blob: a8b4aaaecf916289085071170d462b046ec0e099 [file] [log] [blame]
//
// Copyright 2015-2016 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <grpc/support/port_platform.h>
#include "src/core/lib/surface/server.h"
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <atomic>
#include <iterator>
#include <list>
#include <queue>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/types/optional.h"
#include <grpc/support/alloc.h>
#include <grpc/support/log.h>
#include <grpc/support/string_util.h>
#include "src/core/lib/channel/channel_args.h"
#include "src/core/lib/channel/channelz.h"
#include "src/core/lib/channel/connected_channel.h"
#include "src/core/lib/debug/stats.h"
#include "src/core/lib/gpr/spinlock.h"
#include "src/core/lib/gpr/string.h"
#include "src/core/lib/gprpp/mpscq.h"
#include "src/core/lib/iomgr/executor.h"
#include "src/core/lib/iomgr/iomgr.h"
#include "src/core/lib/slice/slice_internal.h"
#include "src/core/lib/surface/api_trace.h"
#include "src/core/lib/surface/call.h"
#include "src/core/lib/surface/channel.h"
#include "src/core/lib/surface/completion_queue.h"
#include "src/core/lib/surface/init.h"
#include "src/core/lib/transport/metadata.h"
#include "src/core/lib/transport/static_metadata.h"
namespace grpc_core {
TraceFlag grpc_server_channel_trace(false, "server_channel");
//
// Server::RequestedCall
//
struct Server::RequestedCall {
enum class Type { BATCH_CALL, REGISTERED_CALL };
RequestedCall(void* tag_arg, grpc_completion_queue* call_cq,
grpc_call** call_arg, grpc_metadata_array* initial_md,
grpc_call_details* details)
: type(Type::BATCH_CALL),
tag(tag_arg),
cq_bound_to_call(call_cq),
call(call_arg),
initial_metadata(initial_md) {
details->reserved = nullptr;
data.batch.details = details;
}
RequestedCall(void* tag_arg, grpc_completion_queue* call_cq,
grpc_call** call_arg, grpc_metadata_array* initial_md,
RegisteredMethod* rm, gpr_timespec* deadline,
grpc_byte_buffer** optional_payload)
: type(Type::REGISTERED_CALL),
tag(tag_arg),
cq_bound_to_call(call_cq),
call(call_arg),
initial_metadata(initial_md) {
data.registered.method = rm;
data.registered.deadline = deadline;
data.registered.optional_payload = optional_payload;
}
MultiProducerSingleConsumerQueue::Node mpscq_node;
const Type type;
void* const tag;
grpc_completion_queue* const cq_bound_to_call;
grpc_call** const call;
grpc_cq_completion completion;
grpc_metadata_array* const initial_metadata;
union {
struct {
grpc_call_details* details;
} batch;
struct {
RegisteredMethod* method;
gpr_timespec* deadline;
grpc_byte_buffer** optional_payload;
} registered;
} data;
};
//
// Server::RegisteredMethod
//
struct Server::RegisteredMethod {
RegisteredMethod(
const char* method_arg, const char* host_arg,
grpc_server_register_method_payload_handling payload_handling_arg,
uint32_t flags_arg)
: method(method_arg == nullptr ? "" : method_arg),
host(host_arg == nullptr ? "" : host_arg),
payload_handling(payload_handling_arg),
flags(flags_arg) {}
~RegisteredMethod() = default;
const std::string method;
const std::string host;
const grpc_server_register_method_payload_handling payload_handling;
const uint32_t flags;
// One request matcher per method.
std::unique_ptr<RequestMatcherInterface> matcher;
};
//
// Server::RequestMatcherInterface
//
// RPCs that come in from the transport must be matched against RPC requests
// from the application. An incoming request from the application can be matched
// to an RPC that has already arrived or can be queued up for later use.
// Likewise, an RPC coming in from the transport can either be matched to a
// request that already arrived from the application or can be queued up for
// later use (marked pending). If there is a match, the request's tag is posted
// on the request's notification CQ.
