blob: 1b1038fe3bbe52666786e863c222792f3b27fde7 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/tick.h>
#include <linux/time.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <asm/cputime.h>
#include "cpufreq_governor.h"
#define CREATE_TRACE_POINTS
#include <trace/events/cpufreq_interactive.h>
static atomic_t active_count = ATOMIC_INIT(0);
struct cpufreq_interactive_cpuinfo {
struct timer_list cpu_timer;
int timer_idlecancel;
u64 time_in_idle;
u64 idle_exit_time;
u64 target_set_time;
u64 target_set_time_in_idle;
struct cpufreq_policy *policy;
struct cpufreq_frequency_table *freq_table;
unsigned int target_freq;
unsigned int floor_freq;
u64 floor_validate_time;
u64 hispeed_validate_time;
struct rw_semaphore enable_sem;
int governor_enabled;
};
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
/* A realtime thread handles frequency scaling */
static struct task_struct *updown_task;
static cpumask_t updown_cpumask;
static spinlock_t updown_state_lock;
/*
* Mapping from loads to CPU frequencies to jump to. When we exceed a
* certain load we will immediately jump to the corresponding frequency.
* Default: 85% -> max frequency.
*/
struct hispeed_freq_level {
unsigned int load;
unsigned int freq;
};
#define DEFAULT_GO_HISPEED_LOAD 85
static struct hispeed_freq_level *hispeed_freqs;
static int nhispeed_freqs;
static spinlock_t hispeed_freqs_lock;
/*
* The minimum amount of time to spend at a frequency before we can ramp down.
*/
#define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC)
static unsigned long min_sample_time;
/*
* The sample rate of the timer used to increase frequency
*/
#define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC)
static unsigned long timer_rate;
/*
* Wait this long before raising speed above hispeed, by default a single
* timer interval.
*/
#define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE
static unsigned int default_above_hispeed_delay[] = {
DEFAULT_ABOVE_HISPEED_DELAY };
static spinlock_t above_hispeed_delay_lock;
static unsigned int *above_hispeed_delay = default_above_hispeed_delay;
static int nabove_hispeed_delay = ARRAY_SIZE(default_above_hispeed_delay);
/*
* Boost pulse to hispeed on touchscreen input.
*/
static int input_boost_val;
/*
* Non-zero means longer-term speed boost active.
*/
static int boost_val;
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
static
#endif
struct cpufreq_governor cpufreq_gov_interactive = {
.name = "interactive",
.governor = cpufreq_governor_interactive,
.max_transition_latency = 10000000,
.owner = THIS_MODULE,
};
static void rearm_idle_timer(struct cpufreq_interactive_cpuinfo *pcpu)
{
pcpu->time_in_idle = get_cpu_idle_time(smp_processor_id(),
&pcpu->idle_exit_time, 1);
mod_timer_pinned(&pcpu->cpu_timer,
jiffies + usecs_to_jiffies(timer_rate));
}
static void arm_idle_timer(struct cpufreq_interactive_cpuinfo *pcpu)
{
pcpu->timer_idlecancel = 0;
rearm_idle_timer(pcpu);
}
static void del_idle_timer(struct cpufreq_interactive_cpuinfo *pcpu)
{
del_timer(&pcpu->cpu_timer);
pcpu->timer_idlecancel = 0;
}
static unsigned int freq_to_above_hispeed_delay(unsigned int freq)
{
int i;
unsigned int ret;
unsigned long flags;
spin_lock_irqsave(&above_hispeed_delay_lock, flags);
for (i = 0; i < nabove_hispeed_delay - 1 &&
freq >= above_hispeed_delay[i+1]; i += 2)
;
ret = above_hispeed_delay[i];
spin_unlock_irqrestore(&above_hispeed_delay_lock, flags);
