blob: 99c5012886b48750f4bcd4f23ac2ffdfbf872666 [file] [log] [blame]
/*
* This file is part of the libsigrokdecode project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "libsigrokdecode-internal.h" /* First, so we avoid a _POSIX_C_SOURCE warning. */
#include "libsigrokdecode.h"
#include <glib.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdint.h>
/** @cond PRIVATE */
extern SRD_PRIV GSList *sessions;
/** @endcond */
/**
* @file
*
* Decoder instance handling.
*/
/**
* @defgroup grp_instances Decoder instances
*
* Decoder instance handling.
*
* @{
*/
static void oldpins_array_seed(struct srd_decoder_inst *di)
{
size_t count;
GArray *arr;
if (!di)
return;
if (di->old_pins_array)
return;
count = di->dec_num_channels;
arr = g_array_sized_new(FALSE, TRUE, sizeof(uint8_t), count);
g_array_set_size(arr, count);
memset(arr->data, SRD_INITIAL_PIN_SAME_AS_SAMPLE0, count);
di->old_pins_array = arr;
}
static void oldpins_array_free(struct srd_decoder_inst *di)
{
if (!di)
return;
if (!di->old_pins_array)
return;
srd_dbg("%s: Releasing initial pin state.", di->inst_id);
g_array_free(di->old_pins_array, TRUE);
di->old_pins_array = NULL;
}
/**
* Set one or more options in a decoder instance.
*
* Handled options are removed from the hash.
*
* @param di Decoder instance.
* @param options A GHashTable of options to set.
*
* @return SRD_OK upon success, a (negative) error code otherwise.
*
* @since 0.1.0
*/
SRD_API int srd_inst_option_set(struct srd_decoder_inst *di,
GHashTable *options)
{
struct srd_decoder_option *sdo;
PyObject *py_di_options, *py_optval;
GVariant *value;
GSList *l;
double val_double;
gint64 val_int;
int ret;
const char *val_str;
PyGILState_STATE gstate;
if (!di) {
srd_err("Invalid decoder instance.");
return SRD_ERR_ARG;
}
if (!options) {
srd_err("Invalid options GHashTable.");
return SRD_ERR_ARG;
}
gstate = PyGILState_Ensure();
if (!PyObject_HasAttrString(di->decoder->py_dec, "options")) {
/* Decoder has no options. */
PyGILState_Release(gstate);
if (g_hash_table_size(options) == 0) {
/* No options provided. */
return SRD_OK;
} else {
srd_err("Protocol decoder has no options.");
return SRD_ERR_ARG;
}
return SRD_OK;
}
ret = SRD_ERR_PYTHON;
py_optval = NULL;
/*
* The 'options' tuple is a class variable, but we need to
* change it. Changing it directly will affect the entire class,
* so we need to create a new object for it, and populate that
* instead.
*/
if (!(py_di_options = PyObject_GetAttrString(di->py_inst, "options")))
goto err_out;
Py_DECREF(py_di_options);
py_di_options = PyDict_New();
PyObject_SetAttrString(di->py_inst, "options", py_di_options);
for (l = di->decoder->options; l; l = l->next) {
sdo = l->data;
if ((value = g_hash_table_lookup(options, sdo->id))) {
/* A value was supplied for this option. */
if (!g_variant_type_equal(g_variant_get_type(value),
g_variant_get_type(sdo->def))) {
srd_err("Option '%s' should have the same type "
"as the default value.", sdo->id);
goto err_out;
}
} else {
/* Use default for this option. */
value = sdo->def;
}
if (g_variant_is_of_type(value, G_VARIANT_TYPE_STRING)) {
val_str = g_variant_get_string(value, NULL);
if (!(py_optval = PyUnicode_FromString(val_str))) {
/* Some UTF-8 encoding error. */
PyErr_Clear();
srd_err("Option '%s' requires a UTF-8 string value.", sdo->id);
goto err_out;
}
} else if (g_variant_is_of_type(value, G_VARIANT_TYPE_INT64)) {
val_int = g_variant_get_int64(value);
if (!(py_optval = PyLong_FromLong(val_int))) {
/* ValueError Exception */
PyErr_Clear();
srd_err("Option '%s' has invalid integer value.", sdo->id);
goto err_out;
}
} else if (g_variant_is_of_type(value, G_VARIANT_TYPE_DOUBLE)) {
val_double = g_variant_get_double(value);
if (!(py_optval = PyFloat_FromDouble(val_double))) {
/* ValueError Exception */
PyErr_Clear();
srd_err("Option '%s' has invalid float value.",
sdo->id);
goto err_out;
}
}
if (PyDict_SetItemString(py_di_options, sdo->id, py_optval) == -1)
goto err_out;
/* Not harmful even if we used the default. */
g_hash_table_remove(options, sdo->id);
}
if (g_hash_table_size(options) != 0)
srd_warn("Unknown options specified for '%s'", di->inst_id);
ret = SRD_OK;
err_out:
Py_XDECREF(py_optval);
if (PyErr_Occurred()) {
srd_exception_catch("Stray exception in srd_inst_option_set()");
ret = SRD_ERR_PYTHON;
}
PyGILState_Release(gstate);
return ret;
}
/* Helper GComparefunc for g_slist_find_custom() in srd_inst_channel_set_all(). */
static gint compare_channel_id(const struct srd_channel *pdch,
const char *channel_id)
{
return strcmp(pdch->id, channel_id);
}
/**
* Set all channels in a decoder instance.
