blob: ca997f08adeb721aa249f4da336ce7311810ce75 [file] [log] [blame]
// backend.h -- Go frontend interface to backend -*- C++ -*-
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef GO_BACKEND_H
#define GO_BACKEND_H
#include <gmp.h>
#include <mpfr.h>
// Pointers to these types are created by the backend, passed to the
// frontend, and passed back to the backend. The types must be
// defined by the backend using these names.
// The backend representation of a type.
class Btype;
// The backend represention of an expression.
class Bexpression;
// The backend representation of a statement.
class Bstatement;
// The backend representation of a function definition or declaration.
class Bfunction;
// The backend representation of a block.
class Bblock;
// The backend representation of a variable.
class Bvariable;
// The backend representation of a label.
class Blabel;
// The backend interface. This is a pure abstract class that a
// specific backend will implement.
class Backend
{
public:
virtual ~Backend() { }
// Name/type/location. Used for function parameters, struct fields,
// interface methods.
struct Btyped_identifier
{
std::string name;
Btype* btype;
Location location;
Btyped_identifier()
: name(), btype(NULL), location(UNKNOWN_LOCATION)
{ }
Btyped_identifier(const std::string& a_name, Btype* a_btype,
Location a_location)
: name(a_name), btype(a_btype), location(a_location)
{ }
};
// Types.
// Produce an error type. Actually the backend could probably just
// crash if this is called.
virtual Btype*
error_type() = 0;
// Get a void type. This is used in (at least) two ways: 1) as the
// return type of a function with no result parameters; 2)
// unsafe.Pointer is represented as *void.
virtual Btype*
void_type() = 0;
// Get the unnamed boolean type.
virtual Btype*
bool_type() = 0;
// Get an unnamed integer type with the given signedness and number
// of bits.
virtual Btype*
integer_type(bool is_unsigned, int bits) = 0;
// Get an unnamed floating point type with the given number of bits
// (32 or 64).
virtual Btype*
float_type(int bits) = 0;
// Get an unnamed complex type with the given number of bits (64 or 128).
virtual Btype*
complex_type(int bits) = 0;
// Get a pointer type.
virtual Btype*
pointer_type(Btype* to_type) = 0;
// Get a function type. The receiver, parameter, and results are
// generated from the types in the Function_type. The Function_type
// is provided so that the names are available. This should return
// not the type of a Go function (which is a pointer to a struct)
// but the type of a C function pointer (which will be used as the
// type of the first field of the struct).
virtual Btype*
function_type(const Btyped_identifier& receiver,
const std::vector<Btyped_identifier>& parameters,
const std::vector<Btyped_identifier>& results,
Location location) = 0;
// Get a struct type.
virtual Btype*
struct_type(const std::vector<Btyped_identifier>& fields) = 0;
// Get an array type.
virtual Btype*
array_type(Btype* element_type, Bexpression* length) = 0;
// Create a placeholder pointer type. This is used for a named
// pointer type, since in Go a pointer type may refer to itself.
// NAME is the name of the type, and the location is where the named
// type is defined. This function is also used for unnamed function
// types with multiple results, in which case the type has no name
// and NAME will be empty. FOR_FUNCTION is true if this is for a Go
// function type, which corresponds to a C/C++ pointer to function
// type. The return value will later be passed as the first
// parameter to set_placeholder_pointer_type or
// set_placeholder_function_type.
virtual Btype*
placeholder_pointer_type(const std::string& name, Location,
bool for_function) = 0;
// Fill in a placeholder pointer type as a pointer. This takes a
// type returned by placeholder_pointer_type and arranges for it to
// point to the type that TO_TYPE points to (that is, PLACEHOLDER
// becomes the same type as TO_TYPE). Returns true on success,
// false on failure.
virtual bool
set_placeholder_pointer_type(Btype* placeholder, Btype* to_type) = 0;
// Fill in a placeholder pointer type as a function. This takes a
// type returned by placeholder_pointer_type and arranges for it to
// become a real Go function type (which corresponds to a C/C++
// pointer to function type). FT will be something returned by the
// function_type method. Returns true on success, false on failure.
virtual bool
set_placeholder_function_type(Btype* placeholder, Btype* ft) = 0;
// Create a placeholder struct type. This is used for a named
// struct type, as with placeholder_pointer_type. It is also used
// for interface types, in which case NAME will be the empty string.
virtual Btype*
placeholder_struct_type(const std::string& name, Location) = 0;
// Fill in a placeholder struct type. This takes a type returned by
// placeholder_struct_type and arranges for it to become a real
// struct type. The parameter is as for struct_type. Returns true
// on success, false on failure.