return ret;
}
static unsigned int next_hispeed_freq(struct cpufreq_interactive_cpuinfo *pcpu)
{
unsigned int ret = pcpu->policy->max;
unsigned long flags;
int i;
BUG_ON(hispeed_freqs == NULL);
spin_lock_irqsave(&hispeed_freqs_lock, flags);
for (i = 0; i < nhispeed_freqs; i++) {
if (hispeed_freqs[i].freq > pcpu->target_freq) {
ret = hispeed_freqs[i].freq;
break;
}
}
spin_unlock_irqrestore(&hispeed_freqs_lock, flags);
return ret;
}
static unsigned int load_to_hispeed_freq(unsigned int load)
{
unsigned int ret;
unsigned long flags;
int i;
BUG_ON(hispeed_freqs == NULL);
spin_lock_irqsave(&hispeed_freqs_lock, flags);
ret = hispeed_freqs[nhispeed_freqs - 1].freq;
for (i = 1; i < nhispeed_freqs; i++) {
if (load < hispeed_freqs[i].load) {
ret = hispeed_freqs[i - 1].freq;
break;
}
}
spin_unlock_irqrestore(&hispeed_freqs_lock, flags);
return ret;
}
static void cpufreq_interactive_timer(unsigned long data)
{
u64 now;
unsigned int delta_idle;
unsigned int delta_time;
int cpu_load;
int load_since_change;
int need_wakeup;
u64 time_in_idle;
u64 idle_exit_time;
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, data);
u64 now_idle;
unsigned int hispeed_freq;
unsigned int new_freq;
unsigned int index;
unsigned long flags;
if (!down_read_trylock(&pcpu->enable_sem))
return;
if (!pcpu->governor_enabled)
goto exit;
time_in_idle = pcpu->time_in_idle;
idle_exit_time = pcpu->idle_exit_time;
now_idle = get_cpu_idle_time(data, &now, 1);
delta_idle = (unsigned int)(now_idle - time_in_idle);
delta_time = (unsigned int)(now - idle_exit_time);
/*
* If timer ran less than 1ms after short-term sample started, retry.
*/
if (delta_time < 1000)
goto rearm;
if (delta_idle > delta_time)
cpu_load = 0;
else
cpu_load = 100 * (delta_time - delta_idle) / delta_time;
delta_idle = (unsigned int)(now_idle - pcpu->target_set_time_in_idle);
delta_time = (unsigned int)(now - pcpu->target_set_time);
if ((delta_time == 0) || (delta_idle > delta_time))
load_since_change = 0;
else
load_since_change =
100 * (delta_time - delta_idle) / delta_time;
/*
* Choose greater of short-term load (since last idle timer
* started or timer function re-armed itself) or long-term load
* (since last frequency change).
*/
if (load_since_change > cpu_load)
cpu_load = load_since_change;
/*
* The first hispeed_freq level has the lowest load. Only boost if
* we excced that value.
*/
if (cpu_load >= hispeed_freqs[0].load || boost_val) {
hispeed_freq = load_to_hispeed_freq(cpu_load);
if (pcpu->target_freq < hispeed_freq) {
new_freq = hispeed_freq;
} else {
new_freq = next_hispeed_freq(pcpu) * cpu_load / 100;
if (new_freq < hispeed_freq)
new_freq = hispeed_freq;
}
} else {
hispeed_freq = next_hispeed_freq(pcpu);
new_freq = hispeed_freq * cpu_load / 100;
}
if (pcpu->target_freq >= hispeed_freqs[0].freq &&
new_freq > pcpu->target_freq &&
now - pcpu->hispeed_validate_time <
freq_to_above_hispeed_delay(pcpu->target_freq)) {
trace_cpufreq_interactive_notyet(data, cpu_load,
pcpu->target_freq, new_freq);
goto rearm;
}
pcpu->hispeed_validate_time = now;
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
new_freq, CPUFREQ_RELATION_H,
&index)) {
pr_warn_once("timer %d: cpufreq_frequency_table_target error\n",
(int) data);
goto rearm;
}
new_freq = pcpu->freq_table[index].frequency;
/*
* Do not scale below floor_freq unless we have been at or above the
* floor frequency for the minimum sample time since last validated.