//
// RequestMatcherInterface is the base class to provide this functionality.
class Server::RequestMatcherInterface {
public:
virtual ~RequestMatcherInterface() {}
// Unref the calls associated with any incoming RPCs in the pending queue (not
// yet matched to an application-requested RPC).
virtual void ZombifyPending() = 0;
// Mark all application-requested RPCs failed if they have not been matched to
// an incoming RPC. The error parameter indicates why the RPCs are being
// failed (always server shutdown in all current implementations).
virtual void KillRequests(grpc_error_handle error) = 0;
// How many request queues are supported by this matcher. This is an abstract
// concept that essentially maps to gRPC completion queues.
virtual size_t request_queue_count() const = 0;
// This function is invoked when the application requests a new RPC whose
// information is in the call parameter. The request_queue_index marks the
// queue onto which to place this RPC, and is typically associated with a gRPC
// CQ. If there are pending RPCs waiting to be matched, publish one (match it
// and notify the CQ).
virtual void RequestCallWithPossiblePublish(size_t request_queue_index,
RequestedCall* call) = 0;
// This function is invoked on an incoming RPC, represented by the calld
// object. The RequestMatcher will try to match it against an
// application-requested RPC if possible or will place it in the pending queue
// otherwise. To enable some measure of fairness between server CQs, the match
// is done starting at the start_request_queue_index parameter in a cyclic
// order rather than always starting at 0.
virtual void MatchOrQueue(size_t start_request_queue_index,
CallData* calld) = 0;
// Returns the server associated with this request matcher
virtual Server* server() const = 0;
};
// The RealRequestMatcher is an implementation of RequestMatcherInterface that
// actually uses all the features of RequestMatcherInterface: expecting the
// application to explicitly request RPCs and then matching those to incoming
// RPCs, along with a slow path by which incoming RPCs are put on a locked
// pending list if they aren't able to be matched to an application request.
class Server::RealRequestMatcher : public RequestMatcherInterface {
public:
explicit RealRequestMatcher(Server* server)
: server_(server), requests_per_cq_(server->cqs_.size()) {}
~RealRequestMatcher() override {
for (LockedMultiProducerSingleConsumerQueue& queue : requests_per_cq_) {
GPR_ASSERT(queue.Pop() == nullptr);
}
}
void ZombifyPending() override {
while (!pending_.empty()) {
CallData* calld = pending_.front();
calld->SetState(CallData::CallState::ZOMBIED);
calld->KillZombie();
pending_.pop();
}
}
void KillRequests(grpc_error_handle error) override {
for (size_t i = 0; i < requests_per_cq_.size(); i++) {
RequestedCall* rc;
while ((rc = reinterpret_cast<RequestedCall*>(
requests_per_cq_[i].Pop())) != nullptr) {
server_->FailCall(i, rc, GRPC_ERROR_REF(error));
}
}
GRPC_ERROR_UNREF(error);
}
size_t request_queue_count() const override {
return requests_per_cq_.size();
}
void RequestCallWithPossiblePublish(size_t request_queue_index,
RequestedCall* call) override {
if (requests_per_cq_[request_queue_index].Push(&call->mpscq_node)) {
/* this was the first queued request: we need to lock and start
matching calls */
struct PendingCall {
RequestedCall* rc = nullptr;
CallData* calld;
};
auto pop_next_pending = [this, request_queue_index] {
PendingCall pending_call;
{
MutexLock lock(&server_->mu_call_);
if (!pending_.empty()) {
pending_call.rc = reinterpret_cast<RequestedCall*>(
requests_per_cq_[request_queue_index].Pop());
if (pending_call.rc != nullptr) {
pending_call.calld = pending_.front();
pending_.pop();
}
}
}
return pending_call;
};
while (true) {
PendingCall next_pending = pop_next_pending();
if (next_pending.rc == nullptr) break;
if (!next_pending.calld->MaybeActivate()) {
// Zombied Call
next_pending.calld->KillZombie();
} else {
next_pending.calld->Publish(request_queue_index, next_pending.rc);
}
}
}
}
void MatchOrQueue(size_t start_request_queue_index,
CallData* calld) override {
for (size_t i = 0; i < requests_per_cq_.size(); i++) {
size_t cq_idx = (start_request_queue_index + i) % requests_per_cq_.size();
RequestedCall* rc =
reinterpret_cast<RequestedCall*>(requests_per_cq_[cq_idx].TryPop());
if (rc != nullptr) {
GRPC_STATS_INC_SERVER_CQS_CHECKED(i);
calld->SetState(CallData::CallState::ACTIVATED);
calld->Publish(cq_idx, rc);
return;
}
}
// No cq to take the request found; queue it on the slow list.
GRPC_STATS_INC_SERVER_SLOWPATH_REQUESTS_QUEUED();
// We need to ensure that all the queues are empty. We do this under
// the server mu_call_ lock to ensure that if something is added to
// an empty request queue, it will block until the call is actually
// added to the pending list.
