blob: e0709cae31b500ee63db69dabb4b353dba0d14c1 [file] [log] [blame]
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ASIX SIGMA/SIGMA2 logic analyzer driver
*/
#include <config.h>
#include "protocol.h"
/*
* The ASIX Sigma supports arbitrary integer frequency divider in
* the 50MHz mode. The divider is in range 1...256 , allowing for
* very precise sampling rate selection. This driver supports only
* a subset of the sampling rates.
*/
SR_PRIV const uint64_t samplerates[] = {
SR_KHZ(200), /* div=250 */
SR_KHZ(250), /* div=200 */
SR_KHZ(500), /* div=100 */
SR_MHZ(1), /* div=50 */
SR_MHZ(5), /* div=10 */
SR_MHZ(10), /* div=5 */
SR_MHZ(25), /* div=2 */
SR_MHZ(50), /* div=1 */
SR_MHZ(100), /* Special FW needed */
SR_MHZ(200), /* Special FW needed */
};
SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
static const char sigma_firmware_files[][24] = {
/* 50 MHz, supports 8 bit fractions */
"asix-sigma-50.fw",
/* 100 MHz */
"asix-sigma-100.fw",
/* 200 MHz */
"asix-sigma-200.fw",
/* Synchronous clock from pin */
"asix-sigma-50sync.fw",
/* Frequency counter */
"asix-sigma-phasor.fw",
};
static int sigma_read(void *buf, size_t size, struct dev_context *devc)
{
int ret;
ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
sr_err("ftdi_read_data failed: %s",
ftdi_get_error_string(&devc->ftdic));
}
return ret;
}
static int sigma_write(void *buf, size_t size, struct dev_context *devc)
{
int ret;
ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
sr_err("ftdi_write_data failed: %s",
ftdi_get_error_string(&devc->ftdic));
} else if ((size_t) ret != size) {
sr_err("ftdi_write_data did not complete write.");
}
return ret;
}
/*
* NOTE: We chose the buffer size to be large enough to hold any write to the
* device. We still print a message just in case.
*/
SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
struct dev_context *devc)
{
size_t i;
uint8_t buf[80];
int idx = 0;
if ((2 * len + 2) > sizeof(buf)) {
sr_err("Attempted to write %zu bytes, but buffer is too small.",
len);
return SR_ERR_BUG;
}
buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
for (i = 0; i < len; i++) {
buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
}
return sigma_write(buf, idx, devc);
}
SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
{
return sigma_write_register(reg, &value, 1, devc);
}
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
struct dev_context *devc)
{
uint8_t buf[3];
buf[0] = REG_ADDR_LOW | (reg & 0xf);
buf[1] = REG_ADDR_HIGH | (reg >> 4);
buf[2] = REG_READ_ADDR;
sigma_write(buf, sizeof(buf), devc);
return sigma_read(data, len, devc);
}
static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
{
uint8_t value;
if (1 != sigma_read_register(reg, &value, 1, devc)) {
sr_err("sigma_get_register: 1 byte expected");
return 0;
}
return value;
}
static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
struct dev_context *devc)
{
uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
};
uint8_t result[6];
sigma_write(buf, sizeof(buf), devc);
sigma_read(result, sizeof(result), devc);
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
/* Not really sure why this must be done, but according to spec. */
if ((--*stoppos & 0x1ff) == 0x1ff)
*stoppos -= 64;
if ((*--triggerpos & 0x1ff) == 0x1ff)
*triggerpos -= 64;
return 1;
}
static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
uint8_t *data, struct dev_context *devc)
{
size_t i;
uint8_t buf[4096];
int idx;
/* Send the startchunk. Index start with 1. */
idx = 0;
buf[idx++] = startchunk >> 8;
buf[idx++] = startchunk & 0xff;
sigma_write_register(WRITE_MEMROW, buf, idx, devc);
/* Read the DRAM. */
idx = 0;
buf[idx++] = REG_DRAM_BLOCK;
buf[idx++] = REG_DRAM_WAIT_ACK;
for (i = 0; i < numchunks; i++) {
/* Alternate bit to copy from DRAM to cache. */
if (i != (numchunks - 1))
buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
if (i != (numchunks - 1))
buf[idx++] = REG_DRAM_WAIT_ACK;
}
sigma_write(buf, idx, devc);
return sigma_read(data, numchunks * CHUNK_SIZE, devc);
}
/* Upload trigger look-up tables to Sigma. */
SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
{
int i;
uint8_t tmp[2];
uint16_t bit;
/* Transpose the table and send to Sigma. */
for (i = 0; i < 16; i++) {
bit = 1 << i;
tmp[0] = tmp[1] = 0;
if (lut->m2d[0] & bit)
tmp[0] |= 0x01;
if (lut->m2d[1] & bit)
tmp[0] |= 0x02;
if (lut->m2d[2] & bit)
tmp[0] |= 0x04;
if (lut->m2d[3] & bit)
tmp[0] |= 0x08;
if (lut->m3 & bit)
tmp[0] |= 0x10;
if (lut->m3s & bit)
tmp[0] |= 0x20;
if (lut->m4 & bit)
tmp[0] |= 0x40;
if (lut->m0d[0] & bit)
tmp[1] |= 0x01;
if (lut->m0d[1] & bit)
tmp[1] |= 0x02;
if (lut->m0d[2] & bit)
tmp[1] |= 0x04;
if (lut->m0d[3] & bit)
tmp[1] |= 0x08;
if (lut->m1d[0] & bit)
tmp[1] |= 0x10;
if (lut->m1d[1] & bit)
tmp[1] |= 0x20;
if (lut->m1d[2] & bit)
tmp[1] |= 0x40;
if (lut->m1d[3] & bit)
tmp[1] |= 0x80;
sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
devc);
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
}
/* Send the parameters */
sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
sizeof(lut->params), devc);
return SR_OK;
}
SR_PRIV void sigma_clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
ftdi_deinit(&devc->ftdic);
}
/*
* Configure the FPGA for bitbang mode.
* This sequence is documented in section 2. of the ASIX Sigma programming
* manual. This sequence is necessary to configure the FPGA in the Sigma
* into Bitbang mode, in which it can be programmed with the firmware.
*/
static int sigma_fpga_init_bitbang(struct dev_context *devc)
{
uint8_t suicide[] = {
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
};
uint8_t init_array[] = {
0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01,
};
int i, ret, timeout = (10 * 1000);
uint8_t data;
/* Section 2. part 1), do the FPGA suicide. */
sigma_write(suicide, sizeof(suicide), devc);
sigma_write(suicide, sizeof(suicide), devc);
sigma_write(suicide, sizeof(suicide), devc);
sigma_write(suicide, sizeof(suicide), devc);
/* Section 2. part 2), do pulse on D1. */
sigma_write(init_array, sizeof(init_array), devc);
ftdi_usb_purge_buffers(&devc->ftdic);
/* Wait until the FPGA asserts D6/INIT_B. */
for (i = 0; i < timeout; i++) {
ret = sigma_read(&data, 1, devc);
if (ret < 0)
return ret;
/* Test if pin D6 got asserted. */
if (data & (1 << 5))
return 0;
/* The D6 was not asserted yet, wait a bit. */
g_usleep(10 * 1000);
}
return SR_ERR_TIMEOUT;
}
/*
* Configure the FPGA for logic-analyzer mode.
*/
static int sigma_fpga_init_la(struct dev_context *devc)
{
/* Initialize the logic analyzer mode. */
uint8_t mode_regval = WMR_SDRAMINIT;
uint8_t logic_mode_start[] = {
REG_ADDR_LOW | (READ_ID & 0xf),
REG_ADDR_HIGH | (READ_ID >> 4),
REG_READ_ADDR, /* Read ID register. */
REG_ADDR_LOW | (WRITE_TEST & 0xf),
REG_DATA_LOW | 0x5,
REG_DATA_HIGH_WRITE | 0x5,
REG_READ_ADDR, /* Read scratch register. */
REG_DATA_LOW | 0xa,
REG_DATA_HIGH_WRITE | 0xa,
REG_READ_ADDR, /* Read scratch register. */
REG_ADDR_LOW | (WRITE_MODE & 0xf),
REG_DATA_LOW | (mode_regval & 0xf),
REG_DATA_HIGH_WRITE | (mode_regval >> 4),
};
uint8_t result[3];
int ret;
/* Initialize the logic analyzer mode. */
sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
/* Expect a 3 byte reply since we issued three READ requests. */
ret = sigma_read(result, 3, devc);
if (ret != 3)
goto err;
if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
goto err;
return SR_OK;
err:
sr_err("Configuration failed. Invalid reply received.");
return SR_ERR;
}
/*
* Read the firmware from a file and transform it into a series of bitbang
* pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
* by the caller of this function.