*/
if (new_freq < pcpu->floor_freq) {
if (now - pcpu->floor_validate_time < min_sample_time) {
trace_cpufreq_interactive_notyet(data, cpu_load,
pcpu->target_freq,
new_freq);
goto rearm;
}
}
spin_lock_irqsave(&updown_state_lock, flags);
if (pcpu->target_freq != new_freq) {
trace_cpufreq_interactive_target(data, cpu_load,
pcpu->target_freq, new_freq);
pcpu->target_set_time_in_idle = now_idle;
pcpu->target_freq = new_freq;
pcpu->target_set_time = now;
cpumask_set_cpu(data, &updown_cpumask);
need_wakeup = 1;
} else {
trace_cpufreq_interactive_already(data, cpu_load,
pcpu->target_freq, new_freq);
need_wakeup = 0;
}
pcpu->floor_freq = new_freq;
pcpu->floor_validate_time = now;
spin_unlock_irqrestore(&updown_state_lock, flags);
if (need_wakeup)
wake_up_process(updown_task);
/*
* Already set max speed and don't see a need to change that,
* wait until next idle to re-evaluate, don't need timer.
*/
if (pcpu->target_freq == pcpu->policy->max)
goto exit;
rearm:
if (!timer_pending(&pcpu->cpu_timer)) {
/*
* If already at min, cancel the timer if that CPU goes idle.
* We don't need to re-evaluate speed until the next idle exit.
*/
if (pcpu->target_freq == pcpu->policy->min)
pcpu->timer_idlecancel = 1;
rearm_idle_timer(pcpu);
}
exit:
up_read(&pcpu->enable_sem);
return;
}
static void cpufreq_interactive_idle_start(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
int pending;
if (!down_read_trylock(&pcpu->enable_sem))
return;
if (!pcpu->governor_enabled) {
up_read(&pcpu->enable_sem);
return;
}
pending = timer_pending(&pcpu->cpu_timer);
if (pcpu->target_freq != pcpu->policy->min) {
#ifdef CONFIG_SMP
/*
* Entering idle while not at lowest speed. On some
* platforms this can hold the other CPU(s) at that speed
* even though the CPU is idle. Set a timer to re-evaluate
* speed so this idle CPU doesn't hold the other CPUs above
* min indefinitely. This should probably be a quirk of
* the CPUFreq driver.
*/
if (!pending)
arm_idle_timer(pcpu);
#endif
} else {
/*
* If at min speed and entering idle after load has
* already been evaluated, and a timer has been set just in
* case the CPU suddenly goes busy, cancel that timer. The
* CPU didn't go busy; we'll recheck things upon idle exit.
*/
if (pending && pcpu->timer_idlecancel)
del_idle_timer(pcpu);
}
up_read(&pcpu->enable_sem);
}
static void cpufreq_interactive_idle_end(void)
{
struct cpufreq_interactive_cpuinfo *pcpu =
&per_cpu(cpuinfo, smp_processor_id());
if (!down_read_trylock(&pcpu->enable_sem))
return;
if (!pcpu->governor_enabled) {
up_read(&pcpu->enable_sem);
return;
}
/* Arm the timer for 1-2 ticks later if not already. */
if (!timer_pending(&pcpu->cpu_timer))
arm_idle_timer(pcpu);
up_read(&pcpu->enable_sem);
}
static int cpufreq_interactive_updown_task(void *data)
{
unsigned int cpu;
cpumask_t tmp_mask;
unsigned long flags;
struct cpufreq_interactive_cpuinfo *pcpu;
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irqsave(&updown_state_lock, flags);
if (cpumask_empty(&updown_cpumask)) {
spin_unlock_irqrestore(&updown_state_lock, flags);
schedule();
if (kthread_should_stop())
break;
spin_lock_irqsave(&updown_state_lock, flags);
}
set_current_state(TASK_RUNNING);
tmp_mask = updown_cpumask;
cpumask_clear(&updown_cpumask);
spin_unlock_irqrestore(&updown_state_lock, flags);
for_each_cpu(cpu, &tmp_mask) {
unsigned int j;
unsigned int max_freq, cur_freq;
pcpu = &per_cpu(cpuinfo, cpu);
if (!down_read_trylock(&pcpu->enable_sem))
continue;
if (!pcpu->governor_enabled) {
up_read(&pcpu->enable_sem);
continue;
}
/*
* Calculate the max frequency over all affected cpu's
* and use that to set the target frequency. This
* handles the case where setting the frequency of one
* cpu causes multiple to change. In that case we
* never want to down-clock related cpu's just because
* one cpu found itself idle and requested a change.