RequestedCall* rc = nullptr;
size_t cq_idx = 0;
size_t loop_count;
{
MutexLock lock(&server_->mu_call_);
for (loop_count = 0; loop_count < requests_per_cq_.size(); loop_count++) {
cq_idx =
(start_request_queue_index + loop_count) % requests_per_cq_.size();
rc = reinterpret_cast<RequestedCall*>(requests_per_cq_[cq_idx].Pop());
if (rc != nullptr) {
break;
}
}
if (rc == nullptr) {
calld->SetState(CallData::CallState::PENDING);
pending_.push(calld);
return;
}
}
GRPC_STATS_INC_SERVER_CQS_CHECKED(loop_count + requests_per_cq_.size());
calld->SetState(CallData::CallState::ACTIVATED);
calld->Publish(cq_idx, rc);
}
Server* server() const override { return server_; }
private:
Server* const server_;
std::queue<CallData*> pending_;
std::vector<LockedMultiProducerSingleConsumerQueue> requests_per_cq_;
};
// AllocatingRequestMatchers don't allow the application to request an RPC in
// advance or queue up any incoming RPC for later match. Instead, MatchOrQueue
// will call out to an allocation function passed in at the construction of the
// object. These request matchers are designed for the C++ callback API, so they
// only support 1 completion queue (passed in at the constructor). They are also
// used for the sync API.
class Server::AllocatingRequestMatcherBase : public RequestMatcherInterface {
public:
AllocatingRequestMatcherBase(Server* server, grpc_completion_queue* cq)
: server_(server), cq_(cq) {
size_t idx;
for (idx = 0; idx < server->cqs_.size(); idx++) {
if (server->cqs_[idx] == cq) {
break;
}
}
GPR_ASSERT(idx < server->cqs_.size());
cq_idx_ = idx;
}
void ZombifyPending() override {}
void KillRequests(grpc_error_handle error) override {
GRPC_ERROR_UNREF(error);
}
size_t request_queue_count() const override { return 0; }
void RequestCallWithPossiblePublish(size_t /*request_queue_index*/,
RequestedCall* /*call*/) final {
GPR_ASSERT(false);
}
Server* server() const override { return server_; }
// Supply the completion queue related to this request matcher
grpc_completion_queue* cq() const { return cq_; }
// Supply the completion queue's index relative to the server.
size_t cq_idx() const { return cq_idx_; }
private:
Server* const server_;
grpc_completion_queue* const cq_;
size_t cq_idx_;
};
// An allocating request matcher for non-registered methods (used for generic
// API and unimplemented RPCs).
class Server::AllocatingRequestMatcherBatch
: public AllocatingRequestMatcherBase {
public:
AllocatingRequestMatcherBatch(Server* server, grpc_completion_queue* cq,
std::function<BatchCallAllocation()> allocator)
: AllocatingRequestMatcherBase(server, cq),
allocator_(std::move(allocator)) {}
void MatchOrQueue(size_t /*start_request_queue_index*/,
CallData* calld) override {
if (server()->ShutdownRefOnRequest()) {
BatchCallAllocation call_info = allocator_();
GPR_ASSERT(server()->ValidateServerRequest(
cq(), static_cast<void*>(call_info.tag), nullptr,
nullptr) == GRPC_CALL_OK);
RequestedCall* rc = new RequestedCall(
static_cast<void*>(call_info.tag), call_info.cq, call_info.call,
call_info.initial_metadata, call_info.details);
calld->SetState(CallData::CallState::ACTIVATED);
calld->Publish(cq_idx(), rc);
} else {
calld->FailCallCreation();
}
server()->ShutdownUnrefOnRequest();
}
private:
std::function<BatchCallAllocation()> allocator_;
};
// An allocating request matcher for registered methods.
class Server::AllocatingRequestMatcherRegistered
: public AllocatingRequestMatcherBase {
public:
AllocatingRequestMatcherRegistered(
Server* server, grpc_completion_queue* cq, RegisteredMethod* rm,
std::function<RegisteredCallAllocation()> allocator)
: AllocatingRequestMatcherBase(server, cq),
registered_method_(rm),
allocator_(std::move(allocator)) {}
void MatchOrQueue(size_t /*start_request_queue_index*/,
CallData* calld) override {
if (server()->ShutdownRefOnRequest()) {
RegisteredCallAllocation call_info = allocator_();
GPR_ASSERT(server()->ValidateServerRequest(
cq(), call_info.tag, call_info.optional_payload,
registered_method_) == GRPC_CALL_OK);
RequestedCall* rc =
new RequestedCall(call_info.tag, call_info.cq, call_info.call,
call_info.initial_metadata, registered_method_,
call_info.deadline, call_info.optional_payload);
calld->SetState(CallData::CallState::ACTIVATED);
calld->Publish(cq_idx(), rc);
} else {
calld->FailCallCreation();
}
server()->ShutdownUnrefOnRequest();
}
private:
RegisteredMethod* const registered_method_;
std::function<RegisteredCallAllocation()> allocator_;
};
//
// ChannelBroadcaster
//
namespace {
class ChannelBroadcaster {
public:
// This can have an empty constructor and destructor since we want to control
// when the actual setup and shutdown broadcast take place.