*/
static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
uint8_t **bb_cmd, gsize *bb_cmd_size)
{
size_t i, file_size, bb_size;
char *firmware;
uint8_t *bb_stream, *bbs;
uint32_t imm;
int bit, v;
int ret = SR_OK;
/* Retrieve the on-disk firmware file content. */
firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
name, &file_size, 256 * 1024);
if (!firmware)
return SR_ERR;
/* Unscramble the file content (XOR with "random" sequence). */
imm = 0x3f6df2ab;
for (i = 0; i < file_size; i++) {
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
firmware[i] ^= imm & 0xff;
}
/*
* Generate a sequence of bitbang samples. With two samples per
* FPGA configuration bit, providing the level for the DIN signal
* as well as two edges for CCLK. See Xilinx UG332 for details
* ("slave serial" mode).
*
* Note that CCLK is inverted in hardware. That's why the
* respective bit is first set and then cleared in the bitbang
* sample sets. So that the DIN level will be stable when the
* data gets sampled at the rising CCLK edge, and the signals'
* setup time constraint will be met.
*
* The caller will put the FPGA into download mode, will send
* the bitbang samples, and release the allocated memory.
*/
bb_size = file_size * 8 * 2;
bb_stream = (uint8_t *)g_try_malloc(bb_size);
if (!bb_stream) {
sr_err("%s: Failed to allocate bitbang stream", __func__);
ret = SR_ERR_MALLOC;
goto exit;
}
bbs = bb_stream;
for (i = 0; i < file_size; i++) {
for (bit = 7; bit >= 0; bit--) {
v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
*bbs++ = v | 0x01;
*bbs++ = v;
}
}
/* The transformation completed successfully, return the result. */
*bb_cmd = bb_stream;
*bb_cmd_size = bb_size;
exit:
g_free(firmware);
return ret;
}
static int upload_firmware(struct sr_context *ctx,
int firmware_idx, struct dev_context *devc)
{
int ret;
unsigned char *buf;
unsigned char pins;
size_t buf_size;
const char *firmware;
struct ftdi_context *ftdic;
/* Avoid downloading the same firmware multiple times. */
firmware = sigma_firmware_files[firmware_idx];
if (devc->cur_firmware == firmware_idx) {
sr_info("Not uploading firmware file '%s' again.", firmware);
return SR_OK;
}
/* Make sure it's an ASIX SIGMA. */
ftdic = &devc->ftdic;
ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
USB_DESCRIPTION, NULL);
if (ret < 0) {
sr_err("ftdi_usb_open failed: %s",
ftdi_get_error_string(ftdic));
return 0;
}
ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
if (ret < 0) {
sr_err("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(ftdic));
return 0;
}
/* Four times the speed of sigmalogan - Works well. */
ret = ftdi_set_baudrate(ftdic, 750 * 1000);
if (ret < 0) {
sr_err("ftdi_set_baudrate failed: %s",
ftdi_get_error_string(ftdic));
return 0;
}
/* Initialize the FPGA for firmware upload. */
ret = sigma_fpga_init_bitbang(devc);
if (ret)
return ret;
/* Prepare firmware. */
ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
if (ret != SR_OK) {
sr_err("An error occurred while reading the firmware: %s",
firmware);
return ret;
}
/* Upload firmware. */
sr_info("Uploading firmware file '%s'.", firmware);
sigma_write(buf, buf_size, devc);
g_free(buf);
ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
if (ret < 0) {
sr_err("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(ftdic));
return SR_ERR;
}
ftdi_usb_purge_buffers(ftdic);
/* Discard garbage. */
while (sigma_read(&pins, 1, devc) == 1)
;
/* Initialize the FPGA for logic-analyzer mode. */
ret = sigma_fpga_init_la(devc);
if (ret != SR_OK)
return ret;
devc->cur_firmware = firmware_idx;
sr_info("Firmware uploaded.");
return SR_OK;
}
/*
* Sigma doesn't support limiting the number of samples, so we have to
* translate the number and the samplerate to an elapsed time.
