blob: caac3acfbe9de02524c78040999835b2462a253b [file] [log] [blame]
/*
* Copyright (c) 2014 - 2016, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/platform_device.h>
#include <linux/if_vlan.h>
#include "ess_edma.h"
#include "edma.h"
extern struct net_device *edma_netdev[EDMA_MAX_PORTID_SUPPORTED];
bool edma_stp_rstp;
u16 edma_ath_eth_type;
/* edma_skb_priority_offset()
* get edma skb priority
*/
static unsigned int edma_skb_priority_offset(struct sk_buff *skb)
{
return (skb->priority >> 2) & 1;
}
/* edma_alloc_tx_ring()
* Allocate Tx descriptors ring
*/
static int edma_alloc_tx_ring(struct edma_common_info *edma_cinfo,
struct edma_tx_desc_ring *etdr)
{
struct platform_device *pdev = edma_cinfo->pdev;
/* Initialize ring */
etdr->size = sizeof(struct edma_sw_desc) * etdr->count;
etdr->sw_next_to_fill = 0;
etdr->sw_next_to_clean = 0;
/* Allocate SW descriptors */
etdr->sw_desc = vzalloc(etdr->size);
if (!etdr->sw_desc) {
dev_err(&pdev->dev, "buffer alloc of tx ring failed=%p", etdr);
return -ENOMEM;
}
/* Allocate HW descriptors */
etdr->hw_desc = dma_alloc_coherent(&pdev->dev, etdr->size, &etdr->dma,
GFP_KERNEL);
if (!etdr->hw_desc) {
dev_err(&pdev->dev, "descriptor allocation for tx ring failed");
vfree(etdr->sw_desc);
return -ENOMEM;
}
return 0;
}
/* edma_free_tx_ring()
* Free tx rings allocated by edma_alloc_tx_rings
*/
static void edma_free_tx_ring(struct edma_common_info *edma_cinfo,
struct edma_tx_desc_ring *etdr)
{
struct platform_device *pdev = edma_cinfo->pdev;
if (likely(etdr->dma))
dma_free_coherent(&pdev->dev, etdr->size, etdr->hw_desc,
etdr->dma);
vfree(etdr->sw_desc);
etdr->sw_desc = NULL;
}
/* edma_alloc_rx_ring()
* allocate rx descriptor ring
*/
static int edma_alloc_rx_ring(struct edma_common_info *edma_cinfo,
struct edma_rfd_desc_ring *erxd)
{
struct platform_device *pdev = edma_cinfo->pdev;
erxd->size = sizeof(struct edma_sw_desc) * erxd->count;
erxd->sw_next_to_fill = 0;
erxd->sw_next_to_clean = 0;
/* Allocate SW descriptors */
erxd->sw_desc = vzalloc(erxd->size);
if (!erxd->sw_desc)
return -ENOMEM;
/* Alloc HW descriptors */
erxd->hw_desc = dma_alloc_coherent(&pdev->dev, erxd->size, &erxd->dma,
GFP_KERNEL);
if (!erxd->hw_desc) {
vfree(erxd->sw_desc);
return -ENOMEM;
}
/* Initialize pending_fill */
erxd->pending_fill = 0;
return 0;
}
/* edma_free_rx_ring()
* Free rx ring allocated by alloc_rx_ring
*/
static void edma_free_rx_ring(struct edma_common_info *edma_cinfo,
struct edma_rfd_desc_ring *rxdr)
{
struct platform_device *pdev = edma_cinfo->pdev;
if (likely(rxdr->dma))
dma_free_coherent(&pdev->dev, rxdr->size, rxdr->hw_desc,
rxdr->dma);
vfree(rxdr->sw_desc);
rxdr->sw_desc = NULL;
}
/* edma_configure_tx()
* Configure transmission control data
*/
static void edma_configure_tx(struct edma_common_info *edma_cinfo)
{
u32 txq_ctrl_data;
txq_ctrl_data = (EDMA_TPD_BURST << EDMA_TXQ_NUM_TPD_BURST_SHIFT);
txq_ctrl_data |= EDMA_TXQ_CTRL_TPD_BURST_EN;
txq_ctrl_data |= (EDMA_TXF_BURST << EDMA_TXQ_TXF_BURST_NUM_SHIFT);
edma_write_reg(EDMA_REG_TXQ_CTRL, txq_ctrl_data);
}
/* edma_configure_rx()
* configure reception control data
*/
static void edma_configure_rx(struct edma_common_info *edma_cinfo)
{
struct edma_hw *hw = &edma_cinfo->hw;
u32 rss_type, rx_desc1, rxq_ctrl_data;
/* Set RSS type */
rss_type = hw->rss_type;
edma_write_reg(EDMA_REG_RSS_TYPE, rss_type);
/* Set RFD burst number */
rx_desc1 = (EDMA_RFD_BURST << EDMA_RXQ_RFD_BURST_NUM_SHIFT);
/* Set RFD prefetch threshold */
rx_desc1 |= (EDMA_RFD_THR << EDMA_RXQ_RFD_PF_THRESH_SHIFT);
/* Set RFD in host ring low threshold to generte interrupt */
rx_desc1 |= (EDMA_RFD_LTHR << EDMA_RXQ_RFD_LOW_THRESH_SHIFT);
edma_write_reg(EDMA_REG_RX_DESC1, rx_desc1);
/* Set Rx FIFO threshold to start to DMA data to host */
rxq_ctrl_data = EDMA_FIFO_THRESH_128_BYTE;
/* Set RX remove vlan bit */
rxq_ctrl_data |= EDMA_RXQ_CTRL_RMV_VLAN;
edma_write_reg(EDMA_REG_RXQ_CTRL, rxq_ctrl_data);
}
/* edma_alloc_rx_buf()
* does skb allocation for the received packets.
*/
static int edma_alloc_rx_buf(struct edma_common_info
*edma_cinfo,
struct edma_rfd_desc_ring *erdr,
int cleaned_count, int queue_id)
{
struct platform_device *pdev = edma_cinfo->pdev;
struct edma_rx_free_desc *rx_desc;
struct edma_sw_desc *sw_desc;
struct sk_buff *skb;
unsigned int i;
u16 prod_idx, length;
u32 reg_data;
if (cleaned_count > erdr->count)
cleaned_count = erdr->count - 1;
i = erdr->sw_next_to_fill;
while (cleaned_count) {
sw_desc = &erdr->sw_desc[i];
length = edma_cinfo->rx_head_buffer_len;
if (sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_REUSE) {
skb = sw_desc->skb;
/* Clear REUSE Flag */
sw_desc->flags &= ~EDMA_SW_DESC_FLAG_SKB_REUSE;
} else {
/* alloc skb */
skb = netdev_alloc_skb(edma_netdev[0], length);
if (!skb) {
/* Better luck next round */
break;
}
}
if (edma_cinfo->page_mode) {
struct page *pg = alloc_page(GFP_ATOMIC);
if (!pg) {
dev_kfree_skb_any(skb);
break;
}
sw_desc->dma = dma_map_page(&pdev->dev, pg, 0,
edma_cinfo->rx_page_buffer_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
sw_desc->dma)) {
__free_page(pg);
dev_kfree_skb_any(skb);
break;
}
skb_fill_page_desc(skb, 0, pg, 0,
edma_cinfo->rx_page_buffer_len);
sw_desc->flags = EDMA_SW_DESC_FLAG_SKB_FRAG;
sw_desc->length = edma_cinfo->rx_page_buffer_len;
} else {
sw_desc->dma = dma_map_single(&pdev->dev, skb->data,
length, DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
sw_desc->dma)) {
dev_kfree_skb_any(skb);
break;
}
sw_desc->flags = EDMA_SW_DESC_FLAG_SKB_HEAD;
sw_desc->length = length;
}
/* Update the buffer info */
sw_desc->skb = skb;
rx_desc = (&((struct edma_rx_free_desc *)(erdr->hw_desc))[i]);
rx_desc->buffer_addr = cpu_to_le64(sw_desc->dma);
if (++i == erdr->count)
i = 0;
cleaned_count--;
}
erdr->sw_next_to_fill = i;
if (i == 0)
prod_idx = erdr->count - 1;
else
prod_idx = i - 1;
/* Update the producer index */
edma_read_reg(EDMA_REG_RFD_IDX_Q(queue_id), &reg_data);
reg_data &= ~EDMA_RFD_PROD_IDX_BITS;
reg_data |= prod_idx;
edma_write_reg(EDMA_REG_RFD_IDX_Q(queue_id), reg_data);
/* If we couldn't allocate all the buffers
* we increment the alloc failure counters
*/
if (cleaned_count)
edma_cinfo->edma_ethstats.rx_alloc_fail_ctr++;
return cleaned_count;
}
/* edma_init_desc()
* update descriptor ring size, buffer and producer/consumer index
*/
static void edma_init_desc(struct edma_common_info *edma_cinfo)
{
struct edma_rfd_desc_ring *rfd_ring;
struct edma_tx_desc_ring *etdr;
int i = 0, j = 0;
u32 data = 0;
u16 hw_cons_idx = 0;
/* Set the base address of every TPD ring. */
for (i = 0; i < edma_cinfo->num_tx_queues; i++) {
etdr = edma_cinfo->tpd_ring[i];
/* Update descriptor ring base address */
edma_write_reg(EDMA_REG_TPD_BASE_ADDR_Q(i), (u32)etdr->dma);
edma_read_reg(EDMA_REG_TPD_IDX_Q(i), &data);
/* Calculate hardware consumer index */
hw_cons_idx = (data >> EDMA_TPD_CONS_IDX_SHIFT) & 0xffff;
etdr->sw_next_to_fill = hw_cons_idx;
etdr->sw_next_to_clean = hw_cons_idx;
data &= ~(EDMA_TPD_PROD_IDX_MASK << EDMA_TPD_PROD_IDX_SHIFT);
data |= hw_cons_idx;
/* update producer index */
edma_write_reg(EDMA_REG_TPD_IDX_Q(i), data);
/* update SW consumer index register */
edma_write_reg(EDMA_REG_TX_SW_CONS_IDX_Q(i), hw_cons_idx);
/* Set TPD ring size */
edma_write_reg(EDMA_REG_TPD_RING_SIZE,
edma_cinfo->tx_ring_count &
EDMA_TPD_RING_SIZE_MASK);
}
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
rfd_ring = edma_cinfo->rfd_ring[j];
/* Update Receive Free descriptor ring base address */
edma_write_reg(EDMA_REG_RFD_BASE_ADDR_Q(j),
(u32)(rfd_ring->dma));
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
data = edma_cinfo->rx_head_buffer_len;
if (edma_cinfo->page_mode)
data = edma_cinfo->rx_page_buffer_len;
data &= EDMA_RX_BUF_SIZE_MASK;
data <<= EDMA_RX_BUF_SIZE_SHIFT;
/* Update RFD ring size and RX buffer size */
data |= (edma_cinfo->rx_ring_count & EDMA_RFD_RING_SIZE_MASK)
<< EDMA_RFD_RING_SIZE_SHIFT;
edma_write_reg(EDMA_REG_RX_DESC0, data);
/* Disable TX FIFO low watermark and high watermark */
edma_write_reg(EDMA_REG_TXF_WATER_MARK, 0);
/* Load all of base address above */
edma_read_reg(EDMA_REG_TX_SRAM_PART, &data);
data |= 1 << EDMA_LOAD_PTR_SHIFT;
edma_write_reg(EDMA_REG_TX_SRAM_PART, data);
}
/* edma_receive_checksum
* Api to check checksum on receive packets
*/
static void edma_receive_checksum(struct edma_rx_return_desc *rd,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* check the RRD IP/L4 checksum bit to see if
* its set, which in turn indicates checksum
* failure.