*
* This function sets _all_ channels for the specified decoder instance, i.e.,
* it overwrites any channels that were already defined (if any).
*
* @param di Decoder instance.
* @param new_channels A GHashTable of channels to set. Key is channel name,
* value is the channel number. Samples passed to this
* instance will be arranged in this order.
*
* @return SRD_OK upon success, a (negative) error code otherwise.
*
* @since 0.4.0
*/
SRD_API int srd_inst_channel_set_all(struct srd_decoder_inst *di,
GHashTable *new_channels)
{
GVariant *channel_val;
GList *l;
GSList *sl;
struct srd_channel *pdch;
int *new_channelmap, new_channelnum, num_required_channels, i;
char *channel_id;
srd_dbg("Setting channels for instance %s with list of %d channels.",
di->inst_id, g_hash_table_size(new_channels));
if (g_hash_table_size(new_channels) == 0)
/* No channels provided. */
return SRD_OK;
if (di->dec_num_channels == 0) {
/* Decoder has no channels. */
srd_err("Protocol decoder %s has no channels to define.",
di->decoder->name);
return SRD_ERR_ARG;
}
new_channelmap = g_malloc0(sizeof(int) * di->dec_num_channels);
/*
* For now, map all indexes to channel -1 (can be overridden later).
* This -1 is interpreted as an unspecified channel later.
*/
for (i = 0; i < di->dec_num_channels; i++)
new_channelmap[i] = -1;
for (l = g_hash_table_get_keys(new_channels); l; l = l->next) {
channel_id = l->data;
channel_val = g_hash_table_lookup(new_channels, channel_id);
if (!g_variant_is_of_type(channel_val, G_VARIANT_TYPE_INT32)) {
/* Channel name was specified without a value. */
srd_err("No channel number was specified for %s.",
channel_id);
g_free(new_channelmap);
return SRD_ERR_ARG;
}
new_channelnum = g_variant_get_int32(channel_val);
if (!(sl = g_slist_find_custom(di->decoder->channels, channel_id,
(GCompareFunc)compare_channel_id))) {
/* Fall back on optional channels. */
if (!(sl = g_slist_find_custom(di->decoder->opt_channels,
channel_id, (GCompareFunc)compare_channel_id))) {
srd_err("Protocol decoder %s has no channel "
"'%s'.", di->decoder->name, channel_id);
g_free(new_channelmap);
return SRD_ERR_ARG;
}
}
pdch = sl->data;
new_channelmap[pdch->order] = new_channelnum;
srd_dbg("Setting channel mapping: %s (PD ch idx %d) = input data ch idx %d.",
pdch->id, pdch->order, new_channelnum);
}
srd_dbg("Final channel map:");
num_required_channels = g_slist_length(di->decoder->channels);
for (i = 0; i < di->dec_num_channels; i++) {
GSList *ll = g_slist_nth(di->decoder->channels, i);
if (!ll)
ll = g_slist_nth(di->decoder->opt_channels,
i - num_required_channels);
pdch = ll->data;
srd_dbg(" - PD ch idx %d (%s) = input data ch idx %d (%s)", i,
pdch->id, new_channelmap[i],
(i < num_required_channels) ? "required" : "optional");
}
/* Report an error if not all required channels were specified. */
for (i = 0; i < num_required_channels; i++) {
if (new_channelmap[i] != -1)
continue;
pdch = g_slist_nth(di->decoder->channels, i)->data;
srd_err("Required channel '%s' (index %d) was not specified.",
pdch->id, i);
g_free(new_channelmap);
return SRD_ERR;
}
g_free(di->dec_channelmap);
di->dec_channelmap = new_channelmap;
return SRD_OK;
}
/**
* Create a new protocol decoder instance.
*
* @param sess The session holding the protocol decoder instance.
* Must not be NULL.
* @param decoder_id Decoder 'id' field.
* @param options GHashtable of options which override the defaults set in
* the decoder class. May be NULL.
*
* @return Pointer to a newly allocated struct srd_decoder_inst, or
* NULL in case of failure.
