| /* | 
 |  *  linux/mm/swap.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file contains the default values for the operation of the | 
 |  * Linux VM subsystem. Fine-tuning documentation can be found in | 
 |  * Documentation/sysctl/vm.txt. | 
 |  * Started 18.12.91 | 
 |  * Swap aging added 23.2.95, Stephen Tweedie. | 
 |  * Buffermem limits added 12.3.98, Rik van Riel. | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/init.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/percpu_counter.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/page_idle.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/pagemap.h> | 
 |  | 
 | /* How many pages do we try to swap or page in/out together? */ | 
 | int page_cluster; | 
 |  | 
 | static DEFINE_PER_CPU(struct pagevec, lru_add_pvec); | 
 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); | 
 | static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs); | 
 |  | 
 | /* | 
 |  * This path almost never happens for VM activity - pages are normally | 
 |  * freed via pagevecs.  But it gets used by networking. | 
 |  */ | 
 | static void __page_cache_release(struct page *page) | 
 | { | 
 | 	if (PageLRU(page)) { | 
 | 		struct zone *zone = page_zone(page); | 
 | 		struct lruvec *lruvec; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 		VM_BUG_ON_PAGE(!PageLRU(page), page); | 
 | 		__ClearPageLRU(page); | 
 | 		del_page_from_lru_list(page, lruvec, page_off_lru(page)); | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 	} | 
 | 	mem_cgroup_uncharge(page); | 
 | } | 
 |  | 
 | static void __put_single_page(struct page *page) | 
 | { | 
 | 	__page_cache_release(page); | 
 | 	free_hot_cold_page(page, false); | 
 | } | 
 |  | 
 | static void __put_compound_page(struct page *page) | 
 | { | 
 | 	compound_page_dtor *dtor; | 
 |  | 
 | 	/* | 
 | 	 * __page_cache_release() is supposed to be called for thp, not for | 
 | 	 * hugetlb. This is because hugetlb page does never have PageLRU set | 
 | 	 * (it's never listed to any LRU lists) and no memcg routines should | 
 | 	 * be called for hugetlb (it has a separate hugetlb_cgroup.) | 
 | 	 */ | 
 | 	if (!PageHuge(page)) | 
 | 		__page_cache_release(page); | 
 | 	dtor = get_compound_page_dtor(page); | 
 | 	(*dtor)(page); | 
 | } | 
 |  | 
 | /** | 
 |  * Two special cases here: we could avoid taking compound_lock_irqsave | 
 |  * and could skip the tail refcounting(in _mapcount). | 
 |  * | 
 |  * 1. Hugetlbfs page: | 
 |  * | 
 |  *    PageHeadHuge will remain true until the compound page | 
 |  *    is released and enters the buddy allocator, and it could | 
 |  *    not be split by __split_huge_page_refcount(). | 
 |  * | 
 |  *    So if we see PageHeadHuge set, and we have the tail page pin, | 
 |  *    then we could safely put head page. | 
 |  * | 
 |  * 2. Slab THP page: | 
 |  * | 
 |  *    PG_slab is cleared before the slab frees the head page, and | 
 |  *    tail pin cannot be the last reference left on the head page, | 
 |  *    because the slab code is free to reuse the compound page | 
 |  *    after a kfree/kmem_cache_free without having to check if | 
 |  *    there's any tail pin left.  In turn all tail pinsmust be always | 
 |  *    released while the head is still pinned by the slab code | 
 |  *    and so we know PG_slab will be still set too. | 
 |  * | 
 |  *    So if we see PageSlab set, and we have the tail page pin, | 
 |  *    then we could safely put head page. | 
 |  */ | 
 | static __always_inline | 
 | void put_unrefcounted_compound_page(struct page *page_head, struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * If @page is a THP tail, we must read the tail page | 
 | 	 * flags after the head page flags. The | 
 | 	 * __split_huge_page_refcount side enforces write memory barriers | 
 | 	 * between clearing PageTail and before the head page | 
 | 	 * can be freed and reallocated. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (likely(PageTail(page))) { | 
 | 		/* | 
 | 		 * __split_huge_page_refcount cannot race | 
 | 		 * here, see the comment above this function. | 
 | 		 */ | 
 | 		VM_BUG_ON_PAGE(!PageHead(page_head), page_head); | 
 | 		if (put_page_testzero(page_head)) { | 
 | 			/* | 
 | 			 * If this is the tail of a slab THP page, | 
 | 			 * the tail pin must not be the last reference | 
 | 			 * held on the page, because the PG_slab cannot | 
 | 			 * be cleared before all tail pins (which skips | 
 | 			 * the _mapcount tail refcounting) have been | 
 | 			 * released. | 
 | 			 * | 
 | 			 * If this is the tail of a hugetlbfs page, | 
 | 			 * the tail pin may be the last reference on | 
 | 			 * the page instead, because PageHeadHuge will | 
 | 			 * not go away until the compound page enters | 
 | 			 * the buddy allocator. | 
 | 			 */ | 