* When up-clocking we want that request to go through
* and related cpu's will be dragged along.
*
* NB: this calculation is racey because target_freq is
* set under the updown_state_lock (and not held here)
*/
max_freq = 0;
for_each_cpu(j, pcpu->policy->cpus) {
struct cpufreq_interactive_cpuinfo *pjcpu =
&per_cpu(cpuinfo, j);
if (pjcpu->target_freq > max_freq)
max_freq = pjcpu->target_freq;
}
cur_freq = pcpu->policy->cur;
if (max_freq == 0 || max_freq == cur_freq) {
up_read(&pcpu->enable_sem);
continue;
}
/* NB: trace before call as it may block for a while */
if (max_freq < cur_freq)
trace_cpufreq_interactive_down(cpu,
max_freq, cur_freq);
else
trace_cpufreq_interactive_up(cpu,
max_freq, cur_freq);
__cpufreq_driver_target(pcpu->policy, max_freq,
CPUFREQ_RELATION_H);
up_read(&pcpu->enable_sem);
}
}
return 0;
}
static void cpufreq_interactive_boost(void)
{
int i;
int anyboost = 0;
unsigned long flags;
unsigned int hispeed_freq;
struct cpufreq_interactive_cpuinfo *pcpu;
spin_lock_irqsave(&updown_state_lock, flags);
for_each_online_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
if (!down_read_trylock(&pcpu->enable_sem))
continue;
if (!pcpu->governor_enabled) {
up_read(&pcpu->enable_sem);
continue;
}
hispeed_freq = next_hispeed_freq(pcpu);
if (pcpu->target_freq < hispeed_freq) {
pcpu->target_freq = hispeed_freq;
cpumask_set_cpu(i, &updown_cpumask);
pcpu->target_set_time_in_idle =
get_cpu_idle_time(i, &pcpu->target_set_time, 1);
pcpu->hispeed_validate_time = pcpu->target_set_time;
anyboost = 1;
}
/*
* Set floor freq and (re)start timer for when last
* validated.
*/
pcpu->floor_freq = hispeed_freq;
pcpu->floor_validate_time = ktime_to_us(ktime_get());
up_read(&pcpu->enable_sem);
}
spin_unlock_irqrestore(&updown_state_lock, flags);
if (anyboost)
wake_up_process(updown_task);
}
void cpufreq_interactive_set_boost(bool on)
{
boost_val = on;
if (boost_val) {
trace_cpufreq_interactive_boost("set");
cpufreq_interactive_boost();
} else {
trace_cpufreq_interactive_boost("unset");
}
}
EXPORT_SYMBOL(cpufreq_interactive_set_boost);
/*
* Pulsed boost on input event raises CPUs to hispeed_freq and lets
* usual algorithm of min_sample_time decide when to allow speed
* to drop.
*/
static void cpufreq_interactive_input_event(struct input_handle *handle,
unsigned int type,
unsigned int code, int value)
{
if (input_boost_val && type == EV_SYN && code == SYN_REPORT) {
trace_cpufreq_interactive_boost("input");
cpufreq_interactive_boost();
}
}
static int cpufreq_interactive_input_connect(struct input_handler *handler,
struct input_dev *dev,
const struct input_device_id *id)
{
struct input_handle *handle;
int error;
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle) {
pr_warn("%s: no memory to register %s\n", __func__, dev->name);
return -ENOMEM;
}
handle->dev = dev;
handle->handler = handler;
handle->name = "cpufreq_interactive";
error = input_register_handle(handle);
if (error) {
pr_warn("%s: failed to register %s, error %d\n", __func__,
dev->name, error);
goto err;
}
error = input_open_device(handle);
if (error) {
pr_warn("%s: open(%s) failed, error %d\n", __func__,
handle->dev->name, error);
goto err_unregister;
}
return 0;
err_unregister:
input_unregister_handle(handle);
err:
kfree(handle);
return error;
}
static void cpufreq_interactive_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id cpufreq_interactive_ids[] = {
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
}, /* multi-touch touchscreen */
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(BTN_LEFT)] = BIT_MASK(BTN_LEFT) },
}, /* pointer (e.g. trackpad, mouse) */