*
* In addition we need to ensure that the last data cluster has passed
* the hardware pipeline, and became available to the PC side. With RLE
* compression up to 327ms could pass before another cluster accumulates
* at 200kHz samplerate when input pins don't change.
*/
SR_PRIV uint64_t sigma_limit_samples_to_msec(const struct dev_context *devc,
uint64_t limit_samples)
{
uint64_t limit_msec;
uint64_t worst_cluster_time_ms;
limit_msec = limit_samples * 1000 / devc->cur_samplerate;
worst_cluster_time_ms = 65536 * 1000 / devc->cur_samplerate;
/*
* One cluster time is not enough to flush pipeline when sampling
* grounded pins with 1 sample limit at 200kHz. Hence the 2* fix.
*/
return limit_msec + 2 * worst_cluster_time_ms;
}
SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
{
struct dev_context *devc;
struct drv_context *drvc;
size_t i;
int ret;
devc = sdi->priv;
drvc = sdi->driver->context;
ret = SR_OK;
/* Reject rates that are not in the list of supported rates. */
for (i = 0; i < samplerates_count; i++) {
if (samplerates[i] == samplerate)
break;
}
if (i >= samplerates_count || samplerates[i] == 0)
return SR_ERR_SAMPLERATE;
/*
* Depending on the samplerates of 200/100/50- MHz, specific
* firmware is required and higher rates might limit the set
* of available channels.
*/
if (samplerate <= SR_MHZ(50)) {
ret = upload_firmware(drvc->sr_ctx, 0, devc);
devc->num_channels = 16;
} else if (samplerate == SR_MHZ(100)) {
ret = upload_firmware(drvc->sr_ctx, 1, devc);
devc->num_channels = 8;
} else if (samplerate == SR_MHZ(200)) {
ret = upload_firmware(drvc->sr_ctx, 2, devc);
devc->num_channels = 4;
}
/*
* Derive the sample period from the sample rate as well as the
* number of samples that the device will communicate within
* an "event" (memory organization internal to the device).
*/
if (ret == SR_OK) {
devc->cur_samplerate = samplerate;
devc->period_ps = 1000000000000ULL / samplerate;
devc->samples_per_event = 16 / devc->num_channels;
devc->state.state = SIGMA_IDLE;
}
/*
* Support for "limit_samples" is implemented by stopping
* acquisition after a corresponding period of time.
* Re-calculate that period of time, in case the limit is
* set first and the samplerate gets (re-)configured later.
*/
if (ret == SR_OK && devc->limit_samples) {
uint64_t msecs;
msecs = sigma_limit_samples_to_msec(devc, devc->limit_samples);
devc->limit_msec = msecs;
}
return ret;
}
/*
* In 100 and 200 MHz mode, only a single pin rising/falling can be
* set as trigger. In other modes, two rising/falling triggers can be set,
* in addition to value/mask trigger for any number of channels.
*
* The Sigma supports complex triggers using boolean expressions, but this
* has not been implemented yet.
*/
SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *l, *m;
int channelbit, trigger_set;
devc = sdi->priv;
memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
if (!(trigger = sr_session_trigger_get(sdi->session)))
return SR_OK;
trigger_set = 0;
for (l = trigger->stages; l; l = l->next) {
stage = l->data;
for (m = stage->matches; m; m = m->next) {
match = m->data;
if (!match->channel->enabled)
/* Ignore disabled channels with a trigger. */
continue;
channelbit = 1 << (match->channel->index);
if (devc->cur_samplerate >= SR_MHZ(100)) {
/* Fast trigger support. */
if (trigger_set) {
sr_err("Only a single pin trigger is "
"supported in 100 and 200MHz mode.");
return SR_ERR;
}
if (match->match == SR_TRIGGER_FALLING)
devc->trigger.fallingmask |= channelbit;
else if (match->match == SR_TRIGGER_RISING)
devc->trigger.risingmask |= channelbit;
else {
sr_err("Only rising/falling trigger is "
"supported in 100 and 200MHz mode.");
return SR_ERR;
}
trigger_set++;
} else {
/* Simple trigger support (event). */
if (match->match == SR_TRIGGER_ONE) {
devc->trigger.simplevalue |= channelbit;
devc->trigger.simplemask |= channelbit;
}
else if (match->match == SR_TRIGGER_ZERO) {
devc->trigger.simplevalue &= ~channelbit;
devc->trigger.simplemask |= channelbit;
}
else if (match->match == SR_TRIGGER_FALLING) {
devc->trigger.fallingmask |= channelbit;
trigger_set++;
}
else if (match->match == SR_TRIGGER_RISING) {
devc->trigger.risingmask |= channelbit;
trigger_set++;
}
/*
* Actually, Sigma supports 2 rising/falling triggers,
* but they are ORed and the current trigger syntax
* does not permit ORed triggers.