 | 			VM_BUG_ON_PAGE(PageSlab(page_head), page_head); | 
 | 			__put_compound_page(page_head); | 
 | 		} | 
 | 	} else | 
 | 		/* | 
 | 		 * __split_huge_page_refcount run before us, | 
 | 		 * @page was a THP tail. The split @page_head | 
 | 		 * has been freed and reallocated as slab or | 
 | 		 * hugetlbfs page of smaller order (only | 
 | 		 * possible if reallocated as slab on x86). | 
 | 		 */ | 
 | 		if (put_page_testzero(page)) | 
 | 			__put_single_page(page); | 
 | } | 
 |  | 
 | static __always_inline | 
 | void put_refcounted_compound_page(struct page *page_head, struct page *page) | 
 | { | 
 | 	if (likely(page != page_head && get_page_unless_zero(page_head))) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* | 
 | 		 * @page_head wasn't a dangling pointer but it may not | 
 | 		 * be a head page anymore by the time we obtain the | 
 | 		 * lock. That is ok as long as it can't be freed from | 
 | 		 * under us. | 
 | 		 */ | 
 | 		flags = compound_lock_irqsave(page_head); | 
 | 		if (unlikely(!PageTail(page))) { | 
 | 			/* __split_huge_page_refcount run before us */ | 
 | 			compound_unlock_irqrestore(page_head, flags); | 
 | 			if (put_page_testzero(page_head)) { | 
 | 				/* | 
 | 				 * The @page_head may have been freed | 
 | 				 * and reallocated as a compound page | 
 | 				 * of smaller order and then freed | 
 | 				 * again.  All we know is that it | 
 | 				 * cannot have become: a THP page, a | 
 | 				 * compound page of higher order, a | 
 | 				 * tail page.  That is because we | 
 | 				 * still hold the refcount of the | 
 | 				 * split THP tail and page_head was | 
 | 				 * the THP head before the split. | 
 | 				 */ | 
 | 				if (PageHead(page_head)) | 
 | 					__put_compound_page(page_head); | 
 | 				else | 
 | 					__put_single_page(page_head); | 
 | 			} | 
 | out_put_single: | 
 | 			if (put_page_testzero(page)) | 
 | 				__put_single_page(page); | 
 | 			return; | 
 | 		} | 
 | 		VM_BUG_ON_PAGE(page_head != compound_head(page), page); | 
 | 		/* | 
 | 		 * We can release the refcount taken by | 
 | 		 * get_page_unless_zero() now that | 
 | 		 * __split_huge_page_refcount() is blocked on the | 
 | 		 * compound_lock. | 
 | 		 */ | 
 | 		if (put_page_testzero(page_head)) | 
 | 			VM_BUG_ON_PAGE(1, page_head); | 
 | 		/* __split_huge_page_refcount will wait now */ | 
 | 		VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); | 
 | 		atomic_dec(&page->_mapcount); | 
 | 		VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); | 
 | 		VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); | 
 | 		compound_unlock_irqrestore(page_head, flags); | 
 |  | 
 | 		if (put_page_testzero(page_head)) { | 
 | 			if (PageHead(page_head)) | 
 | 				__put_compound_page(page_head); | 
 | 			else | 
 | 				__put_single_page(page_head); | 
 | 		} | 
 | 	} else { | 
 | 		/* @page_head is a dangling pointer */ | 
 | 		VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 		goto out_put_single; | 
 | 	} | 
 | } | 
 |  | 
 | static void put_compound_page(struct page *page) | 
 | { | 
 | 	struct page *page_head; | 
 |  | 
 | 	/* | 
 | 	 * We see the PageCompound set and PageTail not set, so @page maybe: | 
 | 	 *  1. hugetlbfs head page, or | 
 | 	 *  2. THP head page. | 
 | 	 */ | 
 | 	if (likely(!PageTail(page))) { | 
 | 		if (put_page_testzero(page)) { | 
 | 			/* | 
 | 			 * By the time all refcounts have been released | 
 | 			 * split_huge_page cannot run anymore from under us. | 
 | 			 */ | 
 | 			if (PageHead(page)) | 
 | 				__put_compound_page(page); | 
 | 			else | 
 | 				__put_single_page(page); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We see the PageCompound set and PageTail set, so @page maybe: | 
 | 	 *  1. a tail hugetlbfs page, or | 
 | 	 *  2. a tail THP page, or | 
 | 	 *  3. a split THP page. | 
 | 	 * | 
 | 	 *  Case 3 is possible, as we may race with | 
 | 	 *  __split_huge_page_refcount tearing down a THP page. | 
 | 	 */ | 
 | 	page_head = compound_head(page); | 
 | 	if (!__compound_tail_refcounted(page_head)) | 
 | 		put_unrefcounted_compound_page(page_head, page); | 
 | 	else | 
 | 		put_refcounted_compound_page(page_head, page); | 
 | } | 
 |  | 
 | void put_page(struct page *page) | 
 | { | 
 | 	if (unlikely(PageCompound(page))) | 
 | 		put_compound_page(page); | 
 | 	else if (put_page_testzero(page)) | 
 | 		__put_single_page(page); | 
 | } | 
 | EXPORT_SYMBOL(put_page); | 
 |  | 
 | /* | 
 |  * This function is exported but must not be called by anything other | 
 |  * than get_page(). It implements the slow path of get_page(). | 
 |  */ | 
 | bool __get_page_tail(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * This takes care of get_page() if run on a tail page | 
 | 	 * returned by one of the get_user_pages/follow_page variants. | 
 | 	 * get_user_pages/follow_page itself doesn't need the compound | 
