blob: 065e0292e186c2ad2310d4de1aa2b9077dd5e229 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2019, Google Inc.
*
* camera_device.cpp - libcamera Android Camera Device
*/
#include "camera_device.h"
#include "log.h"
#include "utils.h"
#include "camera_metadata.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL);
/*
* \struct Camera3RequestDescriptor
*
* A utility structure that groups information about a capture request to be
* later re-used at request complete time to notify the framework.
*/
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
unsigned int frameNumber, unsigned int numBuffers)
: frameNumber(frameNumber), numBuffers(numBuffers)
{
buffers = new camera3_stream_buffer_t[numBuffers];
}
CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
{
delete[] buffers;
}
/*
* \class CameraDevice
*
* The CameraDevice class wraps a libcamera::Camera instance, and implements
* the camera_device_t interface by handling RPC requests received from its
* associated CameraProxy.
*
* It translate parameters and operations from Camera HALv3 API to the libcamera
* ones to provide static information for a Camera, create request templates
* for it, process capture requests and then deliver capture results back
* to the framework using the designated callbacks.
*/
CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
: running_(false), camera_(camera), staticMetadata_(nullptr)
{
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
}
CameraDevice::~CameraDevice()
{
if (staticMetadata_)
delete staticMetadata_;
for (auto &it : requestTemplates_)
delete it.second;
}
int CameraDevice::open()
{
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to acquire the camera";
return ret;
}
return 0;
}
void CameraDevice::close()
{
camera_->stop();
camera_->freeBuffers();
camera_->release();
running_ = false;
}
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
callbacks_ = callbacks;
}
/*
* Return static information for the camera.
*/
camera_metadata_t *CameraDevice::getStaticMetadata()
{
if (staticMetadata_)
return staticMetadata_->get();
/*
* The here reported metadata are enough to implement a basic capture
* example application, but a real camera implementation will require
* more.
*/
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 50 entries, 666 bytes
*/
staticMetadata_ = new CameraMetadata(50, 700);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
/* Color correction static metadata. */
std::vector<uint8_t> aberrationModes = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
aberrationModes.data(),
aberrationModes.size());
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes.data(),
aeAvailableAntiBandingModes.size());
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes.data(),
aeAvailableModes.size());
std::vector<int32_t> availableAeFpsTarget = {
15, 30,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget.data(),
availableAeFpsTarget.size());
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange.data(),
aeCompensationRange.size());
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep, 1);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes.data(),
availableAfModes.size());
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects.data(),
availableEffects.size());
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes.data(),
availableSceneModes.size());
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes.data(),
availableStabilizationModes.size());
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes.data(),
availableAwbModes.size());
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions.data(),
availableMaxRegions.size());
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride.data(),
sceneModesOverride.size());
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
&aeLockAvailable, 1);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
&awbLockAvailable, 1);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
&availableControlModes, 1);
/* JPEG static metadata. */
std::vector<int32_t> availableThumbnailSizes = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
availableThumbnailSizes.data(),
availableThumbnailSizes.size());
/* Sensor static metadata. */
int32_t pixelArraySize[] = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
&pixelArraySize, 2);
int32_t sensorSizes[] = {
0, 0, 2560, 1920,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
&sensorSizes, 4);
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
&sensitivityRange, 2);
uint16_t filterArr = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_GRBG;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&filterArr, 1);
int64_t exposureTimeRange[] = {
100000, 200000000,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
&exposureTimeRange, 2);
int32_t orientation = 0;
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION,
&orientation, 1);
std::vector<int32_t> testPatterModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatterModes.data(),
testPatterModes.size());
std::vector<float> physicalSize = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize.data(),
physicalSize.size());
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
&timestampSource, 1);
/* Statistics static metadata. */
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
&faceDetectMode, 1);
int32_t maxFaceCount = 0;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
&maxFaceCount, 1);
/* Sync static metadata. */
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
&flashAvailable, 1);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures.data(),
lensApertures.size());
uint8_t lensFacing = ANDROID_LENS_FACING_FRONT;
staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);
std::vector<float> lensFocalLenghts = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLenghts.data(),
lensFocalLenghts.size());
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations.data(),
opticalStabilizations.size());
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
&hypeFocalDistance, 1);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
&minFocusDistance, 1);
/* Noise reduction modes. */
uint8_t noiseReductionModes = ANDROID_NOISE_REDUCTION_MODE_OFF;
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
&noiseReductionModes, 1);
/* Scaler static metadata. */
float maxDigitalZoom = 1;
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
&maxDigitalZoom, 1);
std::vector<uint32_t> availableStreamFormats = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB,
ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888,
ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_FORMATS,
availableStreamFormats.data(),
availableStreamFormats.size());
std::vector<uint32_t> availableStreamConfigurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888, 2560, 1920,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED, 2560, 1920,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations.data(),
availableStreamConfigurations.size());
std::vector<int64_t> availableStallDurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations.data(),
availableStallDurations.size());
std::vector<int64_t> minFrameDurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED, 2560, 1920, 33333333,
ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888, 2560, 1920, 33333333,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations.data(),
minFrameDurations.size());
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
/* Info static metadata. */
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
&supportedHWLevel, 1);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
&partialResultCount, 1);
uint8_t maxPipelineDepth = 2;
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
&maxPipelineDepth, 1);
std::vector<uint8_t> availableCapabilities = {
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
availableCapabilities.data(),
availableCapabilities.size());
std::vector<int32_t> availableCharacteristicsKeys = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_FORMATS,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
availableCharacteristicsKeys.data(),
availableCharacteristicsKeys.size());
std::vector<int32_t> availableRequestKeys = {
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_FLASH_MODE,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
availableRequestKeys.data(),
availableRequestKeys.size());
std::vector<int32_t> availableResultKeys = {
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_LENS_STATE,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
availableResultKeys.data(),
availableResultKeys.size());
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
return staticMetadata_->get();
}
/*
* Produce a metadata pack to be used as template for a capture request.