// Copies over the channels from the locked server.
void FillChannelsLocked(std::vector<grpc_channel*> channels) {
GPR_DEBUG_ASSERT(channels_.empty());
channels_ = std::move(channels);
}
// Broadcasts a shutdown on each channel.
void BroadcastShutdown(bool send_goaway, grpc_error_handle force_disconnect) {
for (grpc_channel* channel : channels_) {
SendShutdown(channel, send_goaway, GRPC_ERROR_REF(force_disconnect));
GRPC_CHANNEL_INTERNAL_UNREF(channel, "broadcast");
}
channels_.clear(); // just for safety against double broadcast
GRPC_ERROR_UNREF(force_disconnect);
}
private:
struct ShutdownCleanupArgs {
grpc_closure closure;
grpc_slice slice;
};
static void ShutdownCleanup(void* arg, grpc_error_handle /*error*/) {
ShutdownCleanupArgs* a = static_cast<ShutdownCleanupArgs*>(arg);
grpc_slice_unref_internal(a->slice);
delete a;
}
static void SendShutdown(grpc_channel* channel, bool send_goaway,
grpc_error_handle send_disconnect) {
ShutdownCleanupArgs* sc = new ShutdownCleanupArgs;
GRPC_CLOSURE_INIT(&sc->closure, ShutdownCleanup, sc,
grpc_schedule_on_exec_ctx);
grpc_transport_op* op = grpc_make_transport_op(&sc->closure);
grpc_channel_element* elem;
op->goaway_error =
send_goaway
? grpc_error_set_int(
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Server shutdown"),
GRPC_ERROR_INT_GRPC_STATUS, GRPC_STATUS_OK)
: GRPC_ERROR_NONE;
op->set_accept_stream = true;
sc->slice = grpc_slice_from_copied_string("Server shutdown");
op->disconnect_with_error = send_disconnect;
elem =
grpc_channel_stack_element(grpc_channel_get_channel_stack(channel), 0);
elem->filter->start_transport_op(elem, op);
}
std::vector<grpc_channel*> channels_;
};
} // namespace
//
// Server
//
const grpc_channel_filter Server::kServerTopFilter = {
Server::CallData::StartTransportStreamOpBatch,
grpc_channel_next_op,
sizeof(Server::CallData),
Server::CallData::InitCallElement,
grpc_call_stack_ignore_set_pollset_or_pollset_set,
Server::CallData::DestroyCallElement,
sizeof(Server::ChannelData),
Server::ChannelData::InitChannelElement,
Server::ChannelData::DestroyChannelElement,
grpc_channel_next_get_info,
"server",
};
namespace {
grpc_resource_user* CreateDefaultResourceUser(const grpc_channel_args* args) {
if (args != nullptr) {
grpc_resource_quota* resource_quota =
grpc_resource_quota_from_channel_args(args, false /* create */);
if (resource_quota != nullptr) {
return grpc_resource_user_create(resource_quota, "default");
}
}
return nullptr;
}
RefCountedPtr<channelz::ServerNode> CreateChannelzNode(
const grpc_channel_args* args) {
RefCountedPtr<channelz::ServerNode> channelz_node;
if (grpc_channel_args_find_bool(args, GRPC_ARG_ENABLE_CHANNELZ,
GRPC_ENABLE_CHANNELZ_DEFAULT)) {
size_t channel_tracer_max_memory = grpc_channel_args_find_integer(
args, GRPC_ARG_MAX_CHANNEL_TRACE_EVENT_MEMORY_PER_NODE,
{GRPC_MAX_CHANNEL_TRACE_EVENT_MEMORY_PER_NODE_DEFAULT, 0, INT_MAX});
channelz_node =
MakeRefCounted<channelz::ServerNode>(channel_tracer_max_memory);
channelz_node->AddTraceEvent(
channelz::ChannelTrace::Severity::Info,
grpc_slice_from_static_string("Server created"));
}
return channelz_node;
}
} // namespace
Server::Server(const grpc_channel_args* args)
: channel_args_(grpc_channel_args_copy(args)),
default_resource_user_(CreateDefaultResourceUser(args)),
channelz_node_(CreateChannelzNode(args)) {}
Server::~Server() {
grpc_channel_args_destroy(channel_args_);
// Remove the cq pollsets from the config_fetcher.