 | 	 * lock because it runs __get_page_tail_foll() under the | 
 | 	 * proper PT lock that already serializes against | 
 | 	 * split_huge_page(). | 
 | 	 */ | 
 | 	unsigned long flags; | 
 | 	bool got; | 
 | 	struct page *page_head = compound_head(page); | 
 |  | 
 | 	/* Ref to put_compound_page() comment. */ | 
 | 	if (!__compound_tail_refcounted(page_head)) { | 
 | 		smp_rmb(); | 
 | 		if (likely(PageTail(page))) { | 
 | 			/* | 
 | 			 * This is a hugetlbfs page or a slab | 
 | 			 * page. __split_huge_page_refcount | 
 | 			 * cannot race here. | 
 | 			 */ | 
 | 			VM_BUG_ON_PAGE(!PageHead(page_head), page_head); | 
 | 			__get_page_tail_foll(page, true); | 
 | 			return true; | 
 | 		} else { | 
 | 			/* | 
 | 			 * __split_huge_page_refcount run | 
 | 			 * before us, "page" was a THP | 
 | 			 * tail. The split page_head has been | 
 | 			 * freed and reallocated as slab or | 
 | 			 * hugetlbfs page of smaller order | 
 | 			 * (only possible if reallocated as | 
 | 			 * slab on x86). | 
 | 			 */ | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	got = false; | 
 | 	if (likely(page != page_head && get_page_unless_zero(page_head))) { | 
 | 		/* | 
 | 		 * page_head wasn't a dangling pointer but it | 
 | 		 * may not be a head page anymore by the time | 
 | 		 * we obtain the lock. That is ok as long as it | 
 | 		 * can't be freed from under us. | 
 | 		 */ | 
 | 		flags = compound_lock_irqsave(page_head); | 
 | 		/* here __split_huge_page_refcount won't run anymore */ | 
 | 		if (likely(PageTail(page))) { | 
 | 			__get_page_tail_foll(page, false); | 
 | 			got = true; | 
 | 		} | 
 | 		compound_unlock_irqrestore(page_head, flags); | 
 | 		if (unlikely(!got)) | 
 | 			put_page(page_head); | 
 | 	} | 
 | 	return got; | 
 | } | 
 | EXPORT_SYMBOL(__get_page_tail); | 
 |  | 
 | /** | 
 |  * put_pages_list() - release a list of pages | 
 |  * @pages: list of pages threaded on page->lru | 
 |  * | 
 |  * Release a list of pages which are strung together on page.lru.  Currently | 
 |  * used by read_cache_pages() and related error recovery code. | 
 |  */ | 
 | void put_pages_list(struct list_head *pages) | 
 | { | 
 | 	while (!list_empty(pages)) { | 
 | 		struct page *victim; | 
 |  | 
 | 		victim = list_entry(pages->prev, struct page, lru); | 
 | 		list_del(&victim->lru); | 
 | 		page_cache_release(victim); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(put_pages_list); | 
 |  | 
 | /* | 
 |  * get_kernel_pages() - pin kernel pages in memory | 
 |  * @kiov:	An array of struct kvec structures | 
 |  * @nr_segs:	number of segments to pin | 
 |  * @write:	pinning for read/write, currently ignored | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_segs long. | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number | 
 |  * requested. If nr_pages is 0 or negative, returns 0. If no pages | 
 |  * were pinned, returns -errno. Each page returned must be released | 
 |  * with a put_page() call when it is finished with. | 
 |  */ | 
 | int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, | 
 | 		struct page **pages) | 
 | { | 
 | 	int seg; | 
 |  | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) | 
 | 			return seg; | 
 |  | 
 | 		pages[seg] = kmap_to_page(kiov[seg].iov_base); | 
 | 		page_cache_get(pages[seg]); | 
 | 	} | 
 |  | 
 | 	return seg; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_kernel_pages); | 
 |  | 
 | /* | 
 |  * get_kernel_page() - pin a kernel page in memory | 
 |  * @start:	starting kernel address | 
 |  * @write:	pinning for read/write, currently ignored | 
 |  * @pages:	array that receives pointer to the page pinned. | 
 |  *		Must be at least nr_segs long. | 
 |  * | 
 |  * Returns 1 if page is pinned. If the page was not pinned, returns | 
 |  * -errno. The page returned must be released with a put_page() call | 
 |  * when it is finished with. | 
 |  */ | 
 | int get_kernel_page(unsigned long start, int write, struct page **pages) | 
 | { | 
 | 	const struct kvec kiov = { | 
 | 		.iov_base = (void *)start, | 
 | 		.iov_len = PAGE_SIZE | 
 | 	}; | 
 |  | 
 | 	return get_kernel_pages(&kiov, 1, write, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_kernel_page); | 
 |  | 
 | static void pagevec_lru_move_fn(struct pagevec *pvec, | 
 | 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), | 
 | 	void *arg) | 
 | { | 
 | 	int i; | 
 | 	struct zone *zone = NULL; | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long flags = 0; | 
 |  | 
 | 	for (i = 0; i < pagevec_count(pvec); i++) { | 
 | 		struct page *page = pvec->pages[i]; | 
 | 		struct zone *pagezone = page_zone(page); | 
 |  | 
 | 		if (pagezone != zone) { | 
 | 			if (zone) | 
 | 				spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			zone = pagezone; | 