*/
if (rd->rrd6 & EDMA_RRD_CSUM_FAIL_MASK)
return;
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
/* edma_clean_rfd()
* clean up rx resourcers on error
*/
static void edma_clean_rfd(struct edma_rfd_desc_ring *erdr, u16 index)
{
struct edma_rx_free_desc *rx_desc;
struct edma_sw_desc *sw_desc;
rx_desc = (&((struct edma_rx_free_desc *)(erdr->hw_desc))[index]);
sw_desc = &erdr->sw_desc[index];
if (sw_desc->skb) {
dev_kfree_skb_any(sw_desc->skb);
sw_desc->skb = NULL;
}
memset(rx_desc, 0, sizeof(struct edma_rx_free_desc));
}
/* edma_rx_complete_fraglist()
* Complete Rx processing for fraglist skbs
*/
static void edma_rx_complete_stp_rstp(struct sk_buff *skb, int port_id, struct edma_rx_return_desc *rd)
{
int i;
u32 priority;
u16 port_type;
u8 mac_addr[EDMA_ETH_HDR_LEN];
port_type = (rd->rrd1 >> EDMA_RRD_PORT_TYPE_SHIFT)
& EDMA_RRD_PORT_TYPE_MASK;
/* if port type is 0x4, then only proceed with
* other stp/rstp calculation
*/
if (port_type == EDMA_RX_ATH_HDR_RSTP_PORT_TYPE) {
u8 bpdu_mac[6] = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x00};
/* calculate the frame priority */
priority = (rd->rrd1 >> EDMA_RRD_PRIORITY_SHIFT)
& EDMA_RRD_PRIORITY_MASK;
for (i = 0; i < EDMA_ETH_HDR_LEN; i++)
mac_addr[i] = skb->data[i];
/* Check if destination mac addr is bpdu addr */
if (!memcmp(mac_addr, bpdu_mac, 6)) {
/* destination mac address is BPDU
* destination mac address, then add
* atheros header to the packet.
*/
u16 athr_hdr = (EDMA_RX_ATH_HDR_VERSION << EDMA_RX_ATH_HDR_VERSION_SHIFT) |
(priority << EDMA_RX_ATH_HDR_PRIORITY_SHIFT) |
(EDMA_RX_ATH_HDR_RSTP_PORT_TYPE << EDMA_RX_ATH_PORT_TYPE_SHIFT) | port_id;
skb_push(skb, 4);
memcpy(skb->data, mac_addr, EDMA_ETH_HDR_LEN);
*(uint16_t *)&skb->data[12] = htons(edma_ath_eth_type);
*(uint16_t *)&skb->data[14] = htons(athr_hdr);
}
}
}
/*
* edma_rx_complete_fraglist()
* Complete Rx processing for fraglist skbs
*/
static int edma_rx_complete_fraglist(struct sk_buff *skb, u16 num_rfds, u16 length, u32 sw_next_to_clean,
u16 *cleaned_count, struct edma_rfd_desc_ring *erdr, struct edma_common_info *edma_cinfo)
{
struct platform_device *pdev = edma_cinfo->pdev;
struct edma_hw *hw = &edma_cinfo->hw;
struct sk_buff *skb_temp;
struct edma_sw_desc *sw_desc;
int i;
u16 size_remaining;
skb->data_len = 0;
skb->tail += (hw->rx_head_buff_size - 16);
skb->len = skb->truesize = length;
size_remaining = length - (hw->rx_head_buff_size - 16);
/* clean-up all related sw_descs */
for (i = 1; i < num_rfds; i++) {
struct sk_buff *skb_prev;
sw_desc = &erdr->sw_desc[sw_next_to_clean];
skb_temp = sw_desc->skb;
dma_unmap_single(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_FROM_DEVICE);
if (size_remaining < hw->rx_head_buff_size)
skb_put(skb_temp, size_remaining);
else
skb_put(skb_temp, hw->rx_head_buff_size);
/*
* If we are processing the first rfd, we link
* skb->frag_list to the skb corresponding to the
* first RFD
*/
if (i == 1)
skb_shinfo(skb)->frag_list = skb_temp;
else
skb_prev->next = skb_temp;
skb_prev = skb_temp;
skb_temp->next = NULL;
skb->data_len += skb_temp->len;
size_remaining -= skb_temp->len;
/* Increment SW index */
sw_next_to_clean = (sw_next_to_clean + 1) & (erdr->count - 1);
(*cleaned_count)++;
}
return sw_next_to_clean;
}
/* edma_rx_complete_paged()
* Complete Rx processing for paged skbs
*/
static int edma_rx_complete_paged(struct sk_buff *skb, u16 num_rfds, u16 length, u32 sw_next_to_clean,
u16 *cleaned_count, struct edma_rfd_desc_ring *erdr, struct edma_common_info *edma_cinfo)
{
struct platform_device *pdev = edma_cinfo->pdev;
struct sk_buff *skb_temp;
struct edma_sw_desc *sw_desc;
int i;
u16 size_remaining;
skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
/* Setup skbuff fields */
skb->len = length;
if (likely(num_rfds <= 1)) {
skb->data_len = length;
skb->truesize += edma_cinfo->rx_page_buffer_len;
skb_fill_page_desc(skb, 0, skb_frag_page(frag),
16, length);
} else {
frag->size -= 16;
skb->data_len = frag->size;
skb->truesize += edma_cinfo->rx_page_buffer_len;
size_remaining = length - frag->size;
skb_fill_page_desc(skb, 0, skb_frag_page(frag),
16, frag->size);
/* clean-up all related sw_descs */
for (i = 1; i < num_rfds; i++) {
sw_desc = &erdr->sw_desc[sw_next_to_clean];
skb_temp = sw_desc->skb;
frag = &skb_shinfo(skb_temp)->frags[0];
dma_unmap_page(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_FROM_DEVICE);
if (size_remaining < edma_cinfo->rx_page_buffer_len)
frag->size = size_remaining;
skb_fill_page_desc(skb, i, skb_frag_page(frag),
0, frag->size);
skb_shinfo(skb_temp)->nr_frags = 0;
dev_kfree_skb_any(skb_temp);
skb->data_len += frag->size;
skb->truesize += edma_cinfo->rx_page_buffer_len;
size_remaining -= frag->size;
/* Increment SW index */
sw_next_to_clean = (sw_next_to_clean + 1) & (erdr->count - 1);
(*cleaned_count)++;
}
}
return sw_next_to_clean;
}
/*
* edma_rx_complete()
* Main api called from the poll function to process rx packets.
