blob: 88391c29337a15824518a7ecbae4c41cec95dcf6 [file] [log] [blame]
/*
* Copyright (C) 2016 Google, Inc
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2, as published by
* the Free Software Foundation.
*
* This device driver implements a TCG PTP FIFO interface over SPI for chips
* with Cr50 firmware.
* It is based on tpm_tis_spi driver by Peter Huewe and Christophe Ricard.
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm.h>
#include <linux/spi/spi.h>
#include <linux/wait.h>
#include "cr50.h"
#include "tpm_tis_core.h"
/*
* Cr50 timing constants:
* - can go to sleep not earlier than after CR50_SLEEP_DELAY_MSEC
* - needs up to CR50_WAKE_START_DELAY_MSEC to wake after sleep
* - requires at least CR50_ACCESS_DELAY_MSEC between transactions
*/
#define CR50_SLEEP_DELAY_MSEC 1000
#define CR50_WAKE_START_DELAY_MSEC 1
#define CR50_ACCESS_DELAY_MSEC 2
#define MAX_SPI_FRAMESIZE 64
#define TPM_CR50_FW_VER(l) (0x0F90 | ((l) << 12))
#define TPM_CR50_MAX_FW_VER_LEN 64
struct cr50_spi_phy {
struct tpm_tis_data priv;
struct spi_device *spi_device;
struct mutex time_track_mutex;
unsigned long last_access_jiffies;
unsigned long wake_after_jiffies;
unsigned long access_delay_jiffies;
unsigned long sleep_delay_jiffies;
unsigned int wake_start_delay_msec;
struct completion tpm_ready;
u8 tx_buf[MAX_SPI_FRAMESIZE] ____cacheline_aligned;
u8 rx_buf[MAX_SPI_FRAMESIZE] ____cacheline_aligned;
};
static struct cr50_spi_phy *to_cr50_spi_phy(struct tpm_tis_data *data)
{
return container_of(data, struct cr50_spi_phy, priv);
}
/*
* The cr50 interrupt handler just signals waiting threads that the
* interrupt was asserted. It does not do any processing triggered
* by interrupts but is instead used to avoid fixed delays.
*/
static irqreturn_t cr50_spi_irq_handler(int dummy, void *dev_id)
{
struct cr50_spi_phy *phy = dev_id;
complete(&phy->tpm_ready);
return IRQ_HANDLED;
}
/*
* Cr50 needs to have at least some delay between consecutive
* transactions. Make sure we wait.
*/
static void cr50_ensure_access_delay(struct cr50_spi_phy *phy)
{
/*
* Note: There is a small chance, if Cr50 is not accessed in a few days,
* that time_in_range will not provide the correct result after the wrap
* around for jiffies. In this case, we'll have an unneeded short delay,
* which is fine.
*/
unsigned long allowed_access =
phy->last_access_jiffies + phy->access_delay_jiffies;
unsigned long time_now = jiffies;
if (time_in_range_open(time_now,
phy->last_access_jiffies, allowed_access)) {
wait_for_completion_timeout(&phy->tpm_ready,
allowed_access - time_now);
}
}
/*
* Cr50 might go to sleep if there is no SPI activity for some time and
* miss the first few bits/bytes on the bus. In such case, wake it up
* by asserting CS and give it time to start up.
*/
static bool cr50_needs_waking(struct cr50_spi_phy *phy)
{
/*
* Note: There is a small chance, if Cr50 is not accessed in a few days,
* that time_in_range will not provide the correct result after the wrap
* around for jiffies. In this case, we'll probably timeout or read
* incorrect value from TPM_STS and just retry the operation.
*/
return !time_in_range_open(jiffies,
phy->last_access_jiffies,
phy->wake_after_jiffies);
}
static void cr50_wake_if_needed(struct cr50_spi_phy *phy)
{
if (cr50_needs_waking(phy)) {
/* Assert CS, wait 1 msec, deassert CS */
struct spi_transfer spi_cs_wake = { .delay_usecs = 1000 };
spi_sync_transfer(phy->spi_device, &spi_cs_wake, 1);
/* Wait for it to fully wake */
msleep(phy->wake_start_delay_msec);
}
/* Reset the time when we need to wake Cr50 again */
phy->wake_after_jiffies = jiffies + phy->sleep_delay_jiffies;
}
/*
* Flow control: clock the bus and wait for cr50 to set LSB before
* sending/receiving data. TCG PTP spec allows it to happen during
* the last byte of header, but cr50 never does that in practice,
* and earlier versions had a bug when it was set too early, so don't
* check for it during header transfer.