 | 			spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		} | 
 |  | 
 | 		lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 		(*move_fn)(page, lruvec, arg); | 
 | 	} | 
 | 	if (zone) | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 	release_pages(pvec->pages, pvec->nr, pvec->cold); | 
 | 	pagevec_reinit(pvec); | 
 | } | 
 |  | 
 | static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, | 
 | 				 void *arg) | 
 | { | 
 | 	int *pgmoved = arg; | 
 |  | 
 | 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | 
 | 		enum lru_list lru = page_lru_base_type(page); | 
 | 		list_move_tail(&page->lru, &lruvec->lists[lru]); | 
 | 		(*pgmoved)++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * pagevec_move_tail() must be called with IRQ disabled. | 
 |  * Otherwise this may cause nasty races. | 
 |  */ | 
 | static void pagevec_move_tail(struct pagevec *pvec) | 
 | { | 
 | 	int pgmoved = 0; | 
 |  | 
 | 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); | 
 | 	__count_vm_events(PGROTATED, pgmoved); | 
 | } | 
 |  | 
 | /* | 
 |  * Writeback is about to end against a page which has been marked for immediate | 
 |  * reclaim.  If it still appears to be reclaimable, move it to the tail of the | 
 |  * inactive list. | 
 |  */ | 
 | void rotate_reclaimable_page(struct page *page) | 
 | { | 
 | 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && | 
 | 	    !PageUnevictable(page) && PageLRU(page)) { | 
 | 		struct pagevec *pvec; | 
 | 		unsigned long flags; | 
 |  | 
 | 		page_cache_get(page); | 
 | 		local_irq_save(flags); | 
 | 		pvec = this_cpu_ptr(&lru_rotate_pvecs); | 
 | 		if (!pagevec_add(pvec, page)) | 
 | 			pagevec_move_tail(pvec); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void update_page_reclaim_stat(struct lruvec *lruvec, | 
 | 				     int file, int rotated) | 
 | { | 
 | 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | 
 |  | 
 | 	reclaim_stat->recent_scanned[file]++; | 
 | 	if (rotated) | 
 | 		reclaim_stat->recent_rotated[file]++; | 
 | } | 
 |  | 
 | static void __activate_page(struct page *page, struct lruvec *lruvec, | 
 | 			    void *arg) | 
 | { | 
 | 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | 
 | 		int file = page_is_file_cache(page); | 
 | 		int lru = page_lru_base_type(page); | 
 |  | 
 | 		del_page_from_lru_list(page, lruvec, lru); | 
 | 		SetPageActive(page); | 
 | 		lru += LRU_ACTIVE; | 
 | 		add_page_to_lru_list(page, lruvec, lru); | 
 | 		trace_mm_lru_activate(page); | 
 |  | 
 | 		__count_vm_event(PGACTIVATE); | 
 | 		update_page_reclaim_stat(lruvec, file, 1); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); | 
 |  | 
 | static void activate_page_drain(int cpu) | 
 | { | 
 | 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); | 
 |  | 
 | 	if (pagevec_count(pvec)) | 
 | 		pagevec_lru_move_fn(pvec, __activate_page, NULL); | 
 | } | 
 |  | 
 | static bool need_activate_page_drain(int cpu) | 
 | { | 
 | 	return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; | 
 | } | 
 |  | 
 | void activate_page(struct page *page) | 
 | { | 
 | 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | 
 | 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); | 
 |  | 
 | 		page_cache_get(page); | 
 | 		if (!pagevec_add(pvec, page)) | 
 | 			pagevec_lru_move_fn(pvec, __activate_page, NULL); | 
 | 		put_cpu_var(activate_page_pvecs); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | static inline void activate_page_drain(int cpu) | 
 | { | 
 | } | 
 |  | 
 | static bool need_activate_page_drain(int cpu) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | void activate_page(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 |  | 
 | 	spin_lock_irq(&zone->lru_lock); | 
 | 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); | 
 | 	spin_unlock_irq(&zone->lru_lock); | 
 | } | 
 | #endif | 
 |  | 
 | static void __lru_cache_activate_page(struct page *page) | 
 | { | 
 | 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec); | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * Search backwards on the optimistic assumption that the page being | 
 | 	 * activated has just been added to this pagevec. Note that only | 
 | 	 * the local pagevec is examined as a !PageLRU page could be in the | 
 | 	 * process of being released, reclaimed, migrated or on a remote | 
 | 	 * pagevec that is currently being drained. Furthermore, marking | 
 | 	 * a remote pagevec's page PageActive potentially hits a race where | 
 | 	 * a page is marked PageActive just after it is added to the inactive | 
 | 	 * list causing accounting errors and BUG_ON checks to trigger. | 
 | 	 */ | 
 | 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) { | 
 | 		struct page *pagevec_page = pvec->pages[i]; | 
 |  | 
 | 		if (pagevec_page == page) { | 
 | 			SetPageActive(page); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	put_cpu_var(lru_add_pvec); | 