*/
if (trigger_set > 1) {
sr_err("Only 1 rising/falling trigger "
"is supported.");
return SR_ERR;
}
}
}
}
return SR_OK;
}
/* Software trigger to determine exact trigger position. */
static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
struct sigma_trigger *t)
{
int i;
uint16_t sample = 0;
for (i = 0; i < 8; i++) {
if (i > 0)
last_sample = sample;
sample = samples[2 * i] | (samples[2 * i + 1] << 8);
/* Simple triggers. */
if ((sample & t->simplemask) != t->simplevalue)
continue;
/* Rising edge. */
if (((last_sample & t->risingmask) != 0) ||
((sample & t->risingmask) != t->risingmask))
continue;
/* Falling edge. */
if ((last_sample & t->fallingmask) != t->fallingmask ||
(sample & t->fallingmask) != 0)
continue;
break;
}
/* If we did not match, return original trigger pos. */
return i & 0x7;
}
/*
* Return the timestamp of "DRAM cluster".
*/
static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
{
return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
}
/*
* Return one 16bit data entity of a DRAM cluster at the specified index.
*/
static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
{
uint16_t sample;
sample = 0;
sample |= cl->samples[idx].sample_lo << 0;
sample |= cl->samples[idx].sample_hi << 8;
sample = (sample >> 8) | (sample << 8);
return sample;
}
/*
* Deinterlace sample data that was retrieved at 100MHz samplerate.
* One 16bit item contains two samples of 8bits each. The bits of
* multiple samples are interleaved.
*/
static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
{
uint16_t outdata;
indata >>= idx;
outdata = 0;
outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
return outdata;
}
/*
* Deinterlace sample data that was retrieved at 200MHz samplerate.
* One 16bit item contains four samples of 4bits each. The bits of
* multiple samples are interleaved.
*/
static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
{
uint16_t outdata;
indata >>= idx;
outdata = 0;
outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
return outdata;
}
static void store_sr_sample(uint8_t *samples, int idx, uint16_t data)
{
samples[2 * idx + 0] = (data >> 0) & 0xff;
samples[2 * idx + 1] = (data >> 8) & 0xff;
}
/*
* Local wrapper around sr_session_send() calls. Make sure to not send
* more samples to the session's datafeed than what was requested by a
* previously configured (optional) sample count.
*/
static void sigma_session_send(struct sr_dev_inst *sdi,
struct sr_datafeed_packet *packet)
{
struct dev_context *devc;
struct sr_datafeed_logic *logic;
uint64_t send_now;
devc = sdi->priv;
if (devc->limit_samples) {
logic = (void *)packet->payload;
send_now = logic->length / logic->unitsize;
if (devc->sent_samples + send_now > devc->limit_samples) {
send_now = devc->limit_samples - devc->sent_samples;
logic->length = send_now * logic->unitsize;
}
if (!send_now)
return;
devc->sent_samples += send_now;
}
sr_session_send(sdi, packet);
}
/*
* This size translates to: event count (1K events per cluster), times
* the sample width (unitsize, 16bits per event), times the maximum
* number of samples per event.