*
* @since 0.3.0
*/
SRD_API struct srd_decoder_inst *srd_inst_new(struct srd_session *sess,
const char *decoder_id, GHashTable *options)
{
int i;
struct srd_decoder *dec;
struct srd_decoder_inst *di;
char *inst_id;
PyGILState_STATE gstate;
i = 1;
if (!sess)
return NULL;
if (!(dec = srd_decoder_get_by_id(decoder_id))) {
srd_err("Protocol decoder %s not found.", decoder_id);
return NULL;
}
di = g_malloc0(sizeof(struct srd_decoder_inst));
di->decoder = dec;
di->sess = sess;
if (options) {
inst_id = g_hash_table_lookup(options, "id");
if (inst_id)
di->inst_id = g_strdup(inst_id);
g_hash_table_remove(options, "id");
}
/* Create a unique instance ID (as none was provided). */
if (!di->inst_id) {
di->inst_id = g_strdup_printf("%s-%d", decoder_id, i++);
while (srd_inst_find_by_id(sess, di->inst_id)) {
g_free(di->inst_id);
di->inst_id = g_strdup_printf("%s-%d", decoder_id, i++);
}
}
/*
* Prepare a default channel map, where samples come in the
* order in which the decoder class defined them.
*/
di->dec_num_channels = g_slist_length(di->decoder->channels) +
g_slist_length(di->decoder->opt_channels);
if (di->dec_num_channels) {
di->dec_channelmap =
g_malloc(sizeof(int) * di->dec_num_channels);
for (i = 0; i < di->dec_num_channels; i++)
di->dec_channelmap[i] = i;
/*
* Will be used to prepare a sample at every iteration
* of the instance's decode() method.
*/
di->channel_samples = g_malloc(di->dec_num_channels);
}
/* Default to the initial pins being the same as in sample 0. */
oldpins_array_seed(di);
gstate = PyGILState_Ensure();
/* Create a new instance of this decoder class. */
if (!(di->py_inst = PyObject_CallObject(dec->py_dec, NULL))) {
if (PyErr_Occurred())
srd_exception_catch("Failed to create %s instance",
decoder_id);
PyGILState_Release(gstate);
g_free(di->dec_channelmap);
g_free(di);
return NULL;
}
PyGILState_Release(gstate);
if (options && srd_inst_option_set(di, options) != SRD_OK) {
g_free(di->dec_channelmap);
g_free(di);
return NULL;
}
di->condition_list = NULL;
di->match_array = NULL;
di->abs_start_samplenum = 0;
di->abs_end_samplenum = 0;
di->inbuf = NULL;
di->inbuflen = 0;
di->abs_cur_samplenum = 0;
di->thread_handle = NULL;
di->got_new_samples = FALSE;
di->handled_all_samples = FALSE;
di->want_wait_terminate = FALSE;
di->decoder_state = SRD_OK;
/*
* Strictly speaking initialization of statically allocated
* condition and mutex variables (or variables allocated on the
* stack) is not required, but won't harm either. Explicitly
* running init() will better match subsequent clear() calls.
*/
g_cond_init(&di->got_new_samples_cond);
g_cond_init(&di->handled_all_samples_cond);
g_mutex_init(&di->data_mutex);
/* Instance takes input from a frontend by default. */
sess->di_list = g_slist_append(sess->di_list, di);
srd_dbg("Creating new %s instance %s.", decoder_id, di->inst_id);
return di;
}
static void srd_inst_join_decode_thread(struct srd_decoder_inst *di)
{
if (!di)
return;
if (!di->thread_handle)
return;
srd_dbg("%s: Joining decoder thread.", di->inst_id);
/*
* Terminate potentially running threads which still
* execute the decoder instance's decode() method.
*/
srd_dbg("%s: Raising want_term, sending got_new.", di->inst_id);
g_mutex_lock(&di->data_mutex);
di->want_wait_terminate = TRUE;
g_cond_signal(&di->got_new_samples_cond);
g_mutex_unlock(&di->data_mutex);
srd_dbg("%s: Running join().", di->inst_id);
(void)g_thread_join(di->thread_handle);
srd_dbg("%s: Call to join() done.", di->inst_id);
di->thread_handle = NULL;
/*
* Reset condition and mutex variables, such that next
* operations on them will find them in a clean state.
*/
g_cond_clear(&di->got_new_samples_cond);
g_cond_init(&di->got_new_samples_cond);
g_cond_clear(&di->handled_all_samples_cond);
g_cond_init(&di->handled_all_samples_cond);
g_mutex_clear(&di->data_mutex);
g_mutex_init(&di->data_mutex);
}
static void srd_inst_reset_state(struct srd_decoder_inst *di)
{
if (!di)
return;
srd_dbg("%s: Resetting decoder state.", di->inst_id);
/* Reset internal state of the decoder. */
condition_list_free(di);
match_array_free(di);
di->abs_start_samplenum = 0;
di->abs_end_samplenum = 0;
di->inbuf = NULL;
di->inbuflen = 0;
di->abs_cur_samplenum = 0;
oldpins_array_free(di);
di->got_new_samples = FALSE;
di->handled_all_samples = FALSE;
di->want_wait_terminate = FALSE;
di->decoder_state = SRD_OK;
/* Conditions and mutex got reset after joining the thread. */
}
/**
* Stack a decoder instance on top of another.
*
* @param sess The session holding the protocol decoder instances.
* Must not be NULL.
* @param di_bottom The instance on top of which di_top will be stacked.
* @param di_top The instance to go on top.