 | } | 
 |  | 
 | /* | 
 |  * Mark a page as having seen activity. | 
 |  * | 
 |  * inactive,unreferenced	->	inactive,referenced | 
 |  * inactive,referenced		->	active,unreferenced | 
 |  * active,unreferenced		->	active,referenced | 
 |  * | 
 |  * When a newly allocated page is not yet visible, so safe for non-atomic ops, | 
 |  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page). | 
 |  */ | 
 | void mark_page_accessed(struct page *page) | 
 | { | 
 | 	if (!PageActive(page) && !PageUnevictable(page) && | 
 | 			PageReferenced(page)) { | 
 |  | 
 | 		/* | 
 | 		 * If the page is on the LRU, queue it for activation via | 
 | 		 * activate_page_pvecs. Otherwise, assume the page is on a | 
 | 		 * pagevec, mark it active and it'll be moved to the active | 
 | 		 * LRU on the next drain. | 
 | 		 */ | 
 | 		if (PageLRU(page)) | 
 | 			activate_page(page); | 
 | 		else | 
 | 			__lru_cache_activate_page(page); | 
 | 		ClearPageReferenced(page); | 
 | 		if (page_is_file_cache(page)) | 
 | 			workingset_activation(page); | 
 | 	} else if (!PageReferenced(page)) { | 
 | 		SetPageReferenced(page); | 
 | 	} | 
 | 	if (page_is_idle(page)) | 
 | 		clear_page_idle(page); | 
 | } | 
 | EXPORT_SYMBOL(mark_page_accessed); | 
 |  | 
 | static void __lru_cache_add(struct page *page) | 
 | { | 
 | 	struct pagevec *pvec = &get_cpu_var(lru_add_pvec); | 
 |  | 
 | 	page_cache_get(page); | 
 | 	if (!pagevec_space(pvec)) | 
 | 		__pagevec_lru_add(pvec); | 
 | 	pagevec_add(pvec, page); | 
 | 	put_cpu_var(lru_add_pvec); | 
 | } | 
 |  | 
 | /** | 
 |  * lru_cache_add: add a page to the page lists | 
 |  * @page: the page to add | 
 |  */ | 
 | void lru_cache_add_anon(struct page *page) | 
 | { | 
 | 	if (PageActive(page)) | 
 | 		ClearPageActive(page); | 
 | 	__lru_cache_add(page); | 
 | } | 
 |  | 
 | void lru_cache_add_file(struct page *page) | 
 | { | 
 | 	if (PageActive(page)) | 
 | 		ClearPageActive(page); | 
 | 	__lru_cache_add(page); | 
 | } | 
 | EXPORT_SYMBOL(lru_cache_add_file); | 
 |  | 
 | /** | 
 |  * lru_cache_add - add a page to a page list | 
 |  * @page: the page to be added to the LRU. | 
 |  * | 
 |  * Queue the page for addition to the LRU via pagevec. The decision on whether | 
 |  * to add the page to the [in]active [file|anon] list is deferred until the | 
 |  * pagevec is drained. This gives a chance for the caller of lru_cache_add() | 
 |  * have the page added to the active list using mark_page_accessed(). | 
 |  */ | 
 | void lru_cache_add(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); | 
 | 	VM_BUG_ON_PAGE(PageLRU(page), page); | 
 | 	__lru_cache_add(page); | 
 | } | 
 |  | 
 | /** | 
 |  * add_page_to_unevictable_list - add a page to the unevictable list | 
 |  * @page:  the page to be added to the unevictable list | 
 |  * | 
 |  * Add page directly to its zone's unevictable list.  To avoid races with | 
 |  * tasks that might be making the page evictable, through eg. munlock, | 
 |  * munmap or exit, while it's not on the lru, we want to add the page | 
 |  * while it's locked or otherwise "invisible" to other tasks.  This is | 
 |  * difficult to do when using the pagevec cache, so bypass that. | 
 |  */ | 
 | void add_page_to_unevictable_list(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	spin_lock_irq(&zone->lru_lock); | 
 | 	lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 	ClearPageActive(page); | 
 | 	SetPageUnevictable(page); | 
 | 	SetPageLRU(page); | 
 | 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); | 
 | 	spin_unlock_irq(&zone->lru_lock); | 
 | } | 
 |  | 
 | /** | 
 |  * lru_cache_add_active_or_unevictable | 
 |  * @page:  the page to be added to LRU | 
 |  * @vma:   vma in which page is mapped for determining reclaimability | 
 |  * | 
 |  * Place @page on the active or unevictable LRU list, depending on its | 
 |  * evictability.  Note that if the page is not evictable, it goes | 
 |  * directly back onto it's zone's unevictable list, it does NOT use a | 
 |  * per cpu pagevec. | 
 |  */ | 
 | void lru_cache_add_active_or_unevictable(struct page *page, | 
 | 					 struct vm_area_struct *vma) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageLRU(page), page); | 
 |  | 
 | 	if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) { | 
 | 		SetPageActive(page); | 
 | 		lru_cache_add(page); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!TestSetPageMlocked(page)) { | 
 | 		/* | 
 | 		 * We use the irq-unsafe __mod_zone_page_stat because this | 
 | 		 * counter is not modified from interrupt context, and the pte | 
 | 		 * lock is held(spinlock), which implies preemption disabled. | 
 | 		 */ | 
 | 		__mod_zone_page_state(page_zone(page), NR_MLOCK, | 
 | 				    hpage_nr_pages(page)); | 
 | 		count_vm_event(UNEVICTABLE_PGMLOCKED); | 
