;
if (afdo_source_profile->get_function_instance_by_decl (
current_function_decl) == NULL)
return false;
bool has_vpt = false;
FOR_EACH_BB (bb)
{
if (!has_indirect_call (bb))
continue;
gimple_stmt_iterator gsi;
gcov_type bb_count = 0;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
count_info info;
gimple stmt = gsi_stmt (gsi);
if (afdo_source_profile->get_count_info (stmt, &info, NULL))
bb_count = MAX (bb_count, info.first);
}
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
/* IC_promotion and early_inline_2 is done in multiple iterations.
No need to promoted the stmt if its in promoted_stmts (means
it is already been promoted in the previous iterations). */
if (gimple_code (stmt) != GIMPLE_CALL
|| TREE_CODE (gimple_call_fn (stmt)) == FUNCTION_DECL
|| promoted_stmts->find (stmt) != promoted_stmts->end ())
continue;
count_info info;
afdo_source_profile->get_count_info (stmt, &info, NULL);
info.first = bb_count;
if (afdo_source_profile->update_inlined_ind_target (stmt, &info))
{
/* Promote the indirect call and update the promoted_stmts. */
promoted_stmts->insert (stmt);
afdo_vpt (stmt, info.second);
has_vpt = true;
}
}
}
if (has_vpt && gimple_value_profile_transformations ())
{
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
calculate_dominance_info (CDI_DOMINATORS);
rebuild_cgraph_edges ();
update_ssa (TODO_update_ssa);
compute_inline_parameters (cgraph_get_node (current_function_decl),
false);
return true;
}
else
return false;
}
/* Annotate auto profile to the control flow graph. Do not annotate value
profile for stmts in PROMOTED_STMTS. */
static void
afdo_annotate_cfg (const stmt_set &promoted_stmts)
{
basic_block bb;
const function_instance *s =
afdo_source_profile->get_function_instance_by_decl (
current_function_decl);
if (s == NULL)
return;
cgraph_get_node (current_function_decl)->count = s->head_count ();
ENTRY_BLOCK_PTR->count = s->head_count ();
gcov_type max_count = ENTRY_BLOCK_PTR->count;
location_set annotated_locs;
FOR_EACH_BB (bb)
{
edge e;
edge_iterator ei;
bb->count = 0;
bb->flags &= (~BB_ANNOTATED);
FOR_EACH_EDGE (e, ei, bb->succs)
{
e->count = 0;
e->flags &= (~EDGE_ANNOTATED);
}
bb->count = afdo_get_bb_count (bb, &annotated_locs, promoted_stmts);
if (bb->count > max_count)
max_count = bb->count;
}
if (ENTRY_BLOCK_PTR->count > ENTRY_BLOCK_PTR->next_bb->count)
{
ENTRY_BLOCK_PTR->next_bb->count = ENTRY_BLOCK_PTR->count;
ENTRY_BLOCK_PTR->next_bb->flags |= BB_ANNOTATED;
}
if (ENTRY_BLOCK_PTR->count > EXIT_BLOCK_PTR->prev_bb->count)
{
EXIT_BLOCK_PTR->prev_bb->count = ENTRY_BLOCK_PTR->count;
EXIT_BLOCK_PTR->prev_bb->flags |= BB_ANNOTATED;
}
if (max_count > 0)
{
afdo_calculate_branch_prob ();
counts_to_freqs ();
profile_status = PROFILE_READ;
}
if (flag_value_profile_transformations)
gimple_value_profile_transformations ();
}
} /* namespace autofdo. */
/* Use AutoFDO profile to annoate the control flow graph.