*
* @return SRD_OK upon success, a (negative) error code otherwise.
*
* @since 0.3.0
*/
SRD_API int srd_inst_stack(struct srd_session *sess,
struct srd_decoder_inst *di_bottom,
struct srd_decoder_inst *di_top)
{
if (!sess)
return SRD_ERR_ARG;
if (!di_bottom || !di_top) {
srd_err("Invalid from/to instance pair.");
return SRD_ERR_ARG;
}
if (g_slist_find(sess->di_list, di_top)) {
/* Remove from the unstacked list. */
sess->di_list = g_slist_remove(sess->di_list, di_top);
}
/* Stack on top of source di. */
di_bottom->next_di = g_slist_append(di_bottom->next_di, di_top);
srd_dbg("Stacking %s onto %s.", di_top->inst_id, di_bottom->inst_id);
return SRD_OK;
}
/**
* Search a decoder instance and its stack for instance ID.
*
* @param[in] inst_id ID to search for.
* @param[in] stack A decoder instance, potentially with stacked instances.
*
* @return The matching instance, or NULL.
*/
static struct srd_decoder_inst *srd_inst_find_by_id_stack(const char *inst_id,
struct srd_decoder_inst *stack)
{
const GSList *l;
struct srd_decoder_inst *tmp, *di;
if (!strcmp(stack->inst_id, inst_id))
return stack;
/* Otherwise, look recursively in our stack. */
di = NULL;
if (stack->next_di) {
for (l = stack->next_di; l; l = l->next) {
tmp = l->data;
if (!strcmp(tmp->inst_id, inst_id)) {
di = tmp;
break;
}
}
}
return di;
}
/**
* Find a decoder instance by its instance ID.
*
* This will recurse to find the instance anywhere in the stack tree of the
* given session.
*
* @param sess The session holding the protocol decoder instance.
* Must not be NULL.
* @param inst_id The instance ID to be found.
*
* @return Pointer to struct srd_decoder_inst, or NULL if not found.
*
* @since 0.3.0
*/
SRD_API struct srd_decoder_inst *srd_inst_find_by_id(struct srd_session *sess,
const char *inst_id)
{
GSList *l;
struct srd_decoder_inst *tmp, *di;
if (!sess)
return NULL;
di = NULL;
for (l = sess->di_list; l; l = l->next) {
tmp = l->data;
if ((di = srd_inst_find_by_id_stack(inst_id, tmp)) != NULL)
break;
}
return di;
}
/**
* Set the list of initial (assumed) pin values.
*
* @param di Decoder instance to use. Must not be NULL.
* @param initial_pins A GArray of uint8_t values. Must not be NULL.
*
* @since 0.5.0
*/
SRD_API int srd_inst_initial_pins_set_all(struct srd_decoder_inst *di, GArray *initial_pins)
{
int i;
GString *s;
if (!di) {
srd_err("Invalid decoder instance.");
return SRD_ERR_ARG;
}
if (!initial_pins)
return SRD_ERR_ARG;
if (initial_pins->len != (guint)di->dec_num_channels) {
srd_err("Incorrect number of channels (need %d, got %d).",
di->dec_num_channels, initial_pins->len);
return SRD_ERR_ARG;
}
/* Sanity-check initial pin state values. */
for (i = 0; i < di->dec_num_channels; i++) {
if (initial_pins->data[i] <= 2)
continue;
srd_err("Invalid initial channel %d pin state: %d.",
i, initial_pins->data[i]);
return SRD_ERR_ARG;
}
s = g_string_sized_new(100);
oldpins_array_seed(di);
for (i = 0; i < di->dec_num_channels; i++) {
di->old_pins_array->data[i] = initial_pins->data[i];
g_string_append_printf(s, "%d, ", di->old_pins_array->data[i]);
}
s = g_string_truncate(s, s->len - 2);
srd_dbg("Initial pins: %s.", s->str);
g_string_free(s, TRUE);
return SRD_OK;
}
/** @private */
SRD_PRIV int srd_inst_start(struct srd_decoder_inst *di)
{
PyObject *py_res;
GSList *l;
struct srd_decoder_inst *next_di;
int ret;
PyGILState_STATE gstate;
srd_dbg("Calling start() of instance %s.", di->inst_id);
gstate = PyGILState_Ensure();
/* Run self.start(). */
if (!(py_res = PyObject_CallMethod(di->py_inst, "start", NULL))) {
srd_exception_catch("Protocol decoder instance %s",
di->inst_id);
PyGILState_Release(gstate);
return SRD_ERR_PYTHON;
}
Py_DecRef(py_res);
/* Set self.samplenum to 0. */
PyObject_SetAttrString(di->py_inst, "samplenum", PyLong_FromLong(0));
/* Set self.matched to None. */
PyObject_SetAttrString(di->py_inst, "matched", Py_None);
PyGILState_Release(gstate);
/* Start all the PDs stacked on top of this one. */
for (l = di->next_di; l; l = l->next) {
next_di = l->data;
if ((ret = srd_inst_start(next_di)) != SRD_OK)
return ret;
}
return SRD_OK;
}
/**
* Check whether the specified sample matches the specified term.