virtual bool
set_placeholder_struct_type(Btype* placeholder,
const std::vector<Btyped_identifier>& fields)
= 0;
// Create a placeholder array type. This is used for a named array
// type, as with placeholder_pointer_type, to handle cases like
// type A []*A.
virtual Btype*
placeholder_array_type(const std::string& name, Location) = 0;
// Fill in a placeholder array type. This takes a type returned by
// placeholder_array_type and arranges for it to become a real array
// type. The parameters are as for array_type. Returns true on
// success, false on failure.
virtual bool
set_placeholder_array_type(Btype* placeholder, Btype* element_type,
Bexpression* length) = 0;
// Return a named version of a type. The location is the location
// of the type definition. This will not be called for a type
// created via placeholder_pointer_type, placeholder_struct_type, or
// placeholder_array_type.. (It may be called for a pointer,
// struct, or array type in a case like "type P *byte; type Q P".)
virtual Btype*
named_type(const std::string& name, Btype*, Location) = 0;
// Create a marker for a circular pointer type. Go pointer and
// function types can refer to themselves in ways that are not
// permitted in C/C++. When a circular type is found, this function
// is called for the circular reference. This permits the backend
// to decide how to handle such a type. PLACEHOLDER is the
// placeholder type which has already been created; if the backend
// is prepared to handle a circular pointer type, it may simply
// return PLACEHOLDER. FOR_FUNCTION is true if this is for a
// function type.
//
// For "type P *P" the sequence of calls will be
// bt1 = placeholder_pointer_type();
// bt2 = circular_pointer_type(bt1, false);
// set_placeholder_pointer_type(bt1, bt2);
virtual Btype*
circular_pointer_type(Btype* placeholder, bool for_function) = 0;
// Return whether the argument could be a special type created by
// circular_pointer_type. This is used to introduce explicit type
// conversions where needed. If circular_pointer_type returns its
// PLACEHOLDER parameter, this may safely always return false.
virtual bool
is_circular_pointer_type(Btype*) = 0;
// Return the size of a type.
virtual size_t
type_size(Btype*) = 0;
// Return the alignment of a type.
virtual size_t
type_alignment(Btype*) = 0;
// Return the alignment of a struct field of this type. This is
// normally the same as type_alignment, but not always.
virtual size_t
type_field_alignment(Btype*) = 0;
// Return the offset of field INDEX in a struct type. INDEX is the
// entry in the FIELDS std::vector parameter of struct_type or
// set_placeholder_struct_type.
virtual size_t
type_field_offset(Btype*, size_t index) = 0;
// Expressions.
// Return an expression for a zero value of the given type. This is
// used for cases such as local variable initialization and
// converting nil to other types.
virtual Bexpression*
zero_expression(Btype*) = 0;
// Create an error expression. This is used for cases which should
// not occur in a correct program, in order to keep the compilation
// going without crashing.
virtual Bexpression*
error_expression() = 0;
// Create a reference to a variable.
virtual Bexpression*
var_expression(Bvariable* var, Location) = 0;
// Create an expression that indirects through the pointer expression EXPR
// (i.e., return the expression for *EXPR). KNOWN_VALID is true if the pointer
// is known to point to a valid memory location.
virtual Bexpression*
indirect_expression(Bexpression* expr, bool known_valid, Location) = 0;
// Return an expression for the multi-precision integer VAL in BTYPE.
virtual Bexpression*
integer_constant_expression(Btype* btype, mpz_t val) = 0;
// Return an expression for the floating point value VAL in BTYPE.
virtual Bexpression*
float_constant_expression(Btype* btype, mpfr_t val) = 0;
// Return an expression for the complex value REAL/IMAG in BTYPE.
virtual Bexpression*
complex_constant_expression(Btype* btype, mpfr_t real, mpfr_t imag) = 0;
// Return an expression that converts EXPR to TYPE.
virtual Bexpression*
convert_expression(Btype* type, Bexpression* expr, Location) = 0;
// Create an expression for the address of a function. This is used to
// get the address of the code for a function.
virtual Bexpression*
function_code_expression(Bfunction*, Location) = 0;
// Statements.
// Create an error statement. This is used for cases which should
// not occur in a correct program, in order to keep the compilation
// going without crashing.
virtual Bstatement*
error_statement() = 0;
// Create an expression statement.
virtual Bstatement*
expression_statement(Bexpression*) = 0;
// Create a variable initialization statement. This initializes a
// local variable at the point in the program flow where it is
// declared.
virtual Bstatement*
init_statement(Bvariable* var, Bexpression* init) = 0;
// Create an assignment statement.
virtual Bstatement*
assignment_statement(Bexpression* lhs, Bexpression* rhs,
Location) = 0;
// Create a return statement, passing the representation of the
// function and the list of values to return.
virtual Bstatement*
return_statement(Bfunction*, const std::vector<Bexpression*>&,
Location) = 0;
// Create an if statement. ELSE_BLOCK may be NULL.
virtual Bstatement*
if_statement(Bexpression* condition, Bblock* then_block, Bblock* else_block,
Location) = 0;
// Create a switch statement where the case values are constants.