*/
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
auto it = requestTemplates_.find(type);
if (it != requestTemplates_.end())
return it->second->get();
/* Use the capture intent matching the requested template type. */
uint8_t captureIntent;
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
break;
case CAMERA3_TEMPLATE_MANUAL:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
break;
default:
LOG(HAL, Error) << "Invalid template request type: " << type;
return nullptr;
}
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 12 entries, 15 bytes
*/
CameraMetadata *requestTemplate = new CameraMetadata(15, 20);
if (!requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to allocate template metadata";
delete requestTemplate;
return nullptr;
}
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
&aeMode, 1);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
&aeExposureCompensation, 1);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
&aePrecaptureTrigger, 1);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
&aeLock, 1);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
&afTrigger, 1);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
&awbMode, 1);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
&awbLock, 1);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE,
&flashMode, 1);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
&faceDetectMode, 1);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
&noiseReduction, 1);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
&aberrationMode, 1);
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
&captureIntent, 1);
if (!requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to construct request template";
delete requestTemplate;
return nullptr;
}
requestTemplates_[type] = requestTemplate;
return requestTemplate->get();
}
/*
* Inspect the stream_list to produce a list of StreamConfiguration to
* be use to configure the Camera.
*/
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
camera3_stream_t *stream = stream_list->streams[i];
LOG(HAL, Info) << "Stream #" << i
<< ", direction: " << stream->stream_type
<< ", width: " << stream->width
<< ", height: " << stream->height
<< ", format: " << utils::hex(stream->format);
}
/* Hardcode viewfinder role, collecting sizes from the stream config. */
if (stream_list->num_streams != 1) {
LOG(HAL, Error) << "Only one stream supported";
return -EINVAL;
}
StreamRoles roles = { StreamRole::Viewfinder };
config_ = camera_->generateConfiguration(roles);
if (!config_ || config_->empty()) {
LOG(HAL, Error) << "Failed to generate camera configuration";
return -EINVAL;
}
/* Only one stream is supported. */
camera3_stream_t *camera3Stream = stream_list->streams[0];
StreamConfiguration *streamConfiguration = &config_->at(0);
streamConfiguration->size.width = camera3Stream->width;
streamConfiguration->size.height = camera3Stream->height;
streamConfiguration->memoryType = ExternalMemory;
/*
* \todo We'll need to translate from Android defined pixel format codes
* to the libcamera image format codes. For now, do not change the
* format returned from Camera::generateConfiguration().
*/
switch (config_->validate()) {
case CameraConfiguration::Valid:
break;
case CameraConfiguration::Adjusted:
LOG(HAL, Info) << "Camera configuration adjusted";
config_.reset();
return -EINVAL;
case CameraConfiguration::Invalid:
LOG(HAL, Info) << "Camera configuration invalid";
config_.reset();
return -EINVAL;
}
camera3Stream->max_buffers = streamConfiguration->bufferCount;
/*
* Once the CameraConfiguration has been adjusted/validated
* it can be applied to the camera.
*/
int ret = camera_->configure(config_.get());
if (ret) {
LOG(HAL, Error) << "Failed to configure camera '"
<< camera_->name() << "'";
return ret;
}
return 0;
}
void CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
StreamConfiguration *streamConfiguration = &config_->at(0);
Stream *stream = streamConfiguration->stream();
if (camera3Request->num_output_buffers != 1) {
LOG(HAL, Error) << "Invalid number of output buffers: "
<< camera3Request->num_output_buffers;
return;
}
/* Start the camera if that's the first request we handle. */
if (!running_) {
int ret = camera_->allocateBuffers();
if (ret) {
LOG(HAL, Error) << "Failed to allocate buffers";
return;
}
ret = camera_->start();
if (ret) {
LOG(HAL, Error) << "Failed to start camera";
camera_->freeBuffers();
return;
}
running_ = true;
}
/*
* Queue a request for the Camera with the provided dmabuf file
* descriptors.