*
* In the case of SRD_TERM_SKIP, this function can modify
* term->num_samples_already_skipped.
*
* @param old_sample The value of the previous sample (0/1).
* @param sample The value of the current sample (0/1).
* @param term The term that should be checked for a match. Must not be NULL.
*
* @retval TRUE The current sample matches the specified term.
* @retval FALSE The current sample doesn't match the specified term, or an
* invalid term was provided.
*
* @private
*/
__attribute__((always_inline))
static inline gboolean sample_matches(uint8_t old_sample, uint8_t sample, struct srd_term *term)
{
/* Caller ensures term != NULL. */
switch (term->type) {
case SRD_TERM_HIGH:
if (sample == 1)
return TRUE;
break;
case SRD_TERM_LOW:
if (sample == 0)
return TRUE;
break;
case SRD_TERM_RISING_EDGE:
if (old_sample == 0 && sample == 1)
return TRUE;
break;
case SRD_TERM_FALLING_EDGE:
if (old_sample == 1 && sample == 0)
return TRUE;
break;
case SRD_TERM_EITHER_EDGE:
if ((old_sample == 1 && sample == 0) || (old_sample == 0 && sample == 1))
return TRUE;
break;
case SRD_TERM_NO_EDGE:
if ((old_sample == 0 && sample == 0) || (old_sample == 1 && sample == 1))
return TRUE;
break;
case SRD_TERM_SKIP:
if (term->num_samples_already_skipped == term->num_samples_to_skip)
return TRUE;
term->num_samples_already_skipped++;
break;
default:
srd_err("Unknown term type %d.", term->type);
break;
}
return FALSE;
}
/** @private */
SRD_PRIV void match_array_free(struct srd_decoder_inst *di)
{
if (!di || !di->match_array)
return;
g_array_free(di->match_array, TRUE);
di->match_array = NULL;
}
/** @private */
SRD_PRIV void condition_list_free(struct srd_decoder_inst *di)
{
GSList *l, *ll;
if (!di)
return;
for (l = di->condition_list; l; l = l->next) {
ll = l->data;
if (ll)
g_slist_free_full(ll, g_free);
}
di->condition_list = NULL;
}
static gboolean have_non_null_conds(const struct srd_decoder_inst *di)
{
GSList *l, *cond;
if (!di)
return FALSE;
for (l = di->condition_list; l; l = l->next) {
cond = l->data;
if (cond)
return TRUE;
}
return FALSE;
}
static void update_old_pins_array(struct srd_decoder_inst *di,
const uint8_t *sample_pos)
{
uint8_t sample;
int i, byte_offset, bit_offset;
if (!di || !di->dec_channelmap || !sample_pos)
return;
oldpins_array_seed(di);
for (i = 0; i < di->dec_num_channels; i++) {
byte_offset = di->dec_channelmap[i] / 8;
bit_offset = di->dec_channelmap[i] % 8;
sample = *(sample_pos + byte_offset) & (1 << bit_offset) ? 1 : 0;
di->old_pins_array->data[i] = sample;
}
}
static void update_old_pins_array_initial_pins(struct srd_decoder_inst *di)
{
uint8_t sample;
int i, byte_offset, bit_offset;
const uint8_t *sample_pos;
if (!di || !di->dec_channelmap)
return;
sample_pos = di->inbuf + ((di->abs_cur_samplenum - di->abs_start_samplenum) * di->data_unitsize);
oldpins_array_seed(di);
for (i = 0; i < di->dec_num_channels; i++) {
if (di->old_pins_array->data[i] != SRD_INITIAL_PIN_SAME_AS_SAMPLE0)
continue;
byte_offset = di->dec_channelmap[i] / 8;
bit_offset = di->dec_channelmap[i] % 8;
sample = *(sample_pos + byte_offset) & (1 << bit_offset) ? 1 : 0;
di->old_pins_array->data[i] = sample;
}
}
static gboolean term_matches(const struct srd_decoder_inst *di,
struct srd_term *term, const uint8_t *sample_pos)
{
uint8_t old_sample, sample;
int byte_offset, bit_offset, ch;
/* Caller ensures di, di->dec_channelmap, term, sample_pos != NULL. */
if (term->type == SRD_TERM_SKIP)
return sample_matches(0, 0, term);
ch = term->channel;
byte_offset = di->dec_channelmap[ch] / 8;
bit_offset = di->dec_channelmap[ch] % 8;
sample = *(sample_pos + byte_offset) & (1 << bit_offset) ? 1 : 0;
old_sample = di->old_pins_array->data[ch];
return sample_matches(old_sample, sample, term);
}
static gboolean all_terms_match(const struct srd_decoder_inst *di,
const GSList *cond, const uint8_t *sample_pos)
{
const GSList *l;
struct srd_term *term;
/* Caller ensures di, cond, sample_pos != NULL. */
for (l = cond; l; l = l->next) {
term = l->data;
if (!term_matches(di, term, sample_pos))
return FALSE;
}
return TRUE;
}
static gboolean at_least_one_condition_matched(
const struct srd_decoder_inst *di, unsigned int num_conditions)
{
unsigned int i;
/* Caller ensures di != NULL. */
for (i = 0; i < num_conditions; i++) {
if (di->match_array->data[i])