Return the todo flag. */
static unsigned int
auto_profile (void)
{
struct cgraph_node *node;
if (cgraph_state == CGRAPH_STATE_FINISHED)
return 0;
init_node_map ();
profile_info = autofdo::afdo_profile_info;
cgraph_pre_profiling_inlining_done = true;
cgraph_process_module_scope_statics ();
/* Now perform link to allow cross module inlining. */
cgraph_do_link ();
varpool_do_link ();
cgraph_unify_type_alias_sets ();
FOR_EACH_FUNCTION (node)
{
if (!gimple_has_body_p (node->symbol.decl))
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->symbol.decl) == BUILTINS_LOCATION)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
if (L_IPO_COMP_MODE)
{
basic_block bb;
FOR_EACH_BB (bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_call (stmt))
lipo_fixup_cgraph_edge_call_target (stmt);
}
}
}
rebuild_cgraph_edges ();
pop_cfun ();
}
FOR_EACH_FUNCTION (node)
{
if (!gimple_has_body_p (node->symbol.decl))
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->symbol.decl) == BUILTINS_LOCATION)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
/* First do indirect call promotion and early inline to make the
IR match the profiled binary before actual annotation.
This is needed because an indirect call might have been promoted
and inlined in the profiled binary. If we do not promote and
inline these indirect calls before annotation, the profile for
these promoted functions will be lost.
e.g. foo() --indirect_call--> bar()
In profiled binary, the callsite is promoted and inlined, making
the profile look like:
foo: {
loc_foo_1: count_1
bar@loc_foo_2: {
loc_bar_1: count_2
loc_bar_2: count_3
}
}
Before AutoFDO pass, loc_foo_2 is not promoted thus not inlined.
If we perform annotation on it, the profile inside bar@loc_foo2
will be wasted.
To avoid this, we promote loc_foo_2 and inline the promoted bar
function before annotation, so the profile inside bar@loc_foo2
will be useful. */
autofdo::stmt_set promoted_stmts;
for (int i = 0; i < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS); i++)
{
if (!flag_value_profile_transformations
|| !autofdo::afdo_vpt_for_early_inline (&promoted_stmts))
break;
early_inliner ();
}
early_inliner ();
autofdo::afdo_annotate_cfg (promoted_stmts);
compute_function_frequency ();
update_ssa (TODO_update_ssa);
/* Local pure-const may imply need to fixup the cfg. */
if (execute_fixup_cfg () & TODO_cleanup_cfg)
cleanup_tree_cfg ();
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
rebuild_cgraph_edges ();
pop_cfun ();
}
return 0;
}
static bool
gate_auto_profile_ipa (void)
{
return flag_auto_profile;
}
/* Read the profile from the profile data file. */
void
init_auto_profile (void)
{
if (auto_profile_file == NULL)
auto_profile_file = DEFAULT_AUTO_PROFILE_FILE;
autofdo::afdo_profile_info = (struct gcov_ctr_summary *)
xcalloc (1, sizeof (struct gcov_ctr_summary));
autofdo::afdo_profile_info->runs = 1;
autofdo::afdo_profile_info->sum_max = 0;
autofdo::afdo_profile_info->sum_all = 0;
/* Read the profile from the profile file. */
autofdo::read_profile ();
if (flag_dyn_ipa)
autofdo::read_aux_modules ();
}
/* Free the resources. */
void
end_auto_profile (void)
{
delete autofdo::afdo_source_profile;
delete autofdo::afdo_function_name_map;
delete autofdo::afdo_module_profile;
profile_info = NULL;
}
/* Returns TRUE if EDGE is hot enough to be inlined early. */
bool
afdo_callsite_hot_enough_for_early_inline (struct cgraph_edge *edge)
{
gcov_type count =
autofdo::afdo_source_profile->get_callsite_total_count (edge);
if (count > 0)
{
bool is_hot;
const struct gcov_ctr_summary *saved_profile_info = profile_info;
/* At earling inline stage, profile_info is not set yet. We need to
temporarily set it to afdo_profile_info to calculate hotness. */
profile_info = autofdo::afdo_profile_info;
is_hot = maybe_hot_count_p (NULL, count);
profile_info = saved_profile_info;
return is_hot;
}
else
return false;
}
struct simple_ipa_opt_pass pass_ipa_auto_profile =
{
{
SIMPLE_IPA_PASS,
"afdo", /* name */
OPTGROUP_NONE, /* optinfo_flags */
gate_auto_profile_ipa, /* gate */
auto_profile, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_AUTOFDO, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0 /* todo_flags_finish */
}
};