*/
#define SAMPLES_BUFFER_SIZE (1024 * 2 * 4)
static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
unsigned int events_in_cluster,
unsigned int triggered,
struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
struct sigma_state *ss = &devc->state;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
uint16_t tsdiff, ts, sample, item16;
uint8_t samples[SAMPLES_BUFFER_SIZE];
uint8_t *send_ptr;
size_t send_count, trig_count;
unsigned int i;
int j;
ts = sigma_dram_cluster_ts(dram_cluster);
tsdiff = ts - ss->lastts;
ss->lastts = ts + EVENTS_PER_CLUSTER;
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.unitsize = 2;
logic.data = samples;
/*
* First of all, send Sigrok a copy of the last sample from
* previous cluster as many times as needed to make up for
* the differential characteristics of data we get from the
* Sigma. Sigrok needs one sample of data per period.
*
* One DRAM cluster contains a timestamp and seven samples,
* the units of timestamp are "devc->period_ps" , the first
* sample in the cluster happens at the time of the timestamp
* and the remaining samples happen at timestamp +1...+6 .
*/
for (ts = 0; ts < tsdiff; ts++) {
i = ts % 1024;
store_sr_sample(samples, i, ss->lastsample);
/*
* If we have 1024 samples ready or we're at the
* end of submitting the padding samples, submit
* the packet to Sigrok. Since constant data is
* sent, duplication of data for rates above 50MHz
* is simple.
*/
if ((i == 1023) || (ts == tsdiff - 1)) {
logic.length = (i + 1) * logic.unitsize;
for (j = 0; j < devc->samples_per_event; j++)
sigma_session_send(sdi, &packet);
}
}
/*
* Parse the samples in current cluster and prepare them
* to be submitted to Sigrok. Cope with memory layouts that
* vary with the samplerate.
*/
send_ptr = &samples[0];
send_count = 0;
sample = 0;
for (i = 0; i < events_in_cluster; i++) {
item16 = sigma_dram_cluster_data(dram_cluster, i);
if (devc->cur_samplerate == SR_MHZ(200)) {
sample = sigma_deinterlace_200mhz_data(item16, 0);
store_sr_sample(samples, send_count++, sample);
sample = sigma_deinterlace_200mhz_data(item16, 1);
store_sr_sample(samples, send_count++, sample);
sample = sigma_deinterlace_200mhz_data(item16, 2);
store_sr_sample(samples, send_count++, sample);
sample = sigma_deinterlace_200mhz_data(item16, 3);
store_sr_sample(samples, send_count++, sample);
} else if (devc->cur_samplerate == SR_MHZ(100)) {
sample = sigma_deinterlace_100mhz_data(item16, 0);
store_sr_sample(samples, send_count++, sample);
sample = sigma_deinterlace_100mhz_data(item16, 1);
store_sr_sample(samples, send_count++, sample);
} else {
sample = item16;
store_sr_sample(samples, send_count++, sample);
}
}
/*
* If a trigger position applies, then provide the datafeed with
* the first part of data up to that position, then send the
* trigger marker.
*/
int trigger_offset = 0;
if (triggered) {
/*
* Trigger is not always accurate to sample because of
* pipeline delay. However, it always triggers before
* the actual event. We therefore look at the next
* samples to pinpoint the exact position of the trigger.
*/
trigger_offset = get_trigger_offset(samples,
ss->lastsample, &devc->trigger);
if (trigger_offset > 0) {
trig_count = trigger_offset * devc->samples_per_event;
packet.type = SR_DF_LOGIC;
logic.length = trig_count * logic.unitsize;
sigma_session_send(sdi, &packet);
send_ptr += trig_count * logic.unitsize;
send_count -= trig_count;
}
/* Only send trigger if explicitly enabled. */
if (devc->use_triggers) {
packet.type = SR_DF_TRIGGER;
sr_session_send(sdi, &packet);
}
}
/*
* Send the data after the trigger, or all of the received data
* if no trigger position applies.
*/
if (send_count) {
packet.type = SR_DF_LOGIC;
logic.length = send_count * logic.unitsize;
logic.data = send_ptr;
sigma_session_send(sdi, &packet);
}
ss->lastsample = sample;
}
/*
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
* Each event is 20ns apart, and can contain multiple samples.
*
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
* For 50 MHz and below, events contain one sample for each channel,
* spread 20 ns apart.