return TRUE;
}
return FALSE;
}
static gboolean find_match(struct srd_decoder_inst *di)
{
uint64_t i, j, num_samples_to_process;
GSList *l, *cond;
const uint8_t *sample_pos;
unsigned int num_conditions;
/* Caller ensures di != NULL. */
/* Check whether the condition list is NULL/empty. */
if (!di->condition_list) {
srd_dbg("NULL/empty condition list, automatic match.");
return TRUE;
}
/* Check whether we have any non-NULL conditions. */
if (!have_non_null_conds(di)) {
srd_dbg("Only NULL conditions in list, automatic match.");
return TRUE;
}
num_samples_to_process = di->abs_end_samplenum - di->abs_cur_samplenum;
num_conditions = g_slist_length(di->condition_list);
/* di->match_array is NULL here. Create a new GArray. */
di->match_array = g_array_sized_new(FALSE, TRUE, sizeof(gboolean), num_conditions);
g_array_set_size(di->match_array, num_conditions);
/* Sample 0: Set di->old_pins_array for SRD_INITIAL_PIN_SAME_AS_SAMPLE0 pins. */
if (di->abs_cur_samplenum == 0)
update_old_pins_array_initial_pins(di);
for (i = 0; i < num_samples_to_process; i++, (di->abs_cur_samplenum)++) {
sample_pos = di->inbuf + ((di->abs_cur_samplenum - di->abs_start_samplenum) * di->data_unitsize);
/* Check whether the current sample matches at least one of the conditions (logical OR). */
/* IMPORTANT: We need to check all conditions, even if there was a match already! */
for (l = di->condition_list, j = 0; l; l = l->next, j++) {
cond = l->data;
if (!cond)
continue;
/* All terms in 'cond' must match (logical AND). */
di->match_array->data[j] = all_terms_match(di, cond, sample_pos);
}
update_old_pins_array(di, sample_pos);
/* If at least one condition matched we're done. */
if (at_least_one_condition_matched(di, num_conditions))
return TRUE;
}
return FALSE;
}
/**
* Process available samples and check if they match the defined conditions.
*
* This function returns if there is an error, or when a match is found, or
* when all samples have been processed (whether a match was found or not).
* This function immediately terminates when the decoder's wait() method
* invocation shall get terminated.
*
* @param di The decoder instance to use. Must not be NULL.
* @param found_match Will be set to TRUE if at least one condition matched,
* FALSE otherwise. Must not be NULL.
*
* @retval SRD_OK No errors occured, see found_match for the result.
* @retval SRD_ERR_ARG Invalid arguments.
*
* @private
*/
SRD_PRIV int process_samples_until_condition_match(struct srd_decoder_inst *di, gboolean *found_match)
{
if (!di || !found_match)
return SRD_ERR_ARG;
*found_match = FALSE;
if (di->want_wait_terminate)
return SRD_OK;
/* Check if any of the current condition(s) match. */
while (TRUE) {
/* Feed the (next chunk of the) buffer to find_match(). */
*found_match = find_match(di);
/* Did we handle all samples yet? */
if (di->abs_cur_samplenum >= di->abs_end_samplenum) {
srd_dbg("Done, handled all samples (abs cur %" PRIu64
" / abs end %" PRIu64 ").",
di->abs_cur_samplenum, di->abs_end_samplenum);
return SRD_OK;
}
/* If we didn't find a match, continue looking. */
if (!(*found_match))
continue;
/* At least one condition matched, return. */
return SRD_OK;
}
return SRD_OK;
}
/**
* Worker thread (per PD-stack).
*
* @param data Pointer to the lowest-level PD's device instance.
* Must not be NULL.
*
* @return NULL if there was an error.
*/
static gpointer di_thread(gpointer data)
{
PyObject *py_res;
struct srd_decoder_inst *di;
int wanted_term;
PyGILState_STATE gstate;
if (!data)
return NULL;
di = data;
srd_dbg("%s: Starting thread routine for decoder.", di->inst_id);
gstate = PyGILState_Ensure();
/*
* Call self.decode(). Only returns if the PD throws an exception.
* "Regular" termination of the decode() method is not expected.
*/
Py_IncRef(di->py_inst);
srd_dbg("%s: Calling decode().", di->inst_id);
py_res = PyObject_CallMethod(di->py_inst, "decode", NULL);
srd_dbg("%s: decode() terminated.", di->inst_id);
if (!py_res)
di->decoder_state = SRD_ERR;
/*
* Make sure to unblock potentially pending srd_inst_decode()
* calls in application threads after the decode() method might
* have terminated, while it neither has processed sample data
* nor has terminated upon request. This happens e.g. when "need
* a samplerate to decode" exception is thrown.