// CASES and STATEMENTS must have the same number of entries. If
// VALUE matches any of the list in CASES[i], which will all be
// integers, then STATEMENTS[i] is executed. STATEMENTS[i] will
// either end with a goto statement or will fall through into
// STATEMENTS[i + 1]. CASES[i] is empty for the default clause,
// which need not be last.
virtual Bstatement*
switch_statement(Bexpression* value,
const std::vector<std::vector<Bexpression*> >& cases,
const std::vector<Bstatement*>& statements,
Location) = 0;
// Create a single statement from two statements.
virtual Bstatement*
compound_statement(Bstatement*, Bstatement*) = 0;
// Create a single statement from a list of statements.
virtual Bstatement*
statement_list(const std::vector<Bstatement*>&) = 0;
// Blocks.
// Create a block. The frontend will call this function when it
// starts converting a block within a function. FUNCTION is the
// current function. ENCLOSING is the enclosing block; it will be
// NULL for the top-level block in a function. VARS is the list of
// local variables defined within this block; each entry will be
// created by the local_variable function. START_LOCATION is the
// location of the start of the block, more or less the location of
// the initial curly brace. END_LOCATION is the location of the end
// of the block, more or less the location of the final curly brace.
// The statements will be added after the block is created.
virtual Bblock*
block(Bfunction* function, Bblock* enclosing,
const std::vector<Bvariable*>& vars,
Location start_location, Location end_location) = 0;
// Add the statements to a block. The block is created first. Then
// the statements are created. Then the statements are added to the
// block. This will called exactly once per block. The vector may
// be empty if there are no statements.
virtual void
block_add_statements(Bblock*, const std::vector<Bstatement*>&) = 0;
// Return the block as a statement. This is used to include a block
// in a list of statements.
virtual Bstatement*
block_statement(Bblock*) = 0;
// Variables.
// Create an error variable. This is used for cases which should
// not occur in a correct program, in order to keep the compilation
// going without crashing.
virtual Bvariable*
error_variable() = 0;
// Create a global variable. PACKAGE_NAME is the name of the
// package where the variable is defined. PKGPATH is the package
// path for that package, from the -fgo-pkgpath or -fgo-prefix
// option. NAME is the name of the variable. BTYPE is the type of
// the variable. IS_EXTERNAL is true if the variable is defined in
// some other package. IS_HIDDEN is true if the variable is not
// exported (name begins with a lower case letter).
// IN_UNIQUE_SECTION is true if the variable should be put into a
// unique section if possible; this is intended to permit the linker
// to garbage collect the variable if it is not referenced.
// LOCATION is where the variable was defined.
virtual Bvariable*
global_variable(const std::string& package_name,
const std::string& pkgpath,
const std::string& name,
Btype* btype,
bool is_external,
bool is_hidden,
bool in_unique_section,
Location location) = 0;
// A global variable will 1) be initialized to zero, or 2) be
// initialized to a constant value, or 3) be initialized in the init
// function. In case 2, the frontend will call
// global_variable_set_init to set the initial value. If this is
// not called, the backend should initialize a global variable to 0.
// The init function may then assign a value to it.
virtual void
global_variable_set_init(Bvariable*, Bexpression*) = 0;
// Create a local variable. The frontend will create the local
// variables first, and then create the block which contains them.
// FUNCTION is the function in which the variable is defined. NAME
// is the name of the variable. TYPE is the type. IS_ADDRESS_TAKEN
// is true if the address of this variable is taken (this implies
// that the address does not escape the function, as otherwise the
// variable would be on the heap). LOCATION is where the variable
// is defined. For each local variable the frontend will call
// init_statement to set the initial value.
virtual Bvariable*
local_variable(Bfunction* function, const std::string& name, Btype* type,
bool is_address_taken, Location location) = 0;
// Create a function parameter. This is an incoming parameter, not
// a result parameter (result parameters are treated as local
// variables). The arguments are as for local_variable.
virtual Bvariable*
parameter_variable(Bfunction* function, const std::string& name,
Btype* type, bool is_address_taken,
Location location) = 0;
// Create a temporary variable. A temporary variable has no name,
// just a type. We pass in FUNCTION and BLOCK in case they are
// needed. If INIT is not NULL, the variable should be initialized
// to that value. Otherwise the initial value is irrelevant--the
// backend does not have to explicitly initialize it to zero.