 | 	} | 
 | 	add_page_to_unevictable_list(page); | 
 | } | 
 |  | 
 | /* | 
 |  * If the page can not be invalidated, it is moved to the | 
 |  * inactive list to speed up its reclaim.  It is moved to the | 
 |  * head of the list, rather than the tail, to give the flusher | 
 |  * threads some time to write it out, as this is much more | 
 |  * effective than the single-page writeout from reclaim. | 
 |  * | 
 |  * If the page isn't page_mapped and dirty/writeback, the page | 
 |  * could reclaim asap using PG_reclaim. | 
 |  * | 
 |  * 1. active, mapped page -> none | 
 |  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim | 
 |  * 3. inactive, mapped page -> none | 
 |  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim | 
 |  * 5. inactive, clean -> inactive, tail | 
 |  * 6. Others -> none | 
 |  * | 
 |  * In 4, why it moves inactive's head, the VM expects the page would | 
 |  * be write it out by flusher threads as this is much more effective | 
 |  * than the single-page writeout from reclaim. | 
 |  */ | 
 | static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec, | 
 | 			      void *arg) | 
 | { | 
 | 	int lru, file; | 
 | 	bool active; | 
 |  | 
 | 	if (!PageLRU(page)) | 
 | 		return; | 
 |  | 
 | 	if (PageUnevictable(page)) | 
 | 		return; | 
 |  | 
 | 	/* Some processes are using the page */ | 
 | 	if (page_mapped(page)) | 
 | 		return; | 
 |  | 
 | 	active = PageActive(page); | 
 | 	file = page_is_file_cache(page); | 
 | 	lru = page_lru_base_type(page); | 
 |  | 
 | 	del_page_from_lru_list(page, lruvec, lru + active); | 
 | 	ClearPageActive(page); | 
 | 	ClearPageReferenced(page); | 
 | 	add_page_to_lru_list(page, lruvec, lru); | 
 |  | 
 | 	if (PageWriteback(page) || PageDirty(page)) { | 
 | 		/* | 
 | 		 * PG_reclaim could be raced with end_page_writeback | 
 | 		 * It can make readahead confusing.  But race window | 
 | 		 * is _really_ small and  it's non-critical problem. | 
 | 		 */ | 
 | 		SetPageReclaim(page); | 
 | 	} else { | 
 | 		/* | 
 | 		 * The page's writeback ends up during pagevec | 
 | 		 * We moves tha page into tail of inactive. | 
 | 		 */ | 
 | 		list_move_tail(&page->lru, &lruvec->lists[lru]); | 
 | 		__count_vm_event(PGROTATED); | 
 | 	} | 
 |  | 
 | 	if (active) | 
 | 		__count_vm_event(PGDEACTIVATE); | 
 | 	update_page_reclaim_stat(lruvec, file, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Drain pages out of the cpu's pagevecs. | 
 |  * Either "cpu" is the current CPU, and preemption has already been | 
 |  * disabled; or "cpu" is being hot-unplugged, and is already dead. | 
 |  */ | 
 | void lru_add_drain_cpu(int cpu) | 
 | { | 
 | 	struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu); | 
 |  | 
 | 	if (pagevec_count(pvec)) | 
 | 		__pagevec_lru_add(pvec); | 
 |  | 
 | 	pvec = &per_cpu(lru_rotate_pvecs, cpu); | 
 | 	if (pagevec_count(pvec)) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* No harm done if a racing interrupt already did this */ | 
 | 		local_irq_save(flags); | 
 | 		pagevec_move_tail(pvec); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 |  | 
 | 	pvec = &per_cpu(lru_deactivate_file_pvecs, cpu); | 
 | 	if (pagevec_count(pvec)) | 
 | 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); | 
 |  | 
 | 	activate_page_drain(cpu); | 
 | } | 
 |  | 
 | /** | 
 |  * deactivate_file_page - forcefully deactivate a file page | 
 |  * @page: page to deactivate | 
 |  * | 
 |  * This function hints the VM that @page is a good reclaim candidate, | 
 |  * for example if its invalidation fails due to the page being dirty | 
 |  * or under writeback. | 
 |  */ | 
 | void deactivate_file_page(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * In a workload with many unevictable page such as mprotect, | 
 | 	 * unevictable page deactivation for accelerating reclaim is pointless. | 
 | 	 */ | 
 | 	if (PageUnevictable(page)) | 
 | 		return; | 
 |  | 
 | 	if (likely(get_page_unless_zero(page))) { | 
 | 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs); | 
 |  | 
 | 		if (!pagevec_add(pvec, page)) | 
 | 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL); | 
 | 		put_cpu_var(lru_deactivate_file_pvecs); | 
 | 	} | 
 | } | 
 |  | 
 | void lru_add_drain(void) | 
 | { | 
 | 	lru_add_drain_cpu(get_cpu()); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void lru_add_drain_per_cpu(struct work_struct *dummy) | 
 | { | 
 | 	lru_add_drain(); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); | 
 |  | 
 | void lru_add_drain_all(void) | 
 | { | 
 | 	static DEFINE_MUTEX(lock); | 
 | 	static struct cpumask has_work; | 
 | 	int cpu; | 
 |  | 
 | 	mutex_lock(&lock); | 
 | 	get_online_cpus(); | 
 | 	cpumask_clear(&has_work); | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); | 
 |  | 
 | 		if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || | 