*/
static int cr50_spi_flow_control(struct cr50_spi_phy *phy)
{
unsigned long timeout_jiffies =
jiffies + msecs_to_jiffies(TPM_RETRY * TPM_TIMEOUT_RETRY);
struct spi_message m;
int ret;
struct spi_transfer spi_xfer = {
.rx_buf = phy->rx_buf,
.len = 1,
.cs_change = 1,
};
do {
spi_message_init(&m);
spi_message_add_tail(&spi_xfer, &m);
ret = spi_sync_locked(phy->spi_device, &m);
if (ret < 0)
return ret;
if (time_after(jiffies, timeout_jiffies))
return -EBUSY;
} while (!(phy->rx_buf[0] & 0x01));
return 0;
}
static int cr50_spi_xfer_bytes(struct tpm_tis_data *data, u32 addr,
u16 len, u8 *buf, bool do_write)
{
struct cr50_spi_phy *phy = to_cr50_spi_phy(data);
struct spi_message m;
struct spi_transfer spi_xfer = {
.tx_buf = phy->tx_buf,
.rx_buf = phy->rx_buf,
.len = 4,
.cs_change = 1,
};
int ret;
if (len > MAX_SPI_FRAMESIZE)
return -EINVAL;
/*
* Do this outside of spi_bus_lock in case cr50 is not the
* only device on that spi bus.
*/
mutex_lock(&phy->time_track_mutex);
cr50_ensure_access_delay(phy);
cr50_wake_if_needed(phy);
phy->tx_buf[0] = (do_write ? 0x00 : 0x80) | (len - 1);
phy->tx_buf[1] = 0xD4;
phy->tx_buf[2] = (addr >> 8) & 0xFF;
phy->tx_buf[3] = addr & 0xFF;
spi_message_init(&m);
spi_message_add_tail(&spi_xfer, &m);
spi_bus_lock(phy->spi_device->master);
ret = spi_sync_locked(phy->spi_device, &m);
if (ret < 0)
goto exit;
ret = cr50_spi_flow_control(phy);
if (ret < 0)
goto exit;
spi_xfer.cs_change = 0;
spi_xfer.len = len;
if (do_write) {
memcpy(phy->tx_buf, buf, len);
spi_xfer.rx_buf = NULL;
} else {
spi_xfer.tx_buf = NULL;
}
spi_message_init(&m);
spi_message_add_tail(&spi_xfer, &m);
reinit_completion(&phy->tpm_ready);
ret = spi_sync_locked(phy->spi_device, &m);
if (!do_write)
memcpy(buf, phy->rx_buf, len);
exit:
spi_bus_unlock(phy->spi_device->master);
phy->last_access_jiffies = jiffies;
mutex_unlock(&phy->time_track_mutex);
return ret;
}
static int cr50_spi_read_bytes(struct tpm_tis_data *data, u32 addr,
u16 len, u8 *result)
{
return cr50_spi_xfer_bytes(data, addr, len, result, false);
}
static int cr50_spi_write_bytes(struct tpm_tis_data *data, u32 addr,
u16 len, u8 *value)
{
return cr50_spi_xfer_bytes(data, addr, len, value, true);
}
static int cr50_spi_read16(struct tpm_tis_data *data, u32 addr, u16 *result)
{
int rc;
__le16 le_val;
rc = data->phy_ops->read_bytes(data, addr, sizeof(u16), (u8 *)&le_val);
if (!rc)
*result = le16_to_cpu(le_val);
return rc;
}
static int cr50_spi_read32(struct tpm_tis_data *data, u32 addr, u32 *result)
{
int rc;
__le32 le_val;
rc = data->phy_ops->read_bytes(data, addr, sizeof(u32), (u8 *)&le_val);
if (!rc)
*result = le32_to_cpu(le_val);
return rc;
}
static int cr50_spi_write32(struct tpm_tis_data *data, u32 addr, u32 value)
{
__le32 le_val = cpu_to_le32(value);
return data->phy_ops->write_bytes(data, addr, sizeof(u32),
(u8 *)&le_val);
}
static void cr50_get_fw_version(struct tpm_tis_data *data, char *fw_ver)
{
int i, len = 0;
char fw_ver_block[4];
/*
* Write anything to TPM_CR50_FW_VER to start from the beginning
* of the version string
*/
tpm_tis_write8(data, TPM_CR50_FW_VER(data->locality), 0);