*/
static int decode_chunk_ts(struct sigma_dram_line *dram_line,
uint16_t events_in_line,
uint32_t trigger_event,
struct sr_dev_inst *sdi)
{
struct sigma_dram_cluster *dram_cluster;
struct dev_context *devc;
unsigned int clusters_in_line;
unsigned int events_in_cluster;
unsigned int i;
uint32_t trigger_cluster, triggered;
devc = sdi->priv;
clusters_in_line = events_in_line;
clusters_in_line += EVENTS_PER_CLUSTER - 1;
clusters_in_line /= EVENTS_PER_CLUSTER;
trigger_cluster = ~0;
triggered = 0;
/* Check if trigger is in this chunk. */
if (trigger_event < (64 * 7)) {
if (devc->cur_samplerate <= SR_MHZ(50)) {
trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
trigger_event);
}
/* Find in which cluster the trigger occurred. */
trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
}
/* For each full DRAM cluster. */
for (i = 0; i < clusters_in_line; i++) {
dram_cluster = &dram_line->cluster[i];
/* The last cluster might not be full. */
if ((i == clusters_in_line - 1) &&
(events_in_line % EVENTS_PER_CLUSTER)) {
events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
} else {
events_in_cluster = EVENTS_PER_CLUSTER;
}
triggered = (i == trigger_cluster);
sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
triggered, sdi);
}
return SR_OK;
}
static int download_capture(struct sr_dev_inst *sdi)
{
const uint32_t chunks_per_read = 32;
struct dev_context *devc;
struct sigma_dram_line *dram_line;
int bufsz;
uint32_t stoppos, triggerpos;
uint8_t modestatus;
uint32_t i;
uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
uint32_t dl_events_in_line;
uint32_t trg_line, trg_event;
devc = sdi->priv;
dl_events_in_line = 64 * 7;
trg_line = ~0;
trg_event = ~0;
dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
if (!dram_line)
return FALSE;
sr_info("Downloading sample data.");
/*
* Ask the hardware to stop data acquisition. Reception of the
* FORCESTOP request makes the hardware "disable RLE" (store
* clusters to DRAM regardless of whether pin state changes) and
* raise the POSTTRIGGERED flag.
*/
sigma_set_register(WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN, devc);
do {
modestatus = sigma_get_register(READ_MODE, devc);
} while (!(modestatus & RMR_POSTTRIGGERED));
/* Set SDRAM Read Enable. */
sigma_set_register(WRITE_MODE, WMR_SDRAMREADEN, devc);
/* Get the current position. */
sigma_read_pos(&stoppos, &triggerpos, devc);
/* Check if trigger has fired. */
modestatus = sigma_get_register(READ_MODE, devc);
if (modestatus & RMR_TRIGGERED) {
trg_line = triggerpos >> 9;
trg_event = triggerpos & 0x1ff;
}
devc->sent_samples = 0;
/*
* Determine how many 1024b "DRAM lines" do we need to read from the
* Sigma so we have a complete set of samples. Note that the last
* line can be only partial, containing less than 64 clusters.
*/
dl_lines_total = (stoppos >> 9) + 1;
dl_lines_done = 0;
while (dl_lines_total > dl_lines_done) {
/* We can download only up-to 32 DRAM lines in one go! */
dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
(uint8_t *)dram_line, devc);
/* TODO: Check bufsz. For now, just avoid compiler warnings. */
(void)bufsz;
/* This is the first DRAM line, so find the initial timestamp. */
if (dl_lines_done == 0) {
devc->state.lastts =
sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
devc->state.lastsample = 0;
}
for (i = 0; i < dl_lines_curr; i++) {
uint32_t trigger_event = ~0;
/* The last "DRAM line" can be only partially full. */
if (dl_lines_done + i == dl_lines_total - 1)
dl_events_in_line = stoppos & 0x1ff;
/* Test if the trigger happened on this line. */
if (dl_lines_done + i == trg_line)
trigger_event = trg_event;
decode_chunk_ts(dram_line + i, dl_events_in_line,
trigger_event, sdi);
}
dl_lines_done += dl_lines_curr;
}
std_session_send_df_end(sdi);
sdi->driver->dev_acquisition_stop(sdi);
g_free(dram_line);
return TRUE;
}
/*
* Handle the Sigma when in CAPTURE mode. This function checks:
* - Sampling time ended
* - DRAM capacity overflow
* This function triggers download of the samples from Sigma
* in case either of the above conditions is true.