 | 		    pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || | 
 | 		    pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) || | 
 | 		    need_activate_page_drain(cpu)) { | 
 | 			INIT_WORK(work, lru_add_drain_per_cpu); | 
 | 			schedule_work_on(cpu, work); | 
 | 			cpumask_set_cpu(cpu, &has_work); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_cpu(cpu, &has_work) | 
 | 		flush_work(&per_cpu(lru_add_drain_work, cpu)); | 
 |  | 
 | 	put_online_cpus(); | 
 | 	mutex_unlock(&lock); | 
 | } | 
 |  | 
 | /** | 
 |  * release_pages - batched page_cache_release() | 
 |  * @pages: array of pages to release | 
 |  * @nr: number of pages | 
 |  * @cold: whether the pages are cache cold | 
 |  * | 
 |  * Decrement the reference count on all the pages in @pages.  If it | 
 |  * fell to zero, remove the page from the LRU and free it. | 
 |  */ | 
 | void release_pages(struct page **pages, int nr, bool cold) | 
 | { | 
 | 	int i; | 
 | 	LIST_HEAD(pages_to_free); | 
 | 	struct zone *zone = NULL; | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long uninitialized_var(flags); | 
 | 	unsigned int uninitialized_var(lock_batch); | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		struct page *page = pages[i]; | 
 |  | 
 | 		if (unlikely(PageCompound(page))) { | 
 | 			if (zone) { | 
 | 				spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 				zone = NULL; | 
 | 			} | 
 | 			put_compound_page(page); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make sure the IRQ-safe lock-holding time does not get | 
 | 		 * excessive with a continuous string of pages from the | 
 | 		 * same zone. The lock is held only if zone != NULL. | 
 | 		 */ | 
 | 		if (zone && ++lock_batch == SWAP_CLUSTER_MAX) { | 
 | 			spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			zone = NULL; | 
 | 		} | 
 |  | 
 | 		if (!put_page_testzero(page)) | 
 | 			continue; | 
 |  | 
 | 		if (PageLRU(page)) { | 
 | 			struct zone *pagezone = page_zone(page); | 
 |  | 
 | 			if (pagezone != zone) { | 
 | 				if (zone) | 
 | 					spin_unlock_irqrestore(&zone->lru_lock, | 
 | 									flags); | 
 | 				lock_batch = 0; | 
 | 				zone = pagezone; | 
 | 				spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 			} | 
 |  | 
 | 			lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 			VM_BUG_ON_PAGE(!PageLRU(page), page); | 
 | 			__ClearPageLRU(page); | 
 | 			del_page_from_lru_list(page, lruvec, page_off_lru(page)); | 
 | 		} | 
 |  | 
 | 		/* Clear Active bit in case of parallel mark_page_accessed */ | 
 | 		__ClearPageActive(page); | 
 |  | 
 | 		list_add(&page->lru, &pages_to_free); | 
 | 	} | 
 | 	if (zone) | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 |  | 
 | 	mem_cgroup_uncharge_list(&pages_to_free); | 
 | 	free_hot_cold_page_list(&pages_to_free, cold); | 
 | } | 
 | EXPORT_SYMBOL(release_pages); | 
 |  | 
 | /* | 
 |  * The pages which we're about to release may be in the deferred lru-addition | 
 |  * queues.  That would prevent them from really being freed right now.  That's | 
 |  * OK from a correctness point of view but is inefficient - those pages may be | 
 |  * cache-warm and we want to give them back to the page allocator ASAP. | 
 |  * | 
 |  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add() | 
 |  * and __pagevec_lru_add_active() call release_pages() directly to avoid | 
 |  * mutual recursion. | 
 |  */ | 
 | void __pagevec_release(struct pagevec *pvec) | 
 | { | 
 | 	lru_add_drain(); | 
 | 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); | 
 | 	pagevec_reinit(pvec); | 
 | } | 
 | EXPORT_SYMBOL(__pagevec_release); | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | /* used by __split_huge_page_refcount() */ | 
 | void lru_add_page_tail(struct page *page, struct page *page_tail, | 
 | 		       struct lruvec *lruvec, struct list_head *list) | 
 | { | 
 | 	const int file = 0; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 	VM_BUG_ON_PAGE(PageCompound(page_tail), page); | 
 | 	VM_BUG_ON_PAGE(PageLRU(page_tail), page); | 
 | 	VM_BUG_ON(NR_CPUS != 1 && | 
 | 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); | 
 |  | 
 | 	if (!list) | 
 | 		SetPageLRU(page_tail); | 
 |  | 
 | 	if (likely(PageLRU(page))) | 
 | 		list_add_tail(&page_tail->lru, &page->lru); | 
 | 	else if (list) { | 
 | 		/* page reclaim is reclaiming a huge page */ | 
 | 		get_page(page_tail); | 
 | 		list_add_tail(&page_tail->lru, list); | 
 | 	} else { | 
 | 		struct list_head *list_head; | 
 | 		/* | 
 | 		 * Head page has not yet been counted, as an hpage, | 
 | 		 * so we must account for each subpage individually. | 
 | 		 * | 
 | 		 * Use the standard add function to put page_tail on the list, | 
 | 		 * but then correct its position so they all end up in order. | 
 | 		 */ | 