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_KEY) },
.keybit = { [BIT_WORD(KEY_ESC)] = BIT_MASK(KEY_ESC) },
}, /* keyboard */
{ },
};
static struct input_handler cpufreq_interactive_input_handler = {
.event = cpufreq_interactive_input_event,
.connect = cpufreq_interactive_input_connect,
.disconnect = cpufreq_interactive_input_disconnect,
.name = "cpufreq_interactive",
.id_table = cpufreq_interactive_ids,
};
static unsigned int *get_tokenized_data(const char *buf, int *num_tokens)
{
const char *cp;
int i;
int ntokens = 1;
unsigned int *tokenized_data;
int err = -EINVAL;
cp = buf;
while ((cp = strpbrk(cp + 1, " :")))
ntokens++;
tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL);
if (!tokenized_data) {
err = -ENOMEM;
goto err;
}
cp = buf;
i = 0;
while (i < ntokens) {
if (sscanf(cp, "%u", &tokenized_data[i++]) != 1)
goto err_kfree;
cp = strpbrk(cp, " :");
if (!cp)
break;
cp++;
}
if (i != ntokens)
goto err_kfree;
*num_tokens = ntokens;
return tokenized_data;
err_kfree:
kfree(tokenized_data);
err:
return ERR_PTR(err);
}
static ssize_t show_above_hispeed_delay(struct kobject *kobj,
struct attribute *attr, char *buf)
{
int i;
ssize_t ret = 0;
unsigned long flags;
spin_lock_irqsave(&above_hispeed_delay_lock, flags);
for (i = 0; i < nabove_hispeed_delay; i++)
ret += sprintf(buf + ret, "%u%s", above_hispeed_delay[i],
i & 0x1 ? ":" : " ");
ret += sprintf(buf + ret, "\n");
spin_unlock_irqrestore(&above_hispeed_delay_lock, flags);
return ret;
}
static ssize_t store_above_hispeed_delay(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ntokens, i;
unsigned int *new_above_hispeed_delay = NULL;
unsigned long flags;
new_above_hispeed_delay = get_tokenized_data(buf, &ntokens);
if (IS_ERR(new_above_hispeed_delay))
return PTR_RET(new_above_hispeed_delay);
if (ntokens % 2 != 1) {
kfree(new_above_hispeed_delay);
return -EINVAL;
}
/* Make sure frequencies are in ascending order. */
for (i = 3; i < ntokens; i += 2) {
if (new_above_hispeed_delay[i] <=
new_above_hispeed_delay[i - 2]) {
kfree(new_above_hispeed_delay);
return -EINVAL;
}
}
spin_lock_irqsave(&above_hispeed_delay_lock, flags);
if (above_hispeed_delay != default_above_hispeed_delay)
kfree(above_hispeed_delay);
above_hispeed_delay = new_above_hispeed_delay;
nabove_hispeed_delay = ntokens;
spin_unlock_irqrestore(&above_hispeed_delay_lock, flags);
return count;
}
static struct global_attr above_hispeed_delay_attr =
__ATTR(above_hispeed_delay, S_IRUGO | S_IWUSR,
show_above_hispeed_delay, store_above_hispeed_delay);
static ssize_t show_hispeed_freq(struct kobject *kobj,
struct attribute *attr, char *buf)
{
int i;
ssize_t ret = 0;
unsigned long flags;
spin_lock_irqsave(&hispeed_freqs_lock, flags);
for (i = 0; i < nhispeed_freqs; i++) {
ret += sprintf(buf + ret, "%s%u:%u", i > 0 ? " " : "",
hispeed_freqs[i].freq, hispeed_freqs[i].load);
}
ret += sprintf(buf + ret, "\n");
spin_unlock_irqrestore(&hispeed_freqs_lock, flags);
return ret;
}
static ssize_t store_hispeed_freq(struct kobject *kobj,
struct attribute *attr, const char *buf,
size_t count)
{
int ntokens, i, ret = count;
unsigned int *tokens;
unsigned long flags;
struct hispeed_freq_level *new_hispeed_freqs;
tokens = get_tokenized_data(buf, &ntokens);
if (IS_ERR(tokens))
return PTR_RET(tokens);
if (ntokens % 2 != 0) {
ret = -EINVAL;
goto out;
}
new_hispeed_freqs = kzalloc(sizeof(*new_hispeed_freqs) * ntokens / 2,
GFP_KERNEL);
if (!new_hispeed_freqs) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < ntokens / 2; i++) {
new_hispeed_freqs[i].freq = tokens[2 * i];
new_hispeed_freqs[i].load = tokens[2 * i + 1];