*/
static u16 edma_rx_complete(struct edma_common_info *edma_cinfo,
int *work_done, int work_to_do, int queue_id,
struct napi_struct *napi)
{
struct platform_device *pdev = edma_cinfo->pdev;
struct edma_rfd_desc_ring *erdr = edma_cinfo->rfd_ring[queue_id];
struct net_device *netdev;
struct edma_adapter *adapter;
struct edma_sw_desc *sw_desc;
struct sk_buff *skb;
struct edma_rx_return_desc *rd;
u16 hash_type, rrd[8], cleaned_count = 0, length = 0, num_rfds = 1,
sw_next_to_clean, hw_next_to_clean = 0, vlan = 0, ret_count = 0;
u32 data = 0;
u8 *vaddr;
int port_id, i, drop_count = 0;
u32 priority;
u16 count = erdr->count, rfd_avail;
u8 queue_to_rxid[8] = {0, 0, 1, 1, 2, 2, 3, 3};
cleaned_count = erdr->pending_fill;
sw_next_to_clean = erdr->sw_next_to_clean;
edma_read_reg(EDMA_REG_RFD_IDX_Q(queue_id), &data);
hw_next_to_clean = (data >> EDMA_RFD_CONS_IDX_SHIFT) &
EDMA_RFD_CONS_IDX_MASK;
do {
while (sw_next_to_clean != hw_next_to_clean) {
if (!work_to_do)
break;
sw_desc = &erdr->sw_desc[sw_next_to_clean];
skb = sw_desc->skb;
/* Unmap the allocated buffer */
if (likely(sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_HEAD))
dma_unmap_single(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_FROM_DEVICE);
else
dma_unmap_page(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_FROM_DEVICE);
/* Get RRD */
if (edma_cinfo->page_mode) {
vaddr = kmap_atomic(skb_frag_page(&skb_shinfo(skb)->frags[0]));
memcpy((uint8_t *)&rrd[0], vaddr, 16);
rd = (struct edma_rx_return_desc *)rrd;
kunmap_atomic(vaddr);
} else {
rd = (struct edma_rx_return_desc *)skb->data;
}
/* Check if RRD is valid */
if (!(rd->rrd7 & EDMA_RRD_DESC_VALID)) {
edma_clean_rfd(erdr, sw_next_to_clean);
sw_next_to_clean = (sw_next_to_clean + 1) &
(erdr->count - 1);
cleaned_count++;
continue;
}
/* Get the number of RFDs from RRD */
num_rfds = rd->rrd1 & EDMA_RRD_NUM_RFD_MASK;
/* Get Rx port ID from switch */
port_id = (rd->rrd1 >> EDMA_PORT_ID_SHIFT) & EDMA_PORT_ID_MASK;
if ((!port_id) || (port_id > EDMA_MAX_PORTID_SUPPORTED)) {
dev_err(&pdev->dev, "Invalid RRD source port bit set");
for (i = 0; i < num_rfds; i++) {
edma_clean_rfd(erdr, sw_next_to_clean);
sw_next_to_clean = (sw_next_to_clean + 1) & (erdr->count - 1);
cleaned_count++;
}
continue;
}
netdev = edma_cinfo->portid_netdev_lookup_tbl[port_id];
adapter = netdev_priv(netdev);
/* This code is added to handle a usecase where high
* priority stream and a low priority stream are
* received simultaneously on DUT. The problem occurs
* if one of the Rx rings is full and the corresponding
* core is busy with other stuff. This causes ESS CPU
* port to backpressure all incoming traffic including
* high priority one. We monitor free descriptor count
* on each CPU and whenever it reaches threshold (< 80),
* we drop all low priority traffic and let only high
* priotiy traffic pass through. We can hence avoid
* ESS CPU port to send backpressure on high priroity
* stream.
*/
priority = (rd->rrd1 >> EDMA_RRD_PRIORITY_SHIFT)
& EDMA_RRD_PRIORITY_MASK;
if (likely(!priority && !edma_cinfo->page_mode && (num_rfds <= 1))) {
rfd_avail = (count + sw_next_to_clean - hw_next_to_clean - 1) & (count - 1);
if (rfd_avail < EDMA_RFD_AVAIL_THR) {
sw_desc->flags = EDMA_SW_DESC_FLAG_SKB_REUSE;
sw_next_to_clean = (sw_next_to_clean + 1) & (erdr->count - 1);
adapter->stats.rx_dropped++;
cleaned_count++;
drop_count++;
if (drop_count == 3) {
work_to_do--;
(*work_done)++;
drop_count = 0;
}
if (cleaned_count >= EDMA_RX_BUFFER_WRITE) {
/* If buffer clean count reaches 16, we replenish HW buffers. */
ret_count = edma_alloc_rx_buf(edma_cinfo, erdr, cleaned_count, queue_id);
edma_write_reg(EDMA_REG_RX_SW_CONS_IDX_Q(queue_id),
sw_next_to_clean);
cleaned_count = ret_count;
erdr->pending_fill = ret_count;
}
continue;
}
}
work_to_do--;
(*work_done)++;
/* Increment SW index */
sw_next_to_clean = (sw_next_to_clean + 1) &
(erdr->count - 1);
cleaned_count++;
/* Get the packet size and allocate buffer */
length = rd->rrd6 & EDMA_RRD_PKT_SIZE_MASK;
if (edma_cinfo->page_mode) {
/* paged skb */
sw_next_to_clean = edma_rx_complete_paged(skb, num_rfds, length, sw_next_to_clean, &cleaned_count, erdr, edma_cinfo);
if (!pskb_may_pull(skb, ETH_HLEN)) {
dev_kfree_skb_any(skb);
continue;
}
} else {
/* single or fraglist skb */
/* Addition of 16 bytes is required, as in the packet
* first 16 bytes are rrd descriptors, so actual data
* starts from an offset of 16.
*/
skb_reserve(skb, 16);
if (likely((num_rfds <= 1) || !edma_cinfo->fraglist_mode)) {
skb_put(skb, length);
} else {
sw_next_to_clean = edma_rx_complete_fraglist(skb, num_rfds, length, sw_next_to_clean, &cleaned_count, erdr, edma_cinfo);
}
}
if (edma_stp_rstp) {
edma_rx_complete_stp_rstp(skb, port_id, rd);
}
skb->protocol = eth_type_trans(skb, netdev);
/* Record Rx queue for RFS/RPS and fill flow hash from HW */
skb_record_rx_queue(skb, queue_to_rxid[queue_id]);
if (netdev->features & NETIF_F_RXHASH) {
hash_type = (rd->rrd5 >> EDMA_HASH_TYPE_SHIFT);
if ((hash_type > EDMA_HASH_TYPE_START) && (hash_type < EDMA_HASH_TYPE_END))
skb_set_hash(skb, rd->rrd2, PKT_HASH_TYPE_L4);
}
#ifdef CONFIG_NF_FLOW_COOKIE
skb->flow_cookie = rd->rrd3 & EDMA_RRD_FLOW_COOKIE_MASK;
#endif
edma_receive_checksum(rd, skb);
/* Process VLAN HW acceleration indication provided by HW */
if (unlikely(adapter->default_vlan_tag != rd->rrd4)) {
vlan = rd->rrd4;
if (likely(rd->rrd7 & EDMA_RRD_CVLAN))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
else if (rd->rrd1 & EDMA_RRD_SVLAN)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan);
}
/* Update rx statistics */
adapter->stats.rx_packets++;
adapter->stats.rx_bytes += length;
/* Check if we reached refill threshold */
if (cleaned_count >= EDMA_RX_BUFFER_WRITE) {
ret_count = edma_alloc_rx_buf(edma_cinfo, erdr, cleaned_count, queue_id);
edma_write_reg(EDMA_REG_RX_SW_CONS_IDX_Q(queue_id),
sw_next_to_clean);
cleaned_count = ret_count;
erdr->pending_fill = ret_count;
}
/* At this point skb should go to stack */
napi_gro_receive(napi, skb);
}
/* Check if we still have NAPI budget */
if (!work_to_do)
break;
/* Read index once again since we still have NAPI budget */
edma_read_reg(EDMA_REG_RFD_IDX_Q(queue_id), &data);
hw_next_to_clean = (data >> EDMA_RFD_CONS_IDX_SHIFT) &
EDMA_RFD_CONS_IDX_MASK;
} while (hw_next_to_clean != sw_next_to_clean);
erdr->sw_next_to_clean = sw_next_to_clean;
/* Refill here in case refill threshold wasn't reached */
if (likely(cleaned_count)) {
ret_count = edma_alloc_rx_buf(edma_cinfo, erdr, cleaned_count, queue_id);
erdr->pending_fill = ret_count;
if (ret_count) {
if (net_ratelimit())
dev_dbg(&pdev->dev, "Not all buffers was reallocated");