*/
static int sigma_capture_mode(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
uint64_t running_msec;
struct timeval tv;
uint32_t stoppos, triggerpos;
devc = sdi->priv;
/* Check if the selected sampling duration passed. */
gettimeofday(&tv, 0);
running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
(tv.tv_usec - devc->start_tv.tv_usec) / 1000;
if (running_msec >= devc->limit_msec)
return download_capture(sdi);
/* Get the position in DRAM to which the FPGA is writing now. */
sigma_read_pos(&stoppos, &triggerpos, devc);
/* Test if DRAM is full and if so, download the data. */
if ((stoppos >> 9) == 32767)
return download_capture(sdi);
return TRUE;
}
SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if (devc->state.state == SIGMA_IDLE)
return TRUE;
if (devc->state.state == SIGMA_CAPTURE)
return sigma_capture_mode(sdi);
return TRUE;
}
/* Build a LUT entry used by the trigger functions. */
static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
{
int i, j, k, bit;
/* For each quad channel. */
for (i = 0; i < 4; i++) {
entry[i] = 0xffff;
/* For each bit in LUT. */
for (j = 0; j < 16; j++)
/* For each channel in quad. */
for (k = 0; k < 4; k++) {
bit = 1 << (i * 4 + k);
/* Set bit in entry */
if ((mask & bit) && ((!(value & bit)) !=
(!(j & (1 << k)))))
entry[i] &= ~(1 << j);
}
}
}
/* Add a logical function to LUT mask. */
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
int index, int neg, uint16_t *mask)
{
int i, j;
int x[2][2], tmp, a, b, aset, bset, rset;
memset(x, 0, 4 * sizeof(int));
/* Trigger detect condition. */
switch (oper) {
case OP_LEVEL:
x[0][1] = 1;
x[1][1] = 1;
break;
case OP_NOT:
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_RISE:
x[0][1] = 1;
break;
case OP_FALL:
x[1][0] = 1;
break;
case OP_RISEFALL:
x[0][1] = 1;
x[1][0] = 1;
break;
case OP_NOTRISE:
x[1][1] = 1;
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_NOTFALL:
x[1][1] = 1;
x[0][0] = 1;
x[0][1] = 1;
break;
case OP_NOTRISEFALL:
x[1][1] = 1;
x[0][0] = 1;
break;
}
/* Transpose if neg is set. */
if (neg) {
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
tmp = x[i][j];
x[i][j] = x[1 - i][1 - j];
x[1 - i][1 - j] = tmp;
}
}
}
/* Update mask with function. */
for (i = 0; i < 16; i++) {
a = (i >> (2 * index + 0)) & 1;
b = (i >> (2 * index + 1)) & 1;
aset = (*mask >> i) & 1;
bset = x[b][a];
rset = 0;
if (func == FUNC_AND || func == FUNC_NAND)
rset = aset & bset;
else if (func == FUNC_OR || func == FUNC_NOR)
rset = aset | bset;
else if (func == FUNC_XOR || func == FUNC_NXOR)
rset = aset ^ bset;
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
rset = !rset;
*mask &= ~(1 << i);
if (rset)
*mask |= 1 << i;
}
}
/*
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
* simple pin change and state triggers. Only two transitions (rise/fall) can be
* set at any time, but a full mask and value can be set (0/1).
*/
SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
{
int i,j;
uint16_t masks[2] = { 0, 0 };
memset(lut, 0, sizeof(struct triggerlut));
/* Constant for simple triggers. */
lut->m4 = 0xa000;
/* Value/mask trigger support. */
build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
lut->m2d);
/* Rise/fall trigger support. */
for (i = 0, j = 0; i < 16; i++) {
if (devc->trigger.risingmask & (1 << i) ||
devc->trigger.fallingmask & (1 << i))
masks[j++] = 1 << i;
}
build_lut_entry(masks[0], masks[0], lut->m0d);
build_lut_entry(masks[1], masks[1], lut->m1d);
/* Add glue logic */
if (masks[0] || masks[1]) {
/* Transition trigger. */
if (masks[0] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
if (masks[0] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
if (masks[1] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
if (masks[1] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
} else {
/* Only value/mask trigger. */
lut->m3 = 0xffff;
}
/* Triggertype: event. */
lut->params.selres = 3;
return SR_OK;
}