if (new_hispeed_freqs[i].load > 100) {
kfree(new_hispeed_freqs);
ret = -EINVAL;
goto out;
}
if (i > 0 && (new_hispeed_freqs[i].freq <=
new_hispeed_freqs[i - 1].freq ||
new_hispeed_freqs[i].load <=
new_hispeed_freqs[i - 1].load)) {
kfree(new_hispeed_freqs);
ret = -EINVAL;
goto out;
}
}
spin_lock_irqsave(&hispeed_freqs_lock, flags);
kfree(hispeed_freqs);
hispeed_freqs = new_hispeed_freqs;
nhispeed_freqs = ntokens / 2;
spin_unlock_irqrestore(&hispeed_freqs_lock, flags);
out:
kfree(tokens);
return ret;
}
static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644,
show_hispeed_freq, store_hispeed_freq);
static ssize_t show_min_sample_time(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", min_sample_time);
}
static ssize_t store_min_sample_time(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
min_sample_time = val;
return count;
}
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
show_min_sample_time, store_min_sample_time);
static ssize_t show_timer_rate(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", timer_rate);
}
static ssize_t store_timer_rate(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
timer_rate = val;
return count;
}
static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644,
show_timer_rate, store_timer_rate);
static ssize_t show_input_boost(struct kobject *kobj, struct attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", input_boost_val);
}
static ssize_t store_input_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = strict_strtoul(buf, 0, &val);
if (ret < 0)
return ret;
input_boost_val = val;
return count;
}
define_one_global_rw(input_boost);
static ssize_t show_boost(struct kobject *kobj, struct attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", boost_val);
}
static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
boost_val = val;
if (boost_val) {
trace_cpufreq_interactive_boost("on");
cpufreq_interactive_boost();
} else {
trace_cpufreq_interactive_unboost("off");
}
return count;
}
define_one_global_rw(boost);
static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long val;
ret = kstrtoul(buf, 0, &val);
if (ret < 0)
return ret;
trace_cpufreq_interactive_boost("pulse");
cpufreq_interactive_boost();
return count;
}
static struct global_attr boostpulse =
__ATTR(boostpulse, 0200, NULL, store_boostpulse);
static struct attribute *interactive_attributes[] = {
&above_hispeed_delay_attr.attr,
&hispeed_freq_attr.attr,
&min_sample_time_attr.attr,
&timer_rate_attr.attr,
&input_boost.attr,
&boost.attr,
&boostpulse.attr,
NULL,
};
static struct attribute_group interactive_attr_group = {
.attrs = interactive_attributes,
.name = "interactive",
};
static int cpufreq_interactive_idle_notifier(struct notifier_block *nb,
unsigned long val,
void *data)
{
switch (val) {
case IDLE_START:
cpufreq_interactive_idle_start();
break;
case IDLE_END:
cpufreq_interactive_idle_end();
break;
}
return 0;
}
static struct notifier_block cpufreq_interactive_idle_nb = {
.notifier_call = cpufreq_interactive_idle_notifier,
};
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event)
{
int rc;
unsigned int j;
struct cpufreq_interactive_cpuinfo *pcpu;
struct cpufreq_frequency_table *freq_table;
switch (event) {
case CPUFREQ_GOV_POLICY_INIT:
if (!hispeed_freqs) {
hispeed_freqs = kzalloc(sizeof(*hispeed_freqs),
GFP_KERNEL);
if (!hispeed_freqs)
return -ENOMEM;
nhispeed_freqs = 1;
hispeed_freqs[0].load = DEFAULT_GO_HISPEED_LOAD;
hispeed_freqs[0].freq = policy->max;
}
/*
* Do not register the idle hook and create sysfs
* entries if we have already done so.