 | 		add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); | 
 | 		list_head = page_tail->lru.prev; | 
 | 		list_move_tail(&page_tail->lru, list_head); | 
 | 	} | 
 |  | 
 | 	if (!PageUnevictable(page)) | 
 | 		update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, | 
 | 				 void *arg) | 
 | { | 
 | 	int file = page_is_file_cache(page); | 
 | 	int active = PageActive(page); | 
 | 	enum lru_list lru = page_lru(page); | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageLRU(page), page); | 
 |  | 
 | 	SetPageLRU(page); | 
 | 	add_page_to_lru_list(page, lruvec, lru); | 
 | 	update_page_reclaim_stat(lruvec, file, active); | 
 | 	trace_mm_lru_insertion(page, lru); | 
 | } | 
 |  | 
 | /* | 
 |  * Add the passed pages to the LRU, then drop the caller's refcount | 
 |  * on them.  Reinitialises the caller's pagevec. | 
 |  */ | 
 | void __pagevec_lru_add(struct pagevec *pvec) | 
 | { | 
 | 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL); | 
 | } | 
 | EXPORT_SYMBOL(__pagevec_lru_add); | 
 |  | 
 | /** | 
 |  * pagevec_lookup_entries - gang pagecache lookup | 
 |  * @pvec:	Where the resulting entries are placed | 
 |  * @mapping:	The address_space to search | 
 |  * @start:	The starting entry index | 
 |  * @nr_entries:	The maximum number of entries | 
 |  * @indices:	The cache indices corresponding to the entries in @pvec | 
 |  * | 
 |  * pagevec_lookup_entries() will search for and return a group of up | 
 |  * to @nr_entries pages and shadow entries in the mapping.  All | 
 |  * entries are placed in @pvec.  pagevec_lookup_entries() takes a | 
 |  * reference against actual pages in @pvec. | 
 |  * | 
 |  * The search returns a group of mapping-contiguous entries with | 
 |  * ascending indexes.  There may be holes in the indices due to | 
 |  * not-present entries. | 
 |  * | 
 |  * pagevec_lookup_entries() returns the number of entries which were | 
 |  * found. | 
 |  */ | 
 | unsigned pagevec_lookup_entries(struct pagevec *pvec, | 
 | 				struct address_space *mapping, | 
 | 				pgoff_t start, unsigned nr_pages, | 
 | 				pgoff_t *indices) | 
 | { | 
 | 	pvec->nr = find_get_entries(mapping, start, nr_pages, | 
 | 				    pvec->pages, indices); | 
 | 	return pagevec_count(pvec); | 
 | } | 
 |  | 
 | /** | 
 |  * pagevec_remove_exceptionals - pagevec exceptionals pruning | 
 |  * @pvec:	The pagevec to prune | 
 |  * | 
 |  * pagevec_lookup_entries() fills both pages and exceptional radix | 
 |  * tree entries into the pagevec.  This function prunes all | 
 |  * exceptionals from @pvec without leaving holes, so that it can be | 
 |  * passed on to page-only pagevec operations. | 
 |  */ | 
 | void pagevec_remove_exceptionals(struct pagevec *pvec) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) { | 
 | 		struct page *page = pvec->pages[i]; | 
 | 		if (!radix_tree_exceptional_entry(page)) | 
 | 			pvec->pages[j++] = page; | 
 | 	} | 
 | 	pvec->nr = j; | 
 | } | 
 |  | 
 | /** | 
 |  * pagevec_lookup - gang pagecache lookup | 
 |  * @pvec:	Where the resulting pages are placed | 
 |  * @mapping:	The address_space to search | 
 |  * @start:	The starting page index | 
 |  * @nr_pages:	The maximum number of pages | 
 |  * | 
 |  * pagevec_lookup() will search for and return a group of up to @nr_pages pages | 
 |  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a | 
 |  * reference against the pages in @pvec. | 
 |  * | 
 |  * The search returns a group of mapping-contiguous pages with ascending | 
 |  * indexes.  There may be holes in the indices due to not-present pages. | 
 |  * | 
 |  * pagevec_lookup() returns the number of pages which were found. | 
 |  */ | 
 | unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, | 
 | 		pgoff_t start, unsigned nr_pages) | 
 | { | 
 | 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); | 
 | 	return pagevec_count(pvec); | 
 | } | 
 | EXPORT_SYMBOL(pagevec_lookup); | 
 |  | 
 | unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, | 
 | 		pgoff_t *index, int tag, unsigned nr_pages) | 
 | { | 
 | 	pvec->nr = find_get_pages_tag(mapping, index, tag, | 
 | 					nr_pages, pvec->pages); | 
 | 	return pagevec_count(pvec); | 
 | } | 
 | EXPORT_SYMBOL(pagevec_lookup_tag); | 
 |  | 
 | /* | 
 |  * Perform any setup for the swap system | 
 |  */ | 
 | void __init swap_setup(void) | 
 | { | 
 | 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); | 
 | #ifdef CONFIG_SWAP | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_SWAPFILES; i++) | 
 | 		spin_lock_init(&swapper_spaces[i].tree_lock); | 
 | #endif | 
 |  | 
 | 	/* Use a smaller cluster for small-memory machines */ | 
 | 	if (megs < 16) | 
 | 		page_cluster = 2; | 
 | 	else | 
 | 		page_cluster = 3; | 
 | 	/* | 
 | 	 * Right now other parts of the system means that we | 
 | 	 * _really_ don't want to cluster much more | 
 | 	 */ | 
 | } |