blob: 29bbd209835f7f92424f8bd974fe7dbe75bec0a6 [file] [log] [blame]
/**@file
@brief Test baudrate calculator code
@author Thomas Jarosch and Uwe Bonnes
*/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU Lesser General Public License *
* version 2.1 as published by the Free Software Foundation; *
* *
***************************************************************************/
#include <ftdi.h>
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <boost/foreach.hpp>
#include <vector>
#include <map>
#include <math.h>
using namespace std;
extern "C" int convert_baudrate_UT_export(int baudrate, struct ftdi_context *ftdi,
unsigned short *value, unsigned short *index);
/// Basic initialization of libftdi for every test
class BaseFTDIFixture
{
protected:
ftdi_context *ftdi;
public:
BaseFTDIFixture()
: ftdi(NULL)
{
ftdi = ftdi_new();
}
virtual ~BaseFTDIFixture()
{
delete ftdi;
ftdi = NULL;
}
};
BOOST_FIXTURE_TEST_SUITE(Baudrate, BaseFTDIFixture)
/// Helper class to store the convert_baudrate_UT_export result
struct calc_result
{
int actual_baudrate;
unsigned short divisor;
unsigned short fractional_bits;
unsigned short clock;
calc_result(int actual, unsigned short my_divisor, unsigned short my_fractional_bits, unsigned short my_clock)
: actual_baudrate(actual)
, divisor(my_divisor)
, fractional_bits(my_fractional_bits)
, clock(my_clock)
{
}
calc_result()
: actual_baudrate(0)
, divisor(0)
, fractional_bits(0)
, clock(0)
{
}
};
/**
* @brief Test convert_baudrate code against a list of baud rates
*
* @param baudrates Baudrates to check
**/
static void test_baudrates(ftdi_context *ftdi, const map<int, calc_result> &baudrates)
{
typedef std::pair<int, calc_result> baudrate_type;
BOOST_FOREACH(const baudrate_type &baudrate, baudrates)
{
unsigned short calc_value = 0, calc_index = 0;
int calc_baudrate = convert_baudrate_UT_export(baudrate.first, ftdi, &calc_value, &calc_index);
const calc_result *res = &baudrate.second;
unsigned short divisor = calc_value & 0x3fff;
unsigned short fractional_bits = (calc_value >> 14);
unsigned short clock = (calc_index & 0x200) ? 120 : 48;
switch (ftdi->type)
{
case TYPE_232H:
case TYPE_2232H:
case TYPE_4232H:
fractional_bits |= (calc_index & 0x100) ? 4 : 0;
break;
case TYPE_R:
case TYPE_2232C:
case TYPE_BM:
fractional_bits |= (calc_index & 0x001) ? 4 : 0;
break;
default:;
}
// Aid debugging since this test is a generic function
BOOST_CHECK_MESSAGE(res->actual_baudrate == calc_baudrate && res->divisor == divisor && res->fractional_bits == fractional_bits
&& res->clock == clock,
"\n\nERROR: baudrate calculation failed for --" << baudrate.first << " baud--. Details below: ");
BOOST_CHECK_EQUAL(res->actual_baudrate, calc_baudrate);
BOOST_CHECK_EQUAL(res->divisor, divisor);
BOOST_CHECK_EQUAL(res->fractional_bits, fractional_bits);
BOOST_CHECK_EQUAL(res->clock, clock);
}
}
BOOST_AUTO_TEST_CASE(TypeAMFixedBaudrates)
{
ftdi->type = TYPE_AM;
map<int, calc_result> baudrates;
baudrates[183] = calc_result(183, 16383, 0, 48);
baudrates[300] = calc_result(300, 10000, 0, 48);
baudrates[600] = calc_result(600, 5000, 0, 48);
baudrates[1200] = calc_result(1200, 2500, 0, 48);
baudrates[2400] = calc_result(2400, 1250, 0, 48);
baudrates[4800] = calc_result(4800, 625, 0, 48);
baudrates[9600] = calc_result(9600, 312, 1, 48);
baudrates[19200] = calc_result(19200, 156, 2, 48);