if (started_ && config_fetcher_ != nullptr &&
config_fetcher_->interested_parties() != nullptr) {
for (grpc_pollset* pollset : pollsets_) {
grpc_pollset_set_del_pollset(config_fetcher_->interested_parties(),
pollset);
}
}
for (size_t i = 0; i < cqs_.size(); i++) {
GRPC_CQ_INTERNAL_UNREF(cqs_[i], "server");
}
}
void Server::AddListener(OrphanablePtr<ListenerInterface> listener) {
channelz::ListenSocketNode* listen_socket_node =
listener->channelz_listen_socket_node();
if (listen_socket_node != nullptr && channelz_node_ != nullptr) {
channelz_node_->AddChildListenSocket(listen_socket_node->Ref());
}
listeners_.emplace_back(std::move(listener));
}
void Server::Start() {
started_ = true;
for (grpc_completion_queue* cq : cqs_) {
if (grpc_cq_can_listen(cq)) {
pollsets_.push_back(grpc_cq_pollset(cq));
}
}
if (unregistered_request_matcher_ == nullptr) {
unregistered_request_matcher_ = absl::make_unique<RealRequestMatcher>(this);
}
for (std::unique_ptr<RegisteredMethod>& rm : registered_methods_) {
if (rm->matcher == nullptr) {
rm->matcher = absl::make_unique<RealRequestMatcher>(this);
}
}
{
MutexLock lock(&mu_global_);
starting_ = true;
}
// Register the interested parties from the config fetcher to the cq pollsets
// before starting listeners so that config fetcher is being polled when the
// listeners start watch the fetcher.
if (config_fetcher_ != nullptr &&
config_fetcher_->interested_parties() != nullptr) {
for (grpc_pollset* pollset : pollsets_) {
grpc_pollset_set_add_pollset(config_fetcher_->interested_parties(),
pollset);
}
}
for (auto& listener : listeners_) {
listener.listener->Start(this, &pollsets_);
}
MutexLock lock(&mu_global_);
starting_ = false;
starting_cv_.Signal();
}
grpc_error_handle Server::SetupTransport(
grpc_transport* transport, grpc_pollset* accepting_pollset,
const grpc_channel_args* args,
const RefCountedPtr<grpc_core::channelz::SocketNode>& socket_node,
grpc_resource_user* resource_user) {
// Create channel.
grpc_error_handle error = GRPC_ERROR_NONE;
grpc_channel* channel = grpc_channel_create(
nullptr, args, GRPC_SERVER_CHANNEL, transport, resource_user, &error);
if (channel == nullptr) {
return error;
}
ChannelData* chand = static_cast<ChannelData*>(
grpc_channel_stack_element(grpc_channel_get_channel_stack(channel), 0)
->channel_data);
// Set up CQs.
size_t cq_idx;
for (cq_idx = 0; cq_idx < cqs_.size(); cq_idx++) {
if (grpc_cq_pollset(cqs_[cq_idx]) == accepting_pollset) break;
}
if (cq_idx == cqs_.size()) {
// Completion queue not found. Pick a random one to publish new calls to.
cq_idx = static_cast<size_t>(rand()) % cqs_.size();
}
// Set up channelz node.
intptr_t channelz_socket_uuid = 0;
if (socket_node != nullptr) {
channelz_socket_uuid = socket_node->uuid();
channelz_node_->AddChildSocket(socket_node);
}
// Initialize chand.
chand->InitTransport(Ref(), channel, cq_idx, transport, channelz_socket_uuid);
return GRPC_ERROR_NONE;
}
bool Server::HasOpenConnections() {
MutexLock lock(&mu_global_);
return !channels_.empty();
}
void Server::SetRegisteredMethodAllocator(
grpc_completion_queue* cq, void* method_tag,
std::function<RegisteredCallAllocation()> allocator) {
RegisteredMethod* rm = static_cast<RegisteredMethod*>(method_tag);
rm->matcher = absl::make_unique<AllocatingRequestMatcherRegistered>(
this, cq, rm, std::move(allocator));
}
void Server::SetBatchMethodAllocator(
grpc_completion_queue* cq, std::function<BatchCallAllocation()> allocator) {
GPR_DEBUG_ASSERT(unregistered_request_matcher_ == nullptr);
unregistered_request_matcher_ =
absl::make_unique<AllocatingRequestMatcherBatch>(this, cq,
std::move(allocator));
}
void Server::RegisterCompletionQueue(grpc_completion_queue* cq) {
for (grpc_completion_queue* queue : cqs_) {
if (queue == cq) return;
}
GRPC_CQ_INTERNAL_REF(cq, "server");
cqs_.push_back(cq);
}
namespace {
bool streq(const std::string& a, const char* b) {
return (a.empty() && b == nullptr) ||
((b != nullptr) && !strcmp(a.c_str(), b));
}
} // namespace
Server::RegisteredMethod* Server::RegisterMethod(
const char* method, const char* host,
grpc_server_register_method_payload_handling payload_handling,
uint32_t flags) {
if (!method) {
gpr_log(GPR_ERROR,
"grpc_server_register_method method string cannot be NULL");
return nullptr;
}
for (std::unique_ptr<RegisteredMethod>& m : registered_methods_) {
if (streq(m->method, method) && streq(m->host, host)) {
gpr_log(GPR_ERROR, "duplicate registration for %s@%s", method,
host ? host : "*");
return nullptr;
}
}
if ((flags & ~GRPC_INITIAL_METADATA_USED_MASK) != 0) {
gpr_log(GPR_ERROR, "grpc_server_register_method invalid flags 0x%08x",
flags);
return nullptr;
}
registered_methods_.emplace_back(absl::make_unique<RegisteredMethod>(
method, host, payload_handling, flags));
return registered_methods_.back().get();
}
void Server::DoneRequestEvent(void* req, grpc_cq_completion* /*c*/) {
delete static_cast<RequestedCall*>(req);
}
void Server::FailCall(size_t cq_idx, RequestedCall* rc,
grpc_error_handle error) {
*rc->call = nullptr;
rc->initial_metadata->count = 0;
GPR_ASSERT(error != GRPC_ERROR_NONE);
grpc_cq_end_op(cqs_[cq_idx], rc->tag, error, DoneRequestEvent, rc,
&rc->completion);
}
// Before calling MaybeFinishShutdown(), we must hold mu_global_ and not
// hold mu_call_.