}
edma_write_reg(EDMA_REG_RX_SW_CONS_IDX_Q(queue_id),
erdr->sw_next_to_clean);
}
return erdr->pending_fill;
}
/* edma_delete_rfs_filter()
* Remove RFS filter from switch
*/
static int edma_delete_rfs_filter(struct edma_adapter *adapter,
struct edma_rfs_filter_node *filter_node)
{
int res = -1;
if (likely(adapter->set_rfs_rule))
res = (*adapter->set_rfs_rule)(adapter->netdev, filter_node->keys.src,
filter_node->keys.dst, filter_node->keys.port16[0],
filter_node->keys.port16[1],
filter_node->keys.ip_proto,
filter_node->rq_id, 0);
return res;
}
/* edma_add_rfs_filter()
* Add RFS filter to switch
*/
static int edma_add_rfs_filter(struct edma_adapter *adapter,
struct flow_keys *keys, u16 rq,
struct edma_rfs_filter_node *filter_node)
{
int res = -1;
filter_node->keys.src = keys->src;
filter_node->keys.dst = keys->dst;
filter_node->keys.ports = keys->ports;
filter_node->keys.ip_proto = keys->ip_proto;
/* Call callback registered by ESS driver */
if (likely(adapter->set_rfs_rule))
res = (*adapter->set_rfs_rule)(adapter->netdev, keys->src,
keys->dst, keys->port16[0], keys->port16[1],
keys->ip_proto, rq, 1);
return res;
}
/* edma_rfs_key_search()
* Look for existing RFS entry
*/
static struct edma_rfs_filter_node *edma_rfs_key_search(struct hlist_head *h,
struct flow_keys *key)
{
struct edma_rfs_filter_node *p;
hlist_for_each_entry(p, h, node)
if (p->keys.src == key->src &&
p->keys.dst == key->dst &&
p->keys.ports == key->ports &&
p->keys.ip_proto == key->ip_proto)
return p;
return NULL;
}
/* edma_initialise_rfs_flow_table()
* Initialise EDMA RFS flow table
*/
static void edma_initialise_rfs_flow_table(struct edma_adapter *adapter)
{
int i;
spin_lock_init(&adapter->rfs.rfs_ftab_lock);
/* Initialize EDMA flow hash table */
for (i = 0; i < EDMA_RFS_FLOW_ENTRIES; i++)
INIT_HLIST_HEAD(&adapter->rfs.hlist_head[i]);
adapter->rfs.max_num_filter = EDMA_RFS_FLOW_ENTRIES;
adapter->rfs.filter_available = adapter->rfs.max_num_filter;
adapter->rfs.hashtoclean = 0;
/* Add timer to get periodic RFS updates from OS */
init_timer(&adapter->rfs.expire_rfs);
adapter->rfs.expire_rfs.function = edma_flow_may_expire;
adapter->rfs.expire_rfs.data = (unsigned long)adapter;
mod_timer(&adapter->rfs.expire_rfs, jiffies + HZ/4);
}
/* edma_free_rfs_flow_table()
* Free EDMA RFS flow table
*/
static void edma_free_rfs_flow_table(struct edma_adapter *adapter)
{
int i;
/* Remove sync timer */
del_timer_sync(&adapter->rfs.expire_rfs);
spin_lock_bh(&adapter->rfs.rfs_ftab_lock);
/* Free EDMA RFS table entries */
adapter->rfs.filter_available = 0;
/* Clean-up EDMA flow hash table */
for (i = 0; i < EDMA_RFS_FLOW_ENTRIES; i++) {
struct hlist_head *hhead;
struct hlist_node *tmp;
struct edma_rfs_filter_node *filter_node;
int res;
hhead = &adapter->rfs.hlist_head[i];
hlist_for_each_entry_safe(filter_node, tmp, hhead, node) {
res = edma_delete_rfs_filter(adapter, filter_node);
if (res < 0)
dev_warn(&adapter->netdev->dev,
"EDMA going down but RFS entry %d not allowed to be flushed by Switch",
filter_node->flow_id);
hlist_del(&filter_node->node);
kfree(filter_node);
}
}
spin_unlock_bh(&adapter->rfs.rfs_ftab_lock);
}
/* edma_tx_unmap_and_free()
* clean TX buffer
*/
static inline void edma_tx_unmap_and_free(struct platform_device *pdev,
struct edma_sw_desc *sw_desc)
{
struct sk_buff *skb = sw_desc->skb;
if (likely((sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_HEAD) ||
(sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_FRAGLIST)))
/* unmap_single for skb head area */
dma_unmap_single(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_TO_DEVICE);
else if (sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_FRAG)
/* unmap page for paged fragments */
dma_unmap_page(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_TO_DEVICE);
if (likely(sw_desc->flags & EDMA_SW_DESC_FLAG_LAST))
dev_kfree_skb_any(skb);
sw_desc->flags = 0;
}
/* edma_tx_complete()
* Used to clean tx queues and update hardware and consumer index
*/
static void edma_tx_complete(struct edma_common_info *edma_cinfo, int queue_id)
{
struct edma_tx_desc_ring *etdr = edma_cinfo->tpd_ring[queue_id];
struct edma_sw_desc *sw_desc;
struct platform_device *pdev = edma_cinfo->pdev;
int i;
u16 sw_next_to_clean = etdr->sw_next_to_clean;
u16 hw_next_to_clean;
u32 data = 0;
edma_read_reg(EDMA_REG_TPD_IDX_Q(queue_id), &data);
hw_next_to_clean = (data >> EDMA_TPD_CONS_IDX_SHIFT) & EDMA_TPD_CONS_IDX_MASK;
/* clean the buffer here */
while (sw_next_to_clean != hw_next_to_clean) {
sw_desc = &etdr->sw_desc[sw_next_to_clean];
edma_tx_unmap_and_free(pdev, sw_desc);
sw_next_to_clean = (sw_next_to_clean + 1) & (etdr->count - 1);
}
etdr->sw_next_to_clean = sw_next_to_clean;
/* update the TPD consumer index register */
edma_write_reg(EDMA_REG_TX_SW_CONS_IDX_Q(queue_id), sw_next_to_clean);
/* Wake the queue if queue is stopped and netdev link is up */
for (i = 0; i < EDMA_MAX_NETDEV_PER_QUEUE && etdr->nq[i] ; i++) {
if (netif_tx_queue_stopped(etdr->nq[i])) {
if ((etdr->netdev[i]) && netif_carrier_ok(etdr->netdev[i]))
netif_tx_wake_queue(etdr->nq[i]);
}
}
}
/* edma_get_tx_buffer()
* Get sw_desc corresponding to the TPD
*/
static struct edma_sw_desc *edma_get_tx_buffer(struct edma_common_info *edma_cinfo,
struct edma_tx_desc *tpd, int queue_id)
{
struct edma_tx_desc_ring *etdr = edma_cinfo->tpd_ring[queue_id];
return &etdr->sw_desc[tpd - (struct edma_tx_desc *)etdr->hw_desc];
}
/* edma_get_next_tpd()
* Return a TPD descriptor for transfer
*/
static struct edma_tx_desc *edma_get_next_tpd(struct edma_common_info *edma_cinfo,
int queue_id)
{
struct edma_tx_desc_ring *etdr = edma_cinfo->tpd_ring[queue_id];
u16 sw_next_to_fill = etdr->sw_next_to_fill;
struct edma_tx_desc *tpd_desc =
(&((struct edma_tx_desc *)(etdr->hw_desc))[sw_next_to_fill]);
etdr->sw_next_to_fill = (etdr->sw_next_to_fill + 1) & (etdr->count - 1);
return tpd_desc;
}
/* edma_tpd_available()
* Check number of free TPDs
*/
static inline u16 edma_tpd_available(struct edma_common_info *edma_cinfo,
int queue_id)
{
struct edma_tx_desc_ring *etdr = edma_cinfo->tpd_ring[queue_id];
u16 sw_next_to_fill;
u16 sw_next_to_clean;
u16 count = 0;
sw_next_to_clean = etdr->sw_next_to_clean;
sw_next_to_fill = etdr->sw_next_to_fill;
if (likely(sw_next_to_clean <= sw_next_to_fill))
count = etdr->count;
return count + sw_next_to_clean - sw_next_to_fill - 1;
}
/* edma_tx_queue_get()
* Get the starting number of the queue
*/
static inline int edma_tx_queue_get(struct edma_adapter *adapter,
struct sk_buff *skb, int txq_id)
{
/* skb->priority is used as an index to skb priority table
* and based on packet priority, correspong queue is assigned.