baudrates[38400] = calc_result(38400, 78, 3, 48);
baudrates[57600] = calc_result(57554, 52, 3, 48);
baudrates[115200] = calc_result(115385, 26, 0, 48);
baudrates[230400] = calc_result(230769, 13, 0, 48);
baudrates[460800] = calc_result(461538, 6, 1, 48);
baudrates[921600] = calc_result(923077, 3, 2, 48);
baudrates[1000000] = calc_result(1000000, 3, 0, 48);
baudrates[1090512] = calc_result(1000000, 3, 0, 48);
baudrates[1090909] = calc_result(1000000, 3, 0, 48);
baudrates[1090910] = calc_result(1000000, 3, 0, 48);
baudrates[1200000] = calc_result(1200000, 2, 1, 48);
baudrates[1333333] = calc_result(1333333, 2, 2, 48);
baudrates[1411764] = calc_result(1411765, 2, 3, 48);
baudrates[1500000] = calc_result(1500000, 2, 0, 48);
baudrates[2000000] = calc_result(1500000, 2, 0, 48);
baudrates[3000000] = calc_result(3000000, 0, 0, 48);
test_baudrates(ftdi, baudrates);
}
BOOST_AUTO_TEST_CASE(TypeBMFixedBaudrates)
{
// Unify testing of chips behaving the same
std::vector<enum ftdi_chip_type> test_types;
test_types.push_back(TYPE_BM);
test_types.push_back(TYPE_2232C);
test_types.push_back(TYPE_R);
map<int, calc_result> baudrates;
baudrates[183] = calc_result(183, 16383, 7, 48);
baudrates[184] = calc_result(184, 16304, 4, 48);
baudrates[300] = calc_result(300, 10000, 0, 48);
baudrates[600] = calc_result(600, 5000, 0, 48);
baudrates[1200] = calc_result(1200, 2500, 0, 48);
baudrates[2400] = calc_result(2400, 1250, 0, 48);
baudrates[4800] = calc_result(4800, 625, 0, 48);
baudrates[9600] = calc_result(9600, 312, 1, 48);
baudrates[19200] = calc_result(19200, 156, 2, 48);
baudrates[38400] = calc_result(38400, 78, 3, 48);
baudrates[57600] = calc_result(57554, 52, 3, 48);
baudrates[115200] = calc_result(115385, 26, 0, 48);
baudrates[230400] = calc_result(230769, 13, 0, 48);
baudrates[460800] = calc_result(461538, 6, 1, 48);
baudrates[921600] = calc_result(923077, 3, 2, 48);
baudrates[1000000] = calc_result(1000000, 3, 0, 48);
baudrates[1050000] = calc_result(1043478, 2, 7, 48);
baudrates[1400000] = calc_result(1411765, 2, 3, 48);
baudrates[1500000] = calc_result(1500000, 2, 0, 48);
baudrates[2000000] = calc_result(2000000, 1, 0, 48);
baudrates[3000000] = calc_result(3000000, 0, 0, 48);
baudrates[(3000000*16/(2*16+15))-1] = calc_result(round(3000000/3.000), 3, 0, 48);
baudrates[ 3000000*16/(2*16+15) ] = calc_result(round(3000000/3.000), 3, 0, 48);
baudrates[(3000000*16/(2*16+15))+1] = calc_result(round(3000000/2.875), 2, 7, 48);
baudrates[ 3000000*16/(2*16+13) ] = calc_result(round(3000000/2.875), 2, 7, 48);
baudrates[(3000000*16/(2*16+13))+1] = calc_result(round(3000000/2.750), 2, 6, 48);
baudrates[ 3000000*16/(2*16+11) ] = calc_result(round(3000000/2.750), 2, 6, 48);
baudrates[(3000000*16/(2*16+11))+1] = calc_result(round(3000000/2.625), 2, 5, 48);
baudrates[ 3000000*16/(2*16+ 9) ] = calc_result(round(3000000/2.625), 2, 5, 48);
baudrates[(3000000*16/(2*16+ 9))+1] = calc_result(round(3000000/2.500), 2, 1, 48);
baudrates[ 3000000*16/(2*16+ 7) ] = calc_result(round(3000000/2.500), 2, 1, 48);
baudrates[(3000000*16/(2*16+ 7))+1] = calc_result(round(3000000/2.375), 2, 4, 48);
baudrates[ 3000000*16/(2*16+ 5) ] = calc_result(round(3000000/2.375), 2, 4, 48);
baudrates[(3000000*16/(2*16+ 5))+1] = calc_result(round(3000000/2.250), 2, 2, 48);
baudrates[ 3000000*16/(2*16+ 3) ] = calc_result(round(3000000/2.250), 2, 2, 48);