void Server::MaybeFinishShutdown() {
if (!ShutdownReady() || shutdown_published_) {
return;
}
{
MutexLock lock(&mu_call_);
KillPendingWorkLocked(
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Server Shutdown"));
}
if (!channels_.empty() || listeners_destroyed_ < listeners_.size()) {
if (gpr_time_cmp(gpr_time_sub(gpr_now(GPR_CLOCK_REALTIME),
last_shutdown_message_time_),
gpr_time_from_seconds(1, GPR_TIMESPAN)) >= 0) {
last_shutdown_message_time_ = gpr_now(GPR_CLOCK_REALTIME);
gpr_log(GPR_DEBUG,
"Waiting for %" PRIuPTR " channels and %" PRIuPTR "/%" PRIuPTR
" listeners to be destroyed before shutting down server",
channels_.size(), listeners_.size() - listeners_destroyed_,
listeners_.size());
}
return;
}
shutdown_published_ = true;
for (auto& shutdown_tag : shutdown_tags_) {
Ref().release();
grpc_cq_end_op(shutdown_tag.cq, shutdown_tag.tag, GRPC_ERROR_NONE,
DoneShutdownEvent, this, &shutdown_tag.completion);
}
}
void Server::KillPendingWorkLocked(grpc_error_handle error) {
if (started_) {
unregistered_request_matcher_->KillRequests(GRPC_ERROR_REF(error));
unregistered_request_matcher_->ZombifyPending();
for (std::unique_ptr<RegisteredMethod>& rm : registered_methods_) {
rm->matcher->KillRequests(GRPC_ERROR_REF(error));
rm->matcher->ZombifyPending();
}
}
GRPC_ERROR_UNREF(error);
}
std::vector<grpc_channel*> Server::GetChannelsLocked() const {
std::vector<grpc_channel*> channels;
channels.reserve(channels_.size());
for (const ChannelData* chand : channels_) {
channels.push_back(chand->channel());
GRPC_CHANNEL_INTERNAL_REF(chand->channel(), "broadcast");
}
return channels;
}
void Server::ListenerDestroyDone(void* arg, grpc_error_handle /*error*/) {
Server* server = static_cast<Server*>(arg);
MutexLock lock(&server->mu_global_);
server->listeners_destroyed_++;
server->MaybeFinishShutdown();
}
namespace {
void DonePublishedShutdown(void* /*done_arg*/, grpc_cq_completion* storage) {
delete storage;
}
} // namespace
// - Kills all pending requests-for-incoming-RPC-calls (i.e., the requests made
// via grpc_server_request_call() and grpc_server_request_registered_call()
// will now be cancelled). See KillPendingWorkLocked().
//
// - Shuts down the listeners (i.e., the server will no longer listen on the
// port for new incoming channels).
//
// - Iterates through all channels on the server and sends shutdown msg (see
// ChannelBroadcaster::BroadcastShutdown() for details) to the clients via
// the transport layer. The transport layer then guarantees the following:
// -- Sends shutdown to the client (e.g., HTTP2 transport sends GOAWAY).
// -- If the server has outstanding calls that are in the process, the
// connection is NOT closed until the server is done with all those calls.
// -- Once there are no more calls in progress, the channel is closed.
void Server::ShutdownAndNotify(grpc_completion_queue* cq, void* tag) {
ChannelBroadcaster broadcaster;
{
// Wait for startup to be finished. Locks mu_global.