// ADDRESS_IS_TAKEN is true if the programs needs to take the
// address of this temporary variable. LOCATION is the location of
// the statement or expression which requires creating the temporary
// variable, and may not be very useful. This function should
// return a variable which can be referenced later and should set
// *PSTATEMENT to a statement which initializes the variable.
virtual Bvariable*
temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression* init,
bool address_is_taken, Location location,
Bstatement** pstatement) = 0;
// Create a named immutable initialized data structure. This is
// used for type descriptors, map descriptors, and function
// descriptors. This returns a Bvariable because it corresponds to
// an initialized const variable in C.
//
// NAME is the name to use for the initialized global variable which
// this call will create.
//
// IS_HIDDEN will be true if the descriptor should only be visible
// within the current object.
//
// IS_COMMON is true if NAME may be defined by several packages, and
// the linker should merge all such definitions. If IS_COMMON is
// false, NAME should be defined in only one file. In general
// IS_COMMON will be true for the type descriptor of an unnamed type
// or a builtin type. IS_HIDDEN and IS_COMMON will never both be
// true.
//
// TYPE will be a struct type; the type of the returned expression
// must be a pointer to this struct type.
//
// We must create the named structure before we know its
// initializer, because the initializer may refer to its own
// address. After calling this the frontend will call
// immutable_struct_set_init.
virtual Bvariable*
immutable_struct(const std::string& name, bool is_hidden, bool is_common,
Btype* type, Location) = 0;
// Set the initial value of a variable created by immutable_struct.
// The NAME, IS_HIDDEN, IS_COMMON, TYPE, and location parameters are
// the same ones passed to immutable_struct. INITIALIZER will be a
// composite literal of type TYPE. It will not contain any function
// calls or anything else that can not be put into a read-only data
// section. It may contain the address of variables created by
// immutable_struct.
virtual void
immutable_struct_set_init(Bvariable*, const std::string& name,
bool is_hidden, bool is_common, Btype* type,
Location, Bexpression* initializer) = 0;
// Create a reference to a named immutable initialized data
// structure defined in some other package. This will be a
// structure created by a call to immutable_struct with the same
// NAME and TYPE and with IS_COMMON passed as false. This
// corresponds to an extern const global variable in C.
virtual Bvariable*
immutable_struct_reference(const std::string& name, Btype* type,
Location) = 0;
// Labels.
// Create a new label. NAME will be empty if this is a label
// created by the frontend for a loop construct. The location is
// where the the label is defined.
virtual Blabel*
label(Bfunction*, const std::string& name, Location) = 0;
// Create a statement which defines a label. This statement will be
// put into the codestream at the point where the label should be
// defined.
virtual Bstatement*
label_definition_statement(Blabel*) = 0;
// Create a goto statement to a label.
virtual Bstatement*
goto_statement(Blabel*, Location) = 0;
// Create an expression for the address of a label. This is used to
// get the return address of a deferred function which may call
// recover.
virtual Bexpression*
label_address(Blabel*, Location) = 0;
// Functions.
// Create an error function. This is used for cases which should
// not occur in a correct program, in order to keep the compilation
// going without crashing.
virtual Bfunction*
error_function() = 0;
// Declare or define a function of FNTYPE.
// NAME is the Go name of the function. ASM_NAME, if not the empty string, is
// the name that should be used in the symbol table; this will be non-empty if
// a magic extern comment is used.
// IS_VISIBLE is true if this function should be visible outside of the
// current compilation unit. IS_DECLARATION is true if this is a function
// declaration rather than a definition; the function definition will be in
// another compilation unit.
// IS_INLINABLE is true if the function can be inlined.
// DISABLE_SPLIT_STACK is true if this function may not split the stack; this
// is used for the implementation of recover.
// IN_UNIQUE_SECTION is true if this function should be put into a unique
// location if possible; this is used for field tracking.
virtual Bfunction*
function(Btype* fntype, const std::string& name, const std::string& asm_name,
bool is_visible, bool is_declaration, bool is_inlinable,
bool disable_split_stack, bool in_unique_section, Location) = 0;
};
// The backend interface has to define this function.
extern Backend* go_get_backend();
// FIXME: Temporary helper functions while converting to new backend
// interface.
extern Btype* tree_to_type(tree);
extern Bexpression* tree_to_expr(tree);
extern Bstatement* tree_to_stat(tree);
extern Bfunction* tree_to_function(tree);
extern Bblock* tree_to_block(tree);
extern tree type_to_tree(Btype*);
extern tree expr_to_tree(Bexpression*);
extern tree stat_to_tree(Bstatement*);
extern tree block_to_tree(Bblock*);
extern tree var_to_tree(Bvariable*);
extern tree function_to_tree(Bfunction*);
#endif // !defined(GO_BACKEND_H)