*/
const camera3_stream_buffer_t *camera3Buffers =
camera3Request->output_buffers;
/*
* Save the request descriptors for use at completion time.
* The descriptor and the associated memory reserved here are freed
* at request complete time.
*/
Camera3RequestDescriptor *descriptor =
new Camera3RequestDescriptor(camera3Request->frame_number,
camera3Request->num_output_buffers);
for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
/*
* Keep track of which stream the request belongs to and store
* the native buffer handles.
*
* \todo Currently we only support one capture buffer. Copy
* all of them to be ready once we'll support more.
*/
descriptor->buffers[i].stream = camera3Buffers[i].stream;
descriptor->buffers[i].buffer = camera3Buffers[i].buffer;
}
/*
* Create a libcamera buffer using the dmabuf descriptors of the first
* and (currently) only supported request buffer.
*/
const buffer_handle_t camera3Handle = *camera3Buffers[0].buffer;
std::array<int, 3> fds = {
camera3Handle->data[0],
camera3Handle->data[1],
camera3Handle->data[2],
};
std::unique_ptr<Buffer> buffer = stream->createBuffer(fds);
if (!buffer) {
LOG(HAL, Error) << "Failed to create buffer";
delete descriptor;
return;
}
Request *request =
camera_->createRequest(reinterpret_cast<uint64_t>(descriptor));
request->addBuffer(std::move(buffer));
int ret = camera_->queueRequest(request);
if (ret) {
LOG(HAL, Error) << "Failed to queue request";
goto error;
}
return;
error:
delete request;
delete descriptor;
}
void CameraDevice::requestComplete(Request *request)
{
const std::map<Stream *, Buffer *> &buffers = request->buffers();
Buffer *libcameraBuffer = buffers.begin()->second;
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
std::unique_ptr<CameraMetadata> resultMetadata;
if (request->status() != Request::RequestComplete) {
LOG(HAL, Error) << "Request not succesfully completed: "
<< request->status();
status = CAMERA3_BUFFER_STATUS_ERROR;
}
/* Prepare to call back the Android camera stack. */
Camera3RequestDescriptor *descriptor =
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
camera3_capture_result_t captureResult = {};
captureResult.frame_number = descriptor->frameNumber;
captureResult.num_output_buffers = descriptor->numBuffers;
for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
/*
* \todo Currently we only support one capture buffer. Prepare
* all of them to be ready once we'll support more.
*/
descriptor->buffers[i].acquire_fence = -1;
descriptor->buffers[i].release_fence = -1;
descriptor->buffers[i].status = status;
}
captureResult.output_buffers =
const_cast<const camera3_stream_buffer_t *>(descriptor->buffers);
if (status == CAMERA3_BUFFER_STATUS_OK) {
notifyShutter(descriptor->frameNumber,
libcameraBuffer->timestamp());
captureResult.partial_result = 1;
resultMetadata = getResultMetadata(descriptor->frameNumber,
libcameraBuffer->timestamp());
captureResult.result = resultMetadata->get();
}
if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
/* \todo Improve error handling. In case we notify an error
* because the metadata generation fails, a shutter event has
* already been notified for this frame number before the error
* is here signalled. Make sure the error path plays well with
* the camera stack state machine.
*/
notifyError(descriptor->frameNumber,
descriptor->buffers[0].stream);
}
callbacks_->process_capture_result(callbacks_, &captureResult);
delete descriptor;
}
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_SHUTTER;
notify.message.shutter.frame_number = frameNumber;
notify.message.shutter.timestamp = timestamp;
callbacks_->notify(callbacks_, &notify);
}
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_ERROR;
notify.message.error.error_stream = stream;
notify.message.error.frame_number = frameNumber;
notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
callbacks_->notify(callbacks_, &notify);
}
/*
* Produce a set of fixed result metadata.
*/
std::unique_ptr<CameraMetadata> CameraDevice::getResultMetadata(int frame_number,
int64_t timestamp)
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 12 entries, 36 bytes
*/
std::unique_ptr<CameraMetadata> resultMetadata =
utils::make_unique<CameraMetadata>(15, 50);
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
return nullptr;
}
const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &ae_state, 1);
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &af_state, 1);
const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &awb_state, 1);
const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &awb_lock, 1);
const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
resultMetadata->addEntry(ANDROID_LENS_STATE, &lens_state, 1);
int32_t sensorSizes[] = {
0, 0, 2560, 1920,
};
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, sensorSizes, 4);
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, &timestamp, 1);
/* 33.3 msec */
const int64_t rolling_shutter_skew = 33300000;
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
&rolling_shutter_skew, 1);
/* 16.6 msec */
const int64_t exposure_time = 16600000;
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
const uint8_t lens_shading_map_mode =
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
&lens_shading_map_mode, 1);
const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
&scene_flicker, 1);
/*
* Return the result metadata pack even is not valid: get() will return
* nullptr.
*/
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to construct result metadata";
}
return resultMetadata;
}