MutexLock lock(&mu_global_);
WaitUntil(&starting_cv_, &mu_global_, [this] { return !starting_; });
// Stay locked, and gather up some stuff to do.
GPR_ASSERT(grpc_cq_begin_op(cq, tag));
if (shutdown_published_) {
grpc_cq_end_op(cq, tag, GRPC_ERROR_NONE, DonePublishedShutdown, nullptr,
new grpc_cq_completion);
return;
}
shutdown_tags_.emplace_back(tag, cq);
if (ShutdownCalled()) {
return;
}
last_shutdown_message_time_ = gpr_now(GPR_CLOCK_REALTIME);
broadcaster.FillChannelsLocked(GetChannelsLocked());
// Collect all unregistered then registered calls.
{
MutexLock lock(&mu_call_);
KillPendingWorkLocked(
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Server Shutdown"));
}
ShutdownUnrefOnShutdownCall();
}
// Shutdown listeners.
for (auto& listener : listeners_) {
channelz::ListenSocketNode* channelz_listen_socket_node =
listener.listener->channelz_listen_socket_node();
if (channelz_node_ != nullptr && channelz_listen_socket_node != nullptr) {
channelz_node_->RemoveChildListenSocket(
channelz_listen_socket_node->uuid());
}
GRPC_CLOSURE_INIT(&listener.destroy_done, ListenerDestroyDone, this,
grpc_schedule_on_exec_ctx);
listener.listener->SetOnDestroyDone(&listener.destroy_done);
listener.listener.reset();
}
broadcaster.BroadcastShutdown(/*send_goaway=*/true, GRPC_ERROR_NONE);
}
void Server::CancelAllCalls() {
ChannelBroadcaster broadcaster;
{
MutexLock lock(&mu_global_);
broadcaster.FillChannelsLocked(GetChannelsLocked());
}
broadcaster.BroadcastShutdown(
/*send_goaway=*/false,
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Cancelling all calls"));
}
void Server::Orphan() {
{
MutexLock lock(&mu_global_);
GPR_ASSERT(ShutdownCalled() || listeners_.empty());
GPR_ASSERT(listeners_destroyed_ == listeners_.size());
}
if (default_resource_user_ != nullptr) {
grpc_resource_quota_unref(grpc_resource_user_quota(default_resource_user_));
grpc_resource_user_shutdown(default_resource_user_);
grpc_resource_user_unref(default_resource_user_);
}
Unref();
}
grpc_call_error Server::ValidateServerRequest(
grpc_completion_queue* cq_for_notification, void* tag,
grpc_byte_buffer** optional_payload, RegisteredMethod* rm) {
if ((rm == nullptr && optional_payload != nullptr) ||
((rm != nullptr) && ((optional_payload == nullptr) !=
(rm->payload_handling == GRPC_SRM_PAYLOAD_NONE)))) {
return GRPC_CALL_ERROR_PAYLOAD_TYPE_MISMATCH;
}
if (!grpc_cq_begin_op(cq_for_notification, tag)) {
return GRPC_CALL_ERROR_COMPLETION_QUEUE_SHUTDOWN;
}
return GRPC_CALL_OK;
}
grpc_call_error Server::ValidateServerRequestAndCq(
size_t* cq_idx, grpc_completion_queue* cq_for_notification, void* tag,
grpc_byte_buffer** optional_payload, RegisteredMethod* rm) {
size_t idx;
for (idx = 0; idx < cqs_.size(); idx++) {
if (cqs_[idx] == cq_for_notification) {
break;
}
}
if (idx == cqs_.size()) {
return GRPC_CALL_ERROR_NOT_SERVER_COMPLETION_QUEUE;
}
grpc_call_error error =
ValidateServerRequest(cq_for_notification, tag, optional_payload, rm);
if (error != GRPC_CALL_OK) {
return error;
}
*cq_idx = idx;
return GRPC_CALL_OK;
}
grpc_call_error Server::QueueRequestedCall(size_t cq_idx, RequestedCall* rc) {
if (ShutdownCalled()) {
FailCall(cq_idx, rc,
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Server Shutdown"));
return GRPC_CALL_OK;
}
RequestMatcherInterface* rm;
switch (rc->type) {
case RequestedCall::Type::BATCH_CALL:
rm = unregistered_request_matcher_.get();
break;
case RequestedCall::Type::REGISTERED_CALL:
rm = rc->data.registered.method->matcher.get();
break;
}
rm->RequestCallWithPossiblePublish(cq_idx, rc);
return GRPC_CALL_OK;
}
grpc_call_error Server::RequestCall(grpc_call** call,
grpc_call_details* details,
grpc_metadata_array* request_metadata,
grpc_completion_queue* cq_bound_to_call,
grpc_completion_queue* cq_for_notification,
void* tag) {