/* Read the string, 4 bytes at a time, until we get '\0' */
do {
tpm_tis_read_bytes(data, TPM_CR50_FW_VER(data->locality), 4,
fw_ver_block);
for (i = 0; i < 4 && fw_ver_block[i]; ++len, ++i)
fw_ver[len] = fw_ver_block[i];
} while (i == 4 && len < TPM_CR50_MAX_FW_VER_LEN);
fw_ver[len] = 0;
}
static const struct tpm_tis_phy_ops cr50_spi_phy_ops = {
.read_bytes = cr50_spi_read_bytes,
.write_bytes = cr50_spi_write_bytes,
.read16 = cr50_spi_read16,
.read32 = cr50_spi_read32,
.write32 = cr50_spi_write32,
.max_xfer_size = MAX_SPI_FRAMESIZE,
};
static int cr50_spi_probe(struct spi_device *dev)
{
char fw_ver[TPM_CR50_MAX_FW_VER_LEN + 1];
struct cr50_spi_phy *phy;
int rc;
phy = devm_kzalloc(&dev->dev, sizeof(struct cr50_spi_phy),
GFP_KERNEL);
if (!phy)
return -ENOMEM;
phy->spi_device = dev;
phy->access_delay_jiffies = msecs_to_jiffies(CR50_ACCESS_DELAY_MSEC);
phy->sleep_delay_jiffies = msecs_to_jiffies(CR50_SLEEP_DELAY_MSEC);
phy->wake_start_delay_msec = CR50_WAKE_START_DELAY_MSEC;
mutex_init(&phy->time_track_mutex);
phy->wake_after_jiffies = jiffies;
phy->last_access_jiffies = jiffies;
init_completion(&phy->tpm_ready);
if (dev->irq > 0) {
rc = devm_request_irq(&dev->dev, dev->irq, cr50_spi_irq_handler,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
"cr50_spi", phy);
if (rc < 0) {
if (rc == -EPROBE_DEFER)
return rc;
dev_warn(&dev->dev, "Requesting IRQ %d failed: %d\n",
dev->irq, rc);
/*
* This is not fatal, the driver will fall back to
* delays automatically, since tpm_ready will never
* be completed without a registered irq handler.
* So, just fall through.
*/
}
} else {
dev_warn(&dev->dev,
"No IRQ - will use delays between transactions.\n");
}
rc = tpm_tis_core_init(&dev->dev, &phy->priv, -1, &cr50_spi_phy_ops,
NULL);
if (rc < 0)
return rc;
dev_info(&dev->dev, "registered shutdown handler [gentle shutdown]\n");
cr50_get_fw_version(&phy->priv, fw_ver);
dev_info(&dev->dev, "Cr50 firmware version: %s\n", fw_ver);
/* Disable deep-sleep, ignore if command failed. */
cr50_control_deep_sleep(spi_get_drvdata(dev), 0);
return 0;
}
static SIMPLE_DEV_PM_OPS(cr50_spi_pm, cr50_suspend, cr50_resume);
static void cr50_spi_shutdown(struct spi_device *dev)
{
struct tpm_chip *chip = spi_get_drvdata(dev);
cr50_control_deep_sleep(chip, 1);
tpm_chip_unregister(chip);
tpm_tis_remove(chip);
dev_info(&dev->dev, "gentle shutdown done\n");
}
static int cr50_spi_remove(struct spi_device *dev)
{
cr50_spi_shutdown(dev);
return 0;
}
static const struct spi_device_id cr50_spi_id[] = {
{ "cr50", 0 },
{}
};
MODULE_DEVICE_TABLE(spi, cr50_spi_id);
#ifdef CONFIG_OF
static const struct of_device_id of_cr50_spi_match[] = {
{ .compatible = "google,cr50", },
{}
};
MODULE_DEVICE_TABLE(of, of_cr50_spi_match);
#endif
static struct spi_driver cr50_spi_driver = {
.driver = {
.name = "cr50_spi",
.pm = &cr50_spi_pm,
.of_match_table = of_match_ptr(of_cr50_spi_match),
},
.probe = cr50_spi_probe,
.remove = cr50_spi_remove,
.shutdown = cr50_spi_shutdown,
.id_table = cr50_spi_id,
};
module_spi_driver(cr50_spi_driver);
MODULE_DESCRIPTION("Cr50 TCG PTP FIFO SPI driver");
MODULE_LICENSE("GPL v2");