*/
if (atomic_inc_return(&active_count) > 1)
return 0;
rc = sysfs_create_group(cpufreq_global_kobject,
&interactive_attr_group);
if (rc)
return rc;
rc = input_register_handler(&cpufreq_interactive_input_handler);
if (rc)
pr_warn("%s: failed to register input handler\n",
__func__);
idle_notifier_register(&cpufreq_interactive_idle_nb);
break;
case CPUFREQ_GOV_POLICY_EXIT:
if (atomic_dec_return(&active_count) > 0)
return 0;
idle_notifier_unregister(&cpufreq_interactive_idle_nb);
input_unregister_handler(&cpufreq_interactive_input_handler);
sysfs_remove_group(cpufreq_global_kobject,
&interactive_attr_group);
break;
case CPUFREQ_GOV_START:
freq_table =
cpufreq_frequency_get_table(policy->cpu);
for_each_cpu(j, policy->cpus) {
pcpu = &per_cpu(cpuinfo, j);
pcpu->policy = policy;
pcpu->target_freq = policy->cur;
pcpu->freq_table = freq_table;
pcpu->target_set_time_in_idle =
get_cpu_idle_time(j, &pcpu->target_set_time, 1);
pcpu->floor_freq = pcpu->target_freq;
pcpu->floor_validate_time =
pcpu->target_set_time;
pcpu->hispeed_validate_time =
pcpu->target_set_time;
down_write(&pcpu->enable_sem);
del_timer_sync(&pcpu->cpu_timer);
pcpu->cpu_timer.expires =
jiffies + usecs_to_jiffies(timer_rate);
add_timer_on(&pcpu->cpu_timer, j);
pcpu->governor_enabled = 1;
up_write(&pcpu->enable_sem);
}
break;
case CPUFREQ_GOV_STOP:
for_each_cpu(j, policy->cpus) {
pcpu = &per_cpu(cpuinfo, j);
down_write(&pcpu->enable_sem);
pcpu->governor_enabled = 0;
del_timer_sync(&pcpu->cpu_timer);
up_write(&pcpu->enable_sem);
}
break;
case CPUFREQ_GOV_LIMITS:
if (policy->max < policy->cur)
__cpufreq_driver_target(policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > policy->cur)
__cpufreq_driver_target(policy,
policy->min, CPUFREQ_RELATION_L);
break;
}
return 0;
}
static int __init cpufreq_interactive_init(void)
{
unsigned int i;
struct cpufreq_interactive_cpuinfo *pcpu;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
timer_rate = DEFAULT_TIMER_RATE;
/* Initalize per-cpu timers */
for_each_possible_cpu(i) {
pcpu = &per_cpu(cpuinfo, i);
init_timer(&pcpu->cpu_timer);
pcpu->cpu_timer.function = cpufreq_interactive_timer;
pcpu->cpu_timer.data = i;
init_rwsem(&pcpu->enable_sem);
}
spin_lock_init(&hispeed_freqs_lock);
spin_lock_init(&above_hispeed_delay_lock);
spin_lock_init(&updown_state_lock);
updown_task = kthread_create(cpufreq_interactive_updown_task, NULL,
"kinteractive");
if (IS_ERR(updown_task))
return PTR_ERR(updown_task);
sched_setscheduler_nocheck(updown_task, SCHED_FIFO, &param);
get_task_struct(updown_task);
/* NB: wake up so the thread does not look hung to the freezer */
wake_up_process(updown_task);
return cpufreq_register_governor(&cpufreq_gov_interactive);
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
fs_initcall(cpufreq_interactive_init);
#else
module_init(cpufreq_interactive_init);
#endif
static void __exit cpufreq_interactive_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_interactive);
kthread_stop(updown_task);
put_task_struct(updown_task);
if (above_hispeed_delay != default_above_hispeed_delay)
kfree(above_hispeed_delay);
kfree(hispeed_freqs);
/* TODO(sleffler) cancel inputopen wq request? */
}
module_exit(cpufreq_interactive_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
"Latency sensitive workloads");
MODULE_LICENSE("GPL");