size_t cq_idx;
grpc_call_error error = ValidateServerRequestAndCq(
&cq_idx, cq_for_notification, tag, nullptr, nullptr);
if (error != GRPC_CALL_OK) {
return error;
}
RequestedCall* rc =
new RequestedCall(tag, cq_bound_to_call, call, request_metadata, details);
return QueueRequestedCall(cq_idx, rc);
}
grpc_call_error Server::RequestRegisteredCall(
RegisteredMethod* rm, grpc_call** call, gpr_timespec* deadline,
grpc_metadata_array* request_metadata, grpc_byte_buffer** optional_payload,
grpc_completion_queue* cq_bound_to_call,
grpc_completion_queue* cq_for_notification, void* tag_new) {
size_t cq_idx;
grpc_call_error error = ValidateServerRequestAndCq(
&cq_idx, cq_for_notification, tag_new, optional_payload, rm);
if (error != GRPC_CALL_OK) {
return error;
}
RequestedCall* rc =
new RequestedCall(tag_new, cq_bound_to_call, call, request_metadata, rm,
deadline, optional_payload);
return QueueRequestedCall(cq_idx, rc);
}
//
// Server::ChannelData::ConnectivityWatcher
//
class Server::ChannelData::ConnectivityWatcher
: public AsyncConnectivityStateWatcherInterface {
public:
explicit ConnectivityWatcher(ChannelData* chand) : chand_(chand) {
GRPC_CHANNEL_INTERNAL_REF(chand_->channel_, "connectivity");
}
~ConnectivityWatcher() override {
GRPC_CHANNEL_INTERNAL_UNREF(chand_->channel_, "connectivity");
}
private:
void OnConnectivityStateChange(grpc_connectivity_state new_state,
const absl::Status& /*status*/) override {
// Don't do anything until we are being shut down.
if (new_state != GRPC_CHANNEL_SHUTDOWN) return;
// Shut down channel.
MutexLock lock(&chand_->server_->mu_global_);
chand_->Destroy();
}
ChannelData* chand_;
};
//
// Server::ChannelData
//
Server::ChannelData::~ChannelData() {
if (registered_methods_ != nullptr) {
for (const ChannelRegisteredMethod& crm : *registered_methods_) {
grpc_slice_unref_internal(crm.method);
GPR_DEBUG_ASSERT(crm.method.refcount == &kNoopRefcount ||
crm.method.refcount == nullptr);
if (crm.has_host) {
grpc_slice_unref_internal(crm.host);
GPR_DEBUG_ASSERT(crm.host.refcount == &kNoopRefcount ||
crm.host.refcount == nullptr);
}
}
registered_methods_.reset();
}
if (server_ != nullptr) {
if (server_->channelz_node_ != nullptr && channelz_socket_uuid_ != 0) {
server_->channelz_node_->RemoveChildSocket(channelz_socket_uuid_);
}
{
MutexLock lock(&server_->mu_global_);
if (list_position_.has_value()) {
server_->channels_.erase(*list_position_);
list_position_.reset();
}
server_->MaybeFinishShutdown();
}
}
}
void Server::ChannelData::InitTransport(RefCountedPtr<Server> server,
grpc_channel* channel, size_t cq_idx,
grpc_transport* transport,
intptr_t channelz_socket_uuid) {
server_ = std::move(server);
channel_ = channel;
cq_idx_ = cq_idx;
channelz_socket_uuid_ = channelz_socket_uuid;
// Build a lookup table phrased in terms of mdstr's in this channels context
// to quickly find registered methods.
size_t num_registered_methods = server_->registered_methods_.size();
if (num_registered_methods > 0) {
uint32_t max_probes = 0;
size_t slots = 2 * num_registered_methods;
registered_methods_ =
absl::make_unique<std::vector<ChannelRegisteredMethod>>(slots);
for (std::unique_ptr<RegisteredMethod>& rm : server_->registered_methods_) {
ExternallyManagedSlice host;
ExternallyManagedSlice method(rm->method.c_str());
const bool has_host = !rm->host.empty();
if (has_host) {
host = ExternallyManagedSlice(rm->host.c_str());
}
uint32_t hash =
GRPC_MDSTR_KV_HASH(has_host ? host.Hash() : 0, method.Hash());
uint32_t probes = 0;
for (probes = 0; (*registered_methods_)[(hash + probes) % slots]
.server_registered_method != nullptr;
probes++) {
}
if (probes > max_probes) max_probes = probes;
ChannelRegisteredMethod* crm =
&(*registered_methods_)[(hash + probes) % slots];
crm->server_registered_method = rm.get();
crm->flags