baudrates[(3000000*16/(2*16+ 3))+1] = calc_result(round(3000000/2.125), 2, 3, 48);
baudrates[ 3000000*16/(2*16+ 1) ] = calc_result(round(3000000/2.125), 2, 3, 48);
baudrates[(3000000*16/(2*16+ 1))+1] = calc_result(round(3000000/2.000), 2, 0, 48);
BOOST_FOREACH(const enum ftdi_chip_type &test_chip_type, test_types)
{
ftdi->type = test_chip_type;
test_baudrates(ftdi, baudrates);
}
}
BOOST_AUTO_TEST_CASE(TypeHFixedBaudrates)
{
// Unify testing of chips behaving the same
std::vector<enum ftdi_chip_type> test_types;
test_types.push_back(TYPE_2232H);
test_types.push_back(TYPE_4232H);
test_types.push_back(TYPE_232H);
map<int, calc_result> baudrates;
baudrates[183] = calc_result(183, 16383, 7, 48);
baudrates[184] = calc_result(184, 16304, 4, 48);
baudrates[300] = calc_result(300, 10000, 0, 48);
baudrates[600] = calc_result(600, 5000, 0, 48);
baudrates[1200] = calc_result(1200, 10000, 0, 120);
baudrates[2400] = calc_result(2400, 5000, 0, 120);
baudrates[4800] = calc_result(4800, 2500, 0, 120);
baudrates[9600] = calc_result(9600, 1250, 0, 120);
baudrates[19200] = calc_result(19200, 625, 0, 120);
baudrates[38400] = calc_result(38400, 312, 1, 120);
baudrates[57600] = calc_result(57588, 208, 4, 120);
baudrates[115200] = calc_result(115246, 104, 3, 120);
baudrates[230400] = calc_result(230216, 52, 3, 120);
baudrates[460800] = calc_result(461538, 26, 0, 120);
baudrates[921600] = calc_result(923077, 13, 0, 120);
baudrates[1000000] = calc_result(1000000, 12, 0, 120);
baudrates[1000000] = calc_result(1000000, 12, 0, 120);
baudrates[6000000] = calc_result(6000000, 2, 0, 120);
baudrates[4173913] = calc_result(4173913, 2, 7, 120);
baudrates[8000000] = calc_result(8000000, 1, 0, 120);
baudrates[12000000] = calc_result(12000000, 0, 0, 120);
baudrates[(12000000*16/(2*16+15))-1] = calc_result(round(12000000/3.000), 3, 0, 120);
baudrates[ 12000000*16/(2*16+15) ] = calc_result(round(12000000/3.000), 3, 0, 120);
baudrates[(12000000*16/(2*16+15))+1] = calc_result(round(12000000/2.875), 2, 7, 120);
baudrates[ 12000000*16/(2*16+13) ] = calc_result(round(12000000/2.875), 2, 7, 120);
baudrates[(12000000*16/(2*16+13))+1] = calc_result(round(12000000/2.750), 2, 6, 120);
baudrates[ 12000000*16/(2*16+11) ] = calc_result(round(12000000/2.750), 2, 6, 120);
baudrates[(12000000*16/(2*16+11))+1] = calc_result(round(12000000/2.625), 2, 5, 120);
baudrates[ 12000000*16/(2*16+ 9) ] = calc_result(round(12000000/2.625), 2, 5, 120);
baudrates[(12000000*16/(2*16+ 9))+1] = calc_result(round(12000000/2.500), 2, 1, 120);
baudrates[ 12000000*16/(2*16+ 7) ] = calc_result(round(12000000/2.500), 2, 1, 120);
baudrates[(12000000*16/(2*16+ 7))+1] = calc_result(round(12000000/2.375), 2, 4, 120);
baudrates[ 12000000*16/(2*16+ 5) ] = calc_result(round(12000000/2.375), 2, 4, 120);
baudrates[(12000000*16/(2*16+ 5))+1] = calc_result(round(12000000/2.250), 2, 2, 120);
baudrates[ 12000000*16/(2*16+ 3) ] = calc_result(round(12000000/2.250), 2, 2, 120);
baudrates[(12000000*16/(2*16+ 3))+1] = calc_result(round(12000000/2.125), 2, 3, 120);
baudrates[ 12000000*16/(2*16+ 1) ] = calc_result(round(12000000/2.125), 2, 3, 120);
baudrates[(12000000*16/(2*16+ 1))+1] = calc_result(round(12000000/2.000), 2, 0, 120);
BOOST_FOREACH(const enum ftdi_chip_type &test_chip_type, test_types)
{
ftdi->type = test_chip_type;
test_baudrates(ftdi, baudrates);
}
}
BOOST_AUTO_TEST_SUITE_END()