*/
return adapter->tx_start_offset[txq_id] + edma_skb_priority_offset(skb);
}
/* edma_tx_update_hw_idx()
* update the producer index for the ring transmitted
*/
static void edma_tx_update_hw_idx(struct edma_common_info *edma_cinfo,
struct sk_buff *skb, int queue_id)
{
struct edma_tx_desc_ring *etdr = edma_cinfo->tpd_ring[queue_id];
u32 tpd_idx_data;
/* Read and update the producer index */
edma_read_reg(EDMA_REG_TPD_IDX_Q(queue_id), &tpd_idx_data);
tpd_idx_data &= ~EDMA_TPD_PROD_IDX_BITS;
tpd_idx_data |= (etdr->sw_next_to_fill & EDMA_TPD_PROD_IDX_MASK)
<< EDMA_TPD_PROD_IDX_SHIFT;
edma_write_reg(EDMA_REG_TPD_IDX_Q(queue_id), tpd_idx_data);
}
/* edma_rollback_tx()
* Function to retrieve tx resources in case of error
*/
static void edma_rollback_tx(struct edma_adapter *adapter,
struct edma_tx_desc *start_tpd, int queue_id)
{
struct edma_tx_desc_ring *etdr = adapter->edma_cinfo->tpd_ring[queue_id];
struct edma_sw_desc *sw_desc;
struct edma_tx_desc *tpd = NULL;
u16 start_index, index;
start_index = start_tpd - (struct edma_tx_desc *)(etdr->hw_desc);
index = start_index;
while (index != etdr->sw_next_to_fill) {
tpd = (&((struct edma_tx_desc *)(etdr->hw_desc))[index]);
sw_desc = &etdr->sw_desc[index];
edma_tx_unmap_and_free(adapter->pdev, sw_desc);
memset(tpd, 0, sizeof(struct edma_tx_desc));
if (++index == etdr->count)
index = 0;
}
etdr->sw_next_to_fill = start_index;
}
/* edma_tx_map_and_fill()
* gets called from edma_xmit_frame
*
* This is where the dma of the buffer to be transmitted
* gets mapped
*/
static int edma_tx_map_and_fill(struct edma_common_info *edma_cinfo,
struct edma_adapter *adapter, struct sk_buff *skb, int queue_id,
unsigned int flags_transmit, u16 from_cpu, u16 dp_bitmap,
bool packet_is_rstp, int nr_frags)
{
struct edma_sw_desc *sw_desc = NULL;
struct platform_device *pdev = edma_cinfo->pdev;
struct edma_tx_desc *tpd, *start_tpd = NULL;
struct sk_buff *iter_skb;
int i = 0;
u32 word1 = 0, word3 = 0, lso_word1 = 0, svlan_tag = 0;
u16 buf_len, lso_desc_len = 0;
/* It should either be a nr_frags skb or fraglist skb but not both */
BUG_ON(nr_frags && skb_has_frag_list(skb));
if (skb_is_gso(skb)) {
/* TODO: What additional checks need to be performed here */
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
lso_word1 |= EDMA_TPD_IPV4_EN;
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
lso_word1 |= EDMA_TPD_LSO_V2_EN;
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
} else
return -EINVAL;
lso_word1 |= EDMA_TPD_LSO_EN | ((skb_shinfo(skb)->gso_size & EDMA_TPD_MSS_MASK) << EDMA_TPD_MSS_SHIFT) |
(skb_transport_offset(skb) << EDMA_TPD_HDR_SHIFT);
} else if (flags_transmit & EDMA_HW_CHECKSUM) {
u8 css, cso;
cso = skb_checksum_start_offset(skb);
css = cso + skb->csum_offset;
word1 |= (EDMA_TPD_CUSTOM_CSUM_EN);
word1 |= (cso >> 1) << EDMA_TPD_HDR_SHIFT;
word1 |= ((css >> 1) << EDMA_TPD_CUSTOM_CSUM_SHIFT);
}
if (skb->protocol == htons(ETH_P_PPP_SES))
word1 |= EDMA_TPD_PPPOE_EN;
if (flags_transmit & EDMA_VLAN_TX_TAG_INSERT_FLAG) {
switch(skb->vlan_proto) {
case htons(ETH_P_8021Q):
word3 |= (1 << EDMA_TX_INS_CVLAN);
word3 |= vlan_tx_tag_get(skb) << EDMA_TX_CVLAN_TAG_SHIFT;
break;
case htons(ETH_P_8021AD):
word1 |= (1 << EDMA_TX_INS_SVLAN);
svlan_tag = vlan_tx_tag_get(skb) << EDMA_TX_SVLAN_TAG_SHIFT;
break;
default:
dev_err(&pdev->dev, "no ctag or stag present\n");
goto vlan_tag_error;
}
} else if (flags_transmit & EDMA_VLAN_TX_TAG_INSERT_DEFAULT_FLAG) {
word3 |= (1 << EDMA_TX_INS_CVLAN);
word3 |= (adapter->default_vlan_tag) << EDMA_TX_CVLAN_TAG_SHIFT;
}
if (packet_is_rstp) {
word3 |= dp_bitmap << EDMA_TPD_PORT_BITMAP_SHIFT;
word3 |= from_cpu << EDMA_TPD_FROM_CPU_SHIFT;
} else {
word3 |= adapter->dp_bitmap << EDMA_TPD_PORT_BITMAP_SHIFT;
}
buf_len = skb_headlen(skb);
if (lso_word1) {
if (lso_word1 & EDMA_TPD_LSO_V2_EN) {
/* IPv6 LSOv2 descriptor */
start_tpd = tpd = edma_get_next_tpd(edma_cinfo, queue_id);
sw_desc = edma_get_tx_buffer(edma_cinfo, tpd, queue_id);
sw_desc->flags |= EDMA_SW_DESC_FLAG_SKB_NONE;
/* LSOv2 descriptor overrides addr field to pass length */
tpd->addr = cpu_to_le16(skb->len);
tpd->svlan_tag = svlan_tag;
tpd->word1 = word1 | lso_word1;
tpd->word3 = word3;
}
tpd = edma_get_next_tpd(edma_cinfo, queue_id);
if (!start_tpd)
start_tpd = tpd;
sw_desc = edma_get_tx_buffer(edma_cinfo, tpd, queue_id);
/* The last buffer info contain the skb address,
* so skb will be freed after unmap
*/
sw_desc->length = lso_desc_len;
sw_desc->flags |= EDMA_SW_DESC_FLAG_SKB_HEAD;
sw_desc->dma = dma_map_single(&adapter->pdev->dev,
skb->data, buf_len, DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, sw_desc->dma))
goto dma_error;
tpd->addr = cpu_to_le32(sw_desc->dma);
tpd->len = cpu_to_le16(buf_len);
tpd->svlan_tag = svlan_tag;
tpd->word1 = word1 | lso_word1;
tpd->word3 = word3;
/* The last buffer info contain the skb address,
* so it will be freed after unmap
*/
sw_desc->length = lso_desc_len;
sw_desc->flags |= EDMA_SW_DESC_FLAG_SKB_HEAD;
buf_len = 0;
}
if (likely(buf_len)) {
/* TODO Do not dequeue descriptor if there is a potential error */
tpd = edma_get_next_tpd(edma_cinfo, queue_id);
if (!start_tpd)
start_tpd = tpd;
sw_desc = edma_get_tx_buffer(edma_cinfo, tpd, queue_id);
/* The last buffer info contain the skb address,
* so it will be free after unmap
*/
sw_desc->length = buf_len;
sw_desc->flags |= EDMA_SW_DESC_FLAG_SKB_HEAD;
sw_desc->dma = dma_map_single(&adapter->pdev->dev,
skb->data, buf_len, DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, sw_desc->dma))
goto dma_error;
tpd->addr = cpu_to_le32(sw_desc->dma);
tpd->len = cpu_to_le16(buf_len);
tpd->svlan_tag = svlan_tag;
tpd->word1 = word1 | lso_word1;
tpd->word3 = word3;
}
/* Walk through all paged fragments */
while (nr_frags--) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
buf_len = skb_frag_size(frag);
tpd = edma_get_next_tpd(edma_cinfo, queue_id);
sw_desc = edma_get_tx_buffer(edma_cinfo, tpd, queue_id);
sw_desc->length = buf_len;
sw_desc->flags |= EDMA_SW_DESC_FLAG_SKB_FRAG;
sw_desc->dma = skb_frag_dma_map(&pdev->dev, frag, 0, buf_len, DMA_TO_DEVICE);
if (dma_mapping_error(NULL, sw_desc->dma))
goto dma_error;
tpd->addr = cpu_to_le32(sw_desc->dma);
tpd->len = cpu_to_le16(buf_len);
tpd->svlan_tag = svlan_tag;
tpd->word1 = word1 | lso_word1;
tpd->word3 = word3;
i++;
}
/* Walk through all fraglist skbs */
skb_walk_frags(skb, iter_skb) {
buf_len = iter_skb->len;
tpd = edma_get_next_tpd(edma_cinfo, queue_id);
sw_desc = edma_get_tx_buffer(edma_cinfo, tpd, queue_id);
sw_desc->length = buf_len;
sw_desc->dma = dma_map_single(&adapter->pdev->dev,
iter_skb->data, buf_len, DMA_TO_DEVICE);
if (dma_mapping_error(NULL, sw_desc->dma))
goto dma_error;
tpd->addr = cpu_to_le32(sw_desc->dma);
tpd->len = cpu_to_le16(buf_len);
tpd->svlan_tag = svlan_tag;
tpd->word1 = word1 | lso_word1;
tpd->word3 = word3;
sw_desc->flags |= EDMA_SW_DESC_FLAG_SKB_FRAGLIST;
}
tpd->word1 |= 1 << EDMA_TPD_EOP_SHIFT;
sw_desc->skb = skb;
sw_desc->flags |= EDMA_SW_DESC_FLAG_LAST;
return 0;
dma_error:
edma_rollback_tx(adapter, start_tpd, queue_id);
dev_err(&pdev->dev, "TX DMA map failed\n");
vlan_tag_error:
return -ENOMEM;
}
/* edma_check_link()
* check Link status
*/
static int edma_check_link(struct edma_adapter *adapter)
{
struct phy_device *phydev = adapter->phydev;
if (!(adapter->poll_required))
return __EDMA_LINKUP;
if (phydev->link)
return __EDMA_LINKUP;
return __EDMA_LINKDOWN;
}
/* edma_adjust_link()
* check for edma link status
*/
void edma_adjust_link(struct net_device *netdev)
{
int status;
struct edma_adapter *adapter = netdev_priv(netdev);
struct phy_device *phydev = adapter->phydev;
if (!test_bit(__EDMA_UP, &adapter->state_flags))
return;
status = edma_check_link(adapter);
if (status == __EDMA_LINKUP && adapter->link_state == __EDMA_LINKDOWN) {
dev_info(&adapter->pdev->dev, "%s: GMAC Link is up with phy_speed=%d\n", netdev->name, phydev->speed);
adapter->link_state = __EDMA_LINKUP;