*/
g_mutex_lock(&di->data_mutex);
wanted_term = di->want_wait_terminate;
di->want_wait_terminate = TRUE;
di->handled_all_samples = TRUE;
g_cond_signal(&di->handled_all_samples_cond);
g_mutex_unlock(&di->data_mutex);
/*
* Check for the termination cause of the decode() method.
* Though this is mostly for information.
*/
if (!py_res && wanted_term) {
/*
* Silently ignore errors upon return from decode() calls
* when termination was requested. Terminate the thread
* which executed this instance's decode() logic.
*/
srd_dbg("%s: Thread done (!res, want_term).", di->inst_id);
PyErr_Clear();
PyGILState_Release(gstate);
return NULL;
}
if (!py_res) {
/*
* The decode() invocation terminated unexpectedly. Have
* the back trace printed, and terminate the thread which
* executed the decode() method.
*/
srd_dbg("%s: decode() terminated unrequested.", di->inst_id);
srd_exception_catch("Protocol decoder instance %s: ", di->inst_id);
srd_dbg("%s: Thread done (!res, !want_term).", di->inst_id);
PyGILState_Release(gstate);
return NULL;
}
/*
* TODO: By design the decode() method is not supposed to terminate.
* Nevertheless we have the thread joined, and srd backend calls to
* decode() will re-start another thread transparently.
*/
srd_dbg("%s: decode() terminated (req %d).", di->inst_id, wanted_term);
Py_DecRef(py_res);
PyErr_Clear();
PyGILState_Release(gstate);
srd_dbg("%s: Thread done (with res).", di->inst_id);
return NULL;
}
/**
* Decode a chunk of samples.
*
* The calls to this function must provide the samples that shall be
* used by the protocol decoder
* - in the correct order ([...]5, 6, 4, 7, 8[...] is a bug),
* - starting from sample zero (2, 3, 4, 5, 6[...] is a bug),
* - consecutively, with no gaps (0, 1, 2, 4, 5[...] is a bug).
*
* The start- and end-sample numbers are absolute sample numbers (relative
* to the start of the whole capture/file/stream), i.e. they are not relative
* sample numbers within the chunk specified by 'inbuf' and 'inbuflen'.
*
* Correct example (4096 samples total, 4 chunks @ 1024 samples each):
* srd_inst_decode(di, 0, 1024, inbuf, 1024, 1);
* srd_inst_decode(di, 1024, 2048, inbuf, 1024, 1);
* srd_inst_decode(di, 2048, 3072, inbuf, 1024, 1);
* srd_inst_decode(di, 3072, 4096, inbuf, 1024, 1);
*
* The chunk size ('inbuflen') can be arbitrary and can differ between calls.
*
* Correct example (4096 samples total, 7 chunks @ various samples each):
* srd_inst_decode(di, 0, 1024, inbuf, 1024, 1);
* srd_inst_decode(di, 1024, 1124, inbuf, 100, 1);
* srd_inst_decode(di, 1124, 1424, inbuf, 300, 1);
* srd_inst_decode(di, 1424, 1643, inbuf, 219, 1);
* srd_inst_decode(di, 1643, 2048, inbuf, 405, 1);
* srd_inst_decode(di, 2048, 3072, inbuf, 1024, 1);
* srd_inst_decode(di, 3072, 4096, inbuf, 1024, 1);
*
* INCORRECT example (4096 samples total, 4 chunks @ 1024 samples each, but
* the start- and end-samplenumbers are not absolute):
* srd_inst_decode(di, 0, 1024, inbuf, 1024, 1);
* srd_inst_decode(di, 0, 1024, inbuf, 1024, 1);
* srd_inst_decode(di, 0, 1024, inbuf, 1024, 1);
* srd_inst_decode(di, 0, 1024, inbuf, 1024, 1);
*
* @param di The decoder instance to call. Must not be NULL.
* @param abs_start_samplenum The absolute starting sample number for the
* buffer's sample set, relative to the start of capture.
* @param abs_end_samplenum The absolute ending sample number for the
* buffer's sample set, relative to the start of capture.
* @param inbuf The buffer to decode. Must not be NULL.
* @param inbuflen Length of the buffer. Must be > 0.
* @param unitsize The number of bytes per sample. Must be > 0.
*
* @return SRD_OK upon success, a (negative) error code otherwise.
*
* @private
*/
SRD_PRIV int srd_inst_decode(struct srd_decoder_inst *di,
uint64_t abs_start_samplenum, uint64_t abs_end_samplenum,
const uint8_t *inbuf, uint64_t inbuflen, uint64_t unitsize)
{
/* Return an error upon unusable input. */
if (!di) {
srd_dbg("empty decoder instance");
return SRD_ERR_ARG;
}
if (!inbuf) {
srd_dbg("NULL buffer pointer");
return SRD_ERR_ARG;
}
if (inbuflen == 0) {
srd_dbg("empty buffer");
return SRD_ERR_ARG;
}
if (unitsize == 0) {
srd_dbg("unitsize 0");
return SRD_ERR_ARG;
}
if (abs_start_samplenum != di->abs_cur_samplenum ||
abs_end_samplenum < abs_start_samplenum) {
srd_dbg("Incorrect sample numbers: start=%" PRIu64 ", cur=%"
PRIu64 ", end=%" PRIu64 ".", abs_start_samplenum,
di->abs_cur_samplenum, abs_end_samplenum);
return SRD_ERR_ARG;
}
di->data_unitsize = unitsize;
srd_dbg("Decoding: abs start sample %" PRIu64 ", abs end sample %"
PRIu64 " (%" PRIu64 " samples, %" PRIu64 " bytes, unitsize = "
"%d), instance %s.", abs_start_samplenum, abs_end_samplenum,
abs_end_samplenum - abs_start_samplenum, inbuflen, di->data_unitsize,
di->inst_id);
/* If this is the first call, start the worker thread. */
if (!di->thread_handle) {
srd_dbg("No worker thread for this decoder stack "
"exists yet, creating one: %s.", di->inst_id);
di->thread_handle = g_thread_new(di->inst_id,
di_thread, di);
}
/* Push the new sample chunk to the worker thread. */
g_mutex_lock(&di->data_mutex);
di->abs_start_samplenum = abs_start_samplenum;
di->abs_end_samplenum = abs_end_samplenum;
di->inbuf = inbuf;
di->inbuflen = inbuflen;
di->got_new_samples = TRUE;
di->handled_all_samples = FALSE;
/* Signal the thread that we have new data. */
g_cond_signal(&di->got_new_samples_cond);
g_mutex_unlock(&di->data_mutex);
/* When all samples in this chunk were handled, return. */
g_mutex_lock(&di->data_mutex);
while (!di->handled_all_samples && !di->want_wait_terminate)
g_cond_wait(&di->handled_all_samples_cond, &di->data_mutex);
g_mutex_unlock(&di->data_mutex);
if (di->want_wait_terminate)
return SRD_ERR_TERM_REQ;
return SRD_OK;
}
/**
* Terminate current decoder work, prepare for re-use on new input data.
*
* Terminates all decoder operations in the specified decoder instance
* and the instances stacked on top of it. Resets internal state such
* that the previously constructed stack can process new input data that
* is not related to previously processed input data. This avoids the
* expensive and complex re-construction of decoder stacks.
*
* Callers are expected to follow up with start, metadata, and decode
* calls like they would for newly constructed decoder stacks.
*
* @param di The decoder instance to call. Must not be NULL.
*
* @return SRD_OK upon success, a (negative) error code otherwise.
*
* @private
*/
SRD_PRIV int srd_inst_terminate_reset(struct srd_decoder_inst *di)
{
PyGILState_STATE gstate;
PyObject *py_ret;
GSList *l;
int ret;
if (!di)
return SRD_ERR_ARG;
/*
* Request termination and wait for previously initiated
* background operation to finish. Reset internal state, but
* do not start releasing resources yet. This shall result in
* decoders' state just like after creation. This block handles
* the C language library side.
*/
srd_dbg("Terminating instance %s", di->inst_id);
srd_inst_join_decode_thread(di);
srd_inst_reset_state(di);
/*
* Have the Python side's .reset() method executed (if the PD
* implements it). It's assumed that .reset() assigns variables
* very much like __init__() used to do in the past. Thus memory
* that was allocated in previous calls gets released by Python
* as it's not referenced any longer.
*/
gstate = PyGILState_Ensure();
if (PyObject_HasAttrString(di->py_inst, "reset")) {
srd_dbg("Calling reset() of instance %s", di->inst_id);
py_ret = PyObject_CallMethod(di->py_inst, "reset", NULL);
Py_XDECREF(py_ret);
}
PyGILState_Release(gstate);
/* Pass the "restart" request to all stacked decoders. */
for (l = di->next_di; l; l = l->next) {
ret = srd_inst_terminate_reset(l->data);
if (ret != SRD_OK)
return ret;
}
return di->decoder_state;
}
/** @private */
SRD_PRIV void srd_inst_free(struct srd_decoder_inst *di)
{
GSList *l;
struct srd_pd_output *pdo;
PyGILState_STATE gstate;
srd_dbg("Freeing instance %s.", di->inst_id);
srd_inst_join_decode_thread(di);
srd_inst_reset_state(di);
gstate = PyGILState_Ensure();
Py_DecRef(di->py_inst);
PyGILState_Release(gstate);
g_free(di->inst_id);
g_free(di->dec_channelmap);
g_free(di->channel_samples);
g_slist_free(di->next_di);
for (l = di->pd_output; l; l = l->next) {
pdo = l->data;
g_free(pdo->proto_id);
g_free(pdo);
}
g_slist_free(di->pd_output);
g_free(di);
}
/** @private */
SRD_PRIV void srd_inst_free_all(struct srd_session *sess)
{
if (!sess)
return;
g_slist_free_full(sess->di_list, (GDestroyNotify)srd_inst_free);
}
/** @} */