netif_carrier_on(netdev);
if (netif_running(netdev))
netif_tx_wake_all_queues(netdev);
} else if (status == __EDMA_LINKDOWN && adapter->link_state == __EDMA_LINKUP) {
dev_info(&adapter->pdev->dev, "%s: GMAC Link is down\n", netdev->name);
adapter->link_state = __EDMA_LINKDOWN;
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
}
}
/* edma_get_stats64()
* Statistics api used to retreive the tx/rx statistics
*/
struct rtnl_link_stats64 *edma_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct edma_adapter *adapter = netdev_priv(netdev);
memcpy(stats, &adapter->stats, sizeof(*stats));
return stats;
}
/* edma_xmit()
* Main api to be called by the core for packet transmission
*/
netdev_tx_t edma_xmit(struct sk_buff *skb,
struct net_device *net_dev)
{
struct edma_adapter *adapter = netdev_priv(net_dev);
struct edma_common_info *edma_cinfo = adapter->edma_cinfo;
struct edma_tx_desc_ring *etdr;
u16 from_cpu, dp_bitmap, txq_id;
int ret, nr_frags = 0, num_tpds_needed = 1, queue_id;
unsigned int flags_transmit = 0;
bool packet_is_rstp = false;
struct netdev_queue *nq = NULL;
if (skb_shinfo(skb)->nr_frags) {
nr_frags = skb_shinfo(skb)->nr_frags;
num_tpds_needed += nr_frags;
} else if (skb_has_frag_list(skb)) {
struct sk_buff *iter_skb;
skb_walk_frags(skb, iter_skb)
num_tpds_needed++;
}
if (num_tpds_needed > EDMA_MAX_SKB_FRAGS) {
dev_err(&net_dev->dev,
"skb received with fragments %d which is more than %lu",
num_tpds_needed, EDMA_MAX_SKB_FRAGS);
dev_kfree_skb_any(skb);
adapter->stats.tx_errors++;
return NETDEV_TX_OK;
}
if (edma_stp_rstp) {
u16 ath_hdr, ath_eth_type;
u8 mac_addr[EDMA_ETH_HDR_LEN];
ath_eth_type = ntohs(*(uint16_t *)&skb->data[12]);
if (ath_eth_type == edma_ath_eth_type) {
packet_is_rstp = true;
ath_hdr = htons(*(uint16_t *)&skb->data[14]);
dp_bitmap = ath_hdr & EDMA_TX_ATH_HDR_PORT_BITMAP_MASK;
from_cpu = (ath_hdr & EDMA_TX_ATH_HDR_FROM_CPU_MASK) >> EDMA_TX_ATH_HDR_FROM_CPU_SHIFT;
memcpy(mac_addr, skb->data, EDMA_ETH_HDR_LEN);
skb_pull(skb, 4);
memcpy(skb->data, mac_addr, EDMA_ETH_HDR_LEN);
}
}
/* this will be one of the 4 TX queues exposed to linux kernel */
txq_id = skb_get_queue_mapping(skb);
queue_id = edma_tx_queue_get(adapter, skb, txq_id);
etdr = edma_cinfo->tpd_ring[queue_id];
nq = netdev_get_tx_queue(net_dev, txq_id);
local_bh_disable();
/* Tx is not handled in bottom half context. Hence, we need to protect
* Tx from tasks and bottom half
*/
if (num_tpds_needed > edma_tpd_available(edma_cinfo, queue_id)) {
/* not enough descriptor, just stop queue */
netif_tx_stop_queue(nq);
local_bh_enable();
dev_dbg(&net_dev->dev, "Not enough descriptors available");
edma_cinfo->edma_ethstats.tx_desc_error++;
return NETDEV_TX_BUSY;
}
/* Check and mark VLAN tag offload */
if (vlan_tx_tag_present(skb))
flags_transmit |= EDMA_VLAN_TX_TAG_INSERT_FLAG;
else if (adapter->default_vlan_tag)
flags_transmit |= EDMA_VLAN_TX_TAG_INSERT_DEFAULT_FLAG;
/* Check and mark checksum offload */
if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
flags_transmit |= EDMA_HW_CHECKSUM;
/* Map and fill descriptor for Tx */
ret = edma_tx_map_and_fill(edma_cinfo, adapter, skb, queue_id,
flags_transmit, from_cpu, dp_bitmap, packet_is_rstp, nr_frags);
if (ret) {
dev_kfree_skb_any(skb);
adapter->stats.tx_errors++;
goto netdev_okay;
}
/* Update SW producer index */
edma_tx_update_hw_idx(edma_cinfo, skb, queue_id);
/* update tx statistics */
adapter->stats.tx_packets++;
adapter->stats.tx_bytes += skb->len;
netdev_okay:
local_bh_enable();
return NETDEV_TX_OK;
}
/*
* edma_flow_may_expire()
* Timer function called periodically to delete the node
*/
void edma_flow_may_expire(unsigned long data)
{
struct edma_adapter *adapter = (struct edma_adapter *)data;
int j;
spin_lock_bh(&adapter->rfs.rfs_ftab_lock);
for (j = 0; j < EDMA_RFS_EXPIRE_COUNT_PER_CALL; j++) {
struct hlist_head *hhead;
struct hlist_node *tmp;
struct edma_rfs_filter_node *n;
bool res;
hhead = &adapter->rfs.hlist_head[adapter->rfs.hashtoclean++];
hlist_for_each_entry_safe(n, tmp, hhead, node) {
res = rps_may_expire_flow(adapter->netdev, n->rq_id,
n->flow_id, n->filter_id);
if (res) {
res = edma_delete_rfs_filter(adapter, n);
if (res < 0)
dev_dbg(&adapter->netdev->dev,
"RFS entry %d not allowed to be flushed by Switch",
n->flow_id);
else {
hlist_del(&n->node);
kfree(n);
adapter->rfs.filter_available++;
}
}
}
}
adapter->rfs.hashtoclean = adapter->rfs.hashtoclean & (EDMA_RFS_FLOW_ENTRIES - 1);
spin_unlock_bh(&adapter->rfs.rfs_ftab_lock);
mod_timer(&adapter->rfs.expire_rfs, jiffies + HZ/4);
}
/* edma_rx_flow_steer()
* Called by core to to steer the flow to CPU
*/
int edma_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
u16 rxq, u32 flow_id)
{
struct flow_keys keys;
struct edma_rfs_filter_node *filter_node;
struct edma_adapter *adapter = netdev_priv(dev);
u16 hash_tblid;
int res;
if (skb->protocol == htons(ETH_P_IPV6)) {
dev_err(&adapter->pdev->dev, "IPv6 not supported\n");
res = -EINVAL;
goto no_protocol_err;
}
/* Dissect flow parameters
* We only support IPv4 + TCP/UDP
*/
res = skb_flow_dissect(skb, &keys);
if (!((keys.ip_proto == IPPROTO_TCP) || (keys.ip_proto == IPPROTO_UDP))) {
res = -EPROTONOSUPPORT;
goto no_protocol_err;
}
/* Check if table entry exists */
hash_tblid = skb_get_hash_raw(skb) & EDMA_RFS_FLOW_ENTRIES_MASK;
spin_lock_bh(&adapter->rfs.rfs_ftab_lock);
filter_node = edma_rfs_key_search(&adapter->rfs.hlist_head[hash_tblid], &keys);
if (filter_node) {
if (rxq == filter_node->rq_id) {
res = -EEXIST;
goto out;
} else {
res = edma_delete_rfs_filter(adapter, filter_node);
if (res < 0)
dev_warn(&adapter->netdev->dev,
"Cannot steer flow %d to different queue",
filter_node->flow_id);
else {
adapter->rfs.filter_available++;
res = edma_add_rfs_filter(adapter, &keys, rxq, filter_node);
if (res < 0) {
dev_warn(&adapter->netdev->dev,
"Cannot steer flow %d to different queue",
filter_node->flow_id);
} else {
adapter->rfs.filter_available--;
filter_node->rq_id = rxq;
filter_node->filter_id = res;
}
}
}
} else {
if (adapter->rfs.filter_available == 0) {
res = -EBUSY;
goto out;
}
filter_node = kmalloc(sizeof(*filter_node), GFP_ATOMIC);
if (!filter_node) {
res = -ENOMEM;
goto out;
}
res = edma_add_rfs_filter(adapter, &keys, rxq, filter_node);
if (res < 0) {
kfree(filter_node);
goto out;
}
adapter->rfs.filter_available--;
filter_node->rq_id = rxq;
filter_node->filter_id = res;
filter_node->flow_id = flow_id;
filter_node->keys = keys;
INIT_HLIST_NODE(&filter_node->node);
hlist_add_head(&filter_node->node, &adapter->rfs.hlist_head[hash_tblid]);
}
out:
spin_unlock_bh(&adapter->rfs.rfs_ftab_lock);
no_protocol_err:
return res;
}
/* edma_register_rfs_filter()
* Add RFS filter callback
*/
int edma_register_rfs_filter(struct net_device *netdev,
set_rfs_filter_callback_t set_filter)
{
struct edma_adapter *adapter = netdev_priv(netdev);
spin_lock_bh(&adapter->rfs.rfs_ftab_lock);
if (adapter->set_rfs_rule) {
spin_unlock_bh(&adapter->rfs.rfs_ftab_lock);
return -1;
}
adapter->set_rfs_rule = set_filter;
spin_unlock_bh(&adapter->rfs.rfs_ftab_lock);
return 0;
}
/* edma_alloc_tx_rings()
* Allocate rx rings
*/
int edma_alloc_tx_rings(struct edma_common_info *edma_cinfo)
{
struct platform_device *pdev = edma_cinfo->pdev;
int i, err = 0;
for (i = 0; i < edma_cinfo->num_tx_queues; i++) {
err = edma_alloc_tx_ring(edma_cinfo, edma_cinfo->tpd_ring[i]);
if (err) {
dev_err(&pdev->dev, "Tx Queue alloc %u failed\n", i);
return err;
}
}
return 0;
}
/* edma_free_tx_rings()
* Free tx rings
*/
void edma_free_tx_rings(struct edma_common_info *edma_cinfo)
{
int i;
for (i = 0; i < edma_cinfo->num_tx_queues; i++)
edma_free_tx_ring(edma_cinfo, edma_cinfo->tpd_ring[i]);
}
/* edma_free_tx_resources()
* Free buffers associated with tx rings
*/
void edma_free_tx_resources(struct edma_common_info *edma_cinfo)
{
struct edma_tx_desc_ring *etdr;
struct edma_sw_desc *sw_desc;
struct platform_device *pdev = edma_cinfo->pdev;
int i, j;
for (i = 0; i < edma_cinfo->num_tx_queues; i++) {
etdr = edma_cinfo->tpd_ring[i];
for (j = 0; j < EDMA_TX_RING_SIZE; j++) {
sw_desc = &etdr->sw_desc[j];
if (sw_desc->flags & (EDMA_SW_DESC_FLAG_SKB_HEAD |
EDMA_SW_DESC_FLAG_SKB_FRAG | EDMA_SW_DESC_FLAG_SKB_FRAGLIST))
edma_tx_unmap_and_free(pdev, sw_desc);
}
}
}
/* edma_alloc_rx_rings()
* Allocate rx rings
*/
int edma_alloc_rx_rings(struct edma_common_info *edma_cinfo)
{
struct platform_device *pdev = edma_cinfo->pdev;
int i, j, err = 0;
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
err = edma_alloc_rx_ring(edma_cinfo, edma_cinfo->rfd_ring[j]);
if (err) {
dev_err(&pdev->dev, "Rx Queue alloc%u failed\n", i);
return err;
}
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
return 0;
}
/* edma_free_rx_rings()
* free rx rings
*/
void edma_free_rx_rings(struct edma_common_info *edma_cinfo)
{
int i, j;
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
edma_free_rx_ring(edma_cinfo, edma_cinfo->rfd_ring[j]);
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
}
/* edma_free_queues()
* Free the queues allocaated
*/
void edma_free_queues(struct edma_common_info *edma_cinfo)
{
int i , j;
for (i = 0; i < edma_cinfo->num_tx_queues; i++) {
if (edma_cinfo->tpd_ring[i])
kfree(edma_cinfo->tpd_ring[i]);
edma_cinfo->tpd_ring[i] = NULL;
}
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
if (edma_cinfo->rfd_ring[j])
kfree(edma_cinfo->rfd_ring[j]);
edma_cinfo->rfd_ring[j] = NULL;
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
edma_cinfo->num_rx_queues = 0;
edma_cinfo->num_tx_queues = 0;
return;
}
/* edma_free_rx_resources()
* Free buffers associated with tx rings
*/
void edma_free_rx_resources(struct edma_common_info *edma_cinfo)
{
struct edma_rfd_desc_ring *erdr;
struct edma_sw_desc *sw_desc;
struct platform_device *pdev = edma_cinfo->pdev;
int i, j, k;
for (i = 0, k = 0; i < edma_cinfo->num_rx_queues; i++) {
erdr = edma_cinfo->rfd_ring[k];
for (j = 0; j < EDMA_RX_RING_SIZE; j++) {
sw_desc = &erdr->sw_desc[j];
if (likely(sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_HEAD)) {
dma_unmap_single(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_FROM_DEVICE);
edma_clean_rfd(erdr, j);
} else if ((sw_desc->flags & EDMA_SW_DESC_FLAG_SKB_FRAG)) {
dma_unmap_page(&pdev->dev, sw_desc->dma,
sw_desc->length, DMA_FROM_DEVICE);
edma_clean_rfd(erdr, j);
}
}
k += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
}
/* edma_alloc_queues_tx()
* Allocate memory for all rings
*/
int edma_alloc_queues_tx(struct edma_common_info *edma_cinfo)
{
int i;
for (i = 0; i < edma_cinfo->num_tx_queues; i++) {
struct edma_tx_desc_ring *etdr;
etdr = kzalloc(sizeof(struct edma_tx_desc_ring), GFP_KERNEL);
if (!etdr)
goto err;
etdr->count = edma_cinfo->tx_ring_count;
edma_cinfo->tpd_ring[i] = etdr;
}
return 0;
err:
edma_free_queues(edma_cinfo);
return -1;
}
/* edma_alloc_queues_rx()
* Allocate memory for all rings
*/
int edma_alloc_queues_rx(struct edma_common_info *edma_cinfo)
{
int i, j;
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
struct edma_rfd_desc_ring *rfd_ring;
rfd_ring = kzalloc(sizeof(struct edma_rfd_desc_ring),
GFP_KERNEL);
if (!rfd_ring)
goto err;
rfd_ring->count = edma_cinfo->rx_ring_count;
edma_cinfo->rfd_ring[j] = rfd_ring;
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
return 0;
err:
edma_free_queues(edma_cinfo);
return -1;
}
/* edma_clear_irq_status()
* Clear interrupt status
*/
void edma_clear_irq_status()
{
edma_write_reg(EDMA_REG_RX_ISR, 0xff);
edma_write_reg(EDMA_REG_TX_ISR, 0xffff);
edma_write_reg(EDMA_REG_MISC_ISR, 0x1fff);
edma_write_reg(EDMA_REG_WOL_ISR, 0x1);
};
/* edma_configure()
* Configure skb, edma interrupts and control register.
*/
int edma_configure(struct edma_common_info *edma_cinfo)
{
struct edma_hw *hw = &edma_cinfo->hw;
u32 intr_modrt_data;
u32 intr_ctrl_data = 0;
int i, j, ret_count;
edma_read_reg(EDMA_REG_INTR_CTRL, &intr_ctrl_data);
intr_ctrl_data &= ~(1 << EDMA_INTR_SW_IDX_W_TYP_SHIFT);
intr_ctrl_data |= hw->intr_sw_idx_w << EDMA_INTR_SW_IDX_W_TYP_SHIFT;
edma_write_reg(EDMA_REG_INTR_CTRL, intr_ctrl_data);
edma_clear_irq_status();
/* Clear any WOL status */
edma_write_reg(EDMA_REG_WOL_CTRL, 0);
intr_modrt_data = (EDMA_TX_IMT << EDMA_IRQ_MODRT_TX_TIMER_SHIFT);
intr_modrt_data |= (EDMA_RX_IMT << EDMA_IRQ_MODRT_RX_TIMER_SHIFT);
edma_write_reg(EDMA_REG_IRQ_MODRT_TIMER_INIT, intr_modrt_data);
edma_configure_tx(edma_cinfo);
edma_configure_rx(edma_cinfo);
/* Allocate the RX buffer */
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
struct edma_rfd_desc_ring *ring = edma_cinfo->rfd_ring[j];
ret_count = edma_alloc_rx_buf(edma_cinfo, ring, ring->count, j);
if (ret_count) {
dev_dbg(&edma_cinfo->pdev->dev, "not all rx buffers allocated\n");
}
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
/* Configure descriptor Ring */
edma_init_desc(edma_cinfo);
return 0;
}
/* edma_irq_enable()
* Enable default interrupt generation settings
*/
void edma_irq_enable(struct edma_common_info *edma_cinfo)
{
struct edma_hw *hw = &edma_cinfo->hw;
int i, j;
edma_write_reg(EDMA_REG_RX_ISR, 0xff);
for (i = 0, j = 0; i < edma_cinfo->num_rx_queues; i++) {
edma_write_reg(EDMA_REG_RX_INT_MASK_Q(j), hw->rx_intr_mask);
j += ((edma_cinfo->num_rx_queues == 4) ? 2 : 1);
}
edma_write_reg(EDMA_REG_TX_ISR, 0xffff);
for (i = 0; i < edma_cinfo->num_tx_queues; i++)
edma_write_reg(EDMA_REG_TX_INT_MASK_Q(i), hw->tx_intr_mask);
}
/* edma_irq_disable()
* Disable Interrupt
*/
void edma_irq_disable(struct edma_common_info *edma_cinfo)
{
int i;
for (i = 0; i < EDMA_MAX_RECEIVE_QUEUE; i++)
edma_write_reg(EDMA_REG_RX_INT_MASK_Q(i), 0x0);
for (i = 0; i < EDMA_MAX_TRANSMIT_QUEUE; i++)
edma_write_reg(EDMA_REG_TX_INT_MASK_Q(i), 0x0);
edma_write_reg(EDMA_REG_MISC_IMR, 0);
edma_write_reg(EDMA_REG_WOL_IMR, 0);
}
/* edma_free_irqs()
* Free All IRQs
*/
void edma_free_irqs(struct edma_adapter *adapter)
{
struct edma_common_info *edma_cinfo = adapter->edma_cinfo;
int i, j;
int k = ((edma_cinfo->num_rx_queues == 4) ? 1 : 2);
for (i = 0; i < CONFIG_NR_CPUS; i++) {
for (j = edma_cinfo->edma_percpu_info[i].tx_start; j < (edma_cinfo->edma_percpu_info[i].tx_start + 4); j++)
free_irq(edma_cinfo->tx_irq[j], &edma_cinfo->edma_percpu_info[i]);
for (j = edma_cinfo->edma_percpu_info[i].rx_start; j < (edma_cinfo->edma_percpu_info[i].rx_start + k); j++)
free_irq(edma_cinfo->rx_irq[j], &edma_cinfo->edma_percpu_info[i]);
}
}
/* edma_enable_rx_ctrl()
* Enable RX queue control
*/
void edma_enable_rx_ctrl(struct edma_hw *hw)
{
u32 data;
edma_read_reg(EDMA_REG_RXQ_CTRL, &data);
data |= EDMA_RXQ_CTRL_EN;
edma_write_reg(EDMA_REG_RXQ_CTRL, data);
}
/* edma_enable_tx_ctrl()
* Enable TX queue control
*/
void edma_enable_tx_ctrl(struct edma_hw *hw)
{
u32 data;
edma_read_reg(EDMA_REG_TXQ_CTRL, &data);
data |= EDMA_TXQ_CTRL_TXQ_EN;
edma_write_reg(EDMA_REG_TXQ_CTRL, data);
}
/* edma_stop_rx_tx()
* Disable RX/TQ Queue control
*/
void edma_stop_rx_tx(struct edma_hw *hw)
{
u32 data;
edma_read_reg(EDMA_REG_RXQ_CTRL, &data);
data &= ~EDMA_RXQ_CTRL_EN;
edma_write_reg(EDMA_REG_RXQ_CTRL, data);
edma_read_reg(EDMA_REG_TXQ_CTRL, &data);
data &= ~EDMA_TXQ_CTRL_TXQ_EN;
edma_write_reg(EDMA_REG_TXQ_CTRL, data);
}
/* edma_reset()
* Reset the EDMA
*/
int edma_reset(struct edma_common_info *edma_cinfo)
{
struct edma_hw *hw = &edma_cinfo->hw;
edma_irq_disable(edma_cinfo);
edma_clear_irq_status();
edma_stop_rx_tx(hw);
return 0;
}
/* edma_fill_netdev()
* Fill netdev for each etdr
*/
int edma_fill_netdev(struct edma_common_info *edma_cinfo, int queue_id,
int dev, int txq_id)
{
struct edma_tx_desc_ring *etdr;
int i = 0;
etdr = edma_cinfo->tpd_ring[queue_id];
while (etdr->netdev[i])
i++;
if (i >= EDMA_MAX_NETDEV_PER_QUEUE)
return -1;
/* Populate the netdev associated with the tpd ring */
etdr->netdev[i] = edma_netdev[dev];
etdr->nq[i] = netdev_get_tx_queue(edma_netdev[dev], txq_id);
return 0;
}
/* edma_change_mtu()
* change the MTU of the NIC.
*/
int edma_change_mtu(struct net_device *netdev, int new_mtu)
{
struct edma_adapter *adapter = netdev_priv(netdev);
struct edma_common_info *edma_cinfo = adapter->edma_cinfo;
int old_mtu = netdev->mtu;
int max_frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + (2 * VLAN_HLEN);
if ((max_frame_size < ETH_ZLEN + ETH_FCS_LEN) ||
(max_frame_size > EDMA_MAX_JUMBO_FRAME_SIZE)) {
dev_err(&edma_cinfo->pdev->dev, "MTU setting not correct\n");
return -EINVAL;
}
/* set MTU */
if (old_mtu != new_mtu) {
netdev->mtu = new_mtu;
netdev_update_features(netdev);
}
return 0;
}
/* edma_set_mac()
* Change the Ethernet Address of the NIC
*/
int edma_set_mac_addr(struct net_device *netdev, void *p)
{
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
if (netif_running(netdev))
return -EBUSY;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
return 0;
}
/* edma_set_stp_rstp()
* set stp/rstp
*/
void edma_set_stp_rstp(bool rstp)
{
edma_stp_rstp = rstp;
}
/* edma_assign_ath_hdr_type()
* assign atheros header eth type
*/
void edma_assign_ath_hdr_type(int eth_type)
{
edma_ath_eth_type = eth_type & EDMA_ETH_TYPE_MASK;
}
/* edma_get_default_vlan_tag()
* Used by other modules to get the default vlan tag
*/
int edma_get_default_vlan_tag(struct net_device *netdev)
{
struct edma_adapter *adapter = netdev_priv(netdev);
if (adapter->default_vlan_tag)
return adapter->default_vlan_tag;
return 0;
}
/* edma_open()
* gets called when netdevice is up, start the queue.
*/
int edma_open(struct net_device *netdev)
{
struct edma_adapter *adapter = netdev_priv(netdev);
struct platform_device *pdev = adapter->edma_cinfo->pdev;
netif_tx_start_all_queues(netdev);
edma_initialise_rfs_flow_table(adapter);
set_bit(__EDMA_UP, &adapter->state_flags);
/* if Link polling is enabled, in our case enabled for WAN, then
* do a phy start, else always set link as UP
*/
if (adapter->poll_required) {
if (!IS_ERR(adapter->phydev)) {
phy_start(adapter->phydev);
phy_start_aneg(adapter->phydev);
adapter->link_state = __EDMA_LINKDOWN;
} else {
dev_dbg(&pdev->dev, "Invalid PHY device for a link polled interface\n");
}
} else {
adapter->link_state = __EDMA_LINKUP;
netif_carrier_on(netdev);
}
return 0;
}
/* edma_close()
* gets called when netdevice is down, stops the queue.
*/
int edma_close(struct net_device *netdev)
{
struct edma_adapter *adapter = netdev_priv(netdev);
edma_free_rfs_flow_table(adapter);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
if (adapter->poll_required) {
if (!IS_ERR(adapter->phydev))
phy_stop(adapter->phydev);
}
adapter->link_state = __EDMA_LINKDOWN;
/* Set GMAC state to UP before link state is checked
*/
clear_bit(__EDMA_UP, &adapter->state_flags);
return 0;
}
/* edma_poll
* polling function that gets called when the napi gets scheduled.
*
* Main sequence of task performed in this api
* is clear irq status -> clear_tx_irq -> clean_rx_irq->
* enable interrupts.
*/
int edma_poll(struct napi_struct *napi, int budget)
{
struct edma_per_cpu_queues_info *edma_percpu_info = container_of(napi,
struct edma_per_cpu_queues_info, napi);
struct edma_common_info *edma_cinfo = edma_percpu_info->edma_cinfo;
u32 reg_data;
u32 shadow_rx_status, shadow_tx_status;
int queue_id;
int i, work_done = 0;
u16 rx_pending_fill;
/* Store the Rx/Tx status by ANDing it with
* appropriate CPU RX?TX mask
*/
edma_read_reg(EDMA_REG_RX_ISR, &reg_data);
edma_percpu_info->rx_status |= reg_data & edma_percpu_info->rx_mask;
shadow_rx_status = edma_percpu_info->rx_status;
edma_read_reg(EDMA_REG_TX_ISR, &reg_data);
edma_percpu_info->tx_status |= reg_data & edma_percpu_info->tx_mask;
shadow_tx_status = edma_percpu_info->tx_status;
/* Every core will have a start, which will be computed
* in probe and stored in edma_percpu_info->tx_start variable.
* We will shift the status bit by tx_start to obtain
* status bits for the core on which the current processing
* is happening. Since, there are 4 tx queues per core,
* we will run the loop till we get the correct queue to clear.
*/
while (edma_percpu_info->tx_status) {
queue_id = ffs(edma_percpu_info->tx_status) - 1;
edma_tx_complete(edma_cinfo, queue_id);
edma_percpu_info->tx_status &= ~(1 << queue_id);
}
/* Every core will have a start, which will be computed
* in probe and stored in edma_percpu_info->tx_start variable.
* We will shift the status bit by tx_start to obtain
* status bits for the core on which the current processing
* is happening. Since, there are 4 tx queues per core, we
* will run the loop till we get the correct queue to clear.
*/
while (edma_percpu_info->rx_status) {
queue_id = ffs(edma_percpu_info->rx_status) - 1;
rx_pending_fill = edma_rx_complete(edma_cinfo, &work_done,
budget, queue_id, napi);
if (likely(work_done < budget)) {
if (rx_pending_fill) {
/* reschedule poll() to refill rx buffer deficit */
work_done = budget;
break;
}
edma_percpu_info->rx_status &= ~(1 << queue_id);
} else {
break;
}
}
/* Clear the status register, to avoid the interrupts to
* reoccur.This clearing of interrupt status register is
* done here as writing to status register only takes place
* once the producer/consumer index has been updated to
* reflect that the packet transmission/reception went fine.
*/
edma_write_reg(EDMA_REG_RX_ISR, shadow_rx_status);
edma_write_reg(EDMA_REG_TX_ISR, shadow_tx_status);
/* If budget not fully consumed, exit the polling mode */
if (likely(work_done < budget)) {
napi_complete(napi);
/* re-enable the interrupts */
for (i = 0; i < edma_cinfo->num_rxq_per_core; i++)
edma_write_reg(EDMA_REG_RX_INT_MASK_Q(edma_percpu_info->rx_start + i), 0x1);
for (i = 0; i < edma_cinfo->num_txq_per_core; i++)
edma_write_reg(EDMA_REG_TX_INT_MASK_Q(edma_percpu_info->tx_start + i), 0x1);
}
return work_done;
}
/* edma interrupt()
* interrupt handler
*/
irqreturn_t edma_interrupt(int irq, void *dev)
{
struct edma_per_cpu_queues_info *edma_percpu_info = (struct edma_per_cpu_queues_info *) dev;
struct edma_common_info *edma_cinfo = edma_percpu_info->edma_cinfo;
int i;
/* Unmask the TX/RX interrupt register */
for (i = 0; i < edma_cinfo->num_rxq_per_core; i++)
edma_write_reg(EDMA_REG_RX_INT_MASK_Q(edma_percpu_info->rx_start + i), 0x0);
for (i = 0; i < edma_cinfo->num_txq_per_core; i++)
edma_write_reg(EDMA_REG_TX_INT_MASK_Q(edma_percpu_info->tx_start + i), 0x0);
napi_schedule(&edma_percpu_info->napi);
return IRQ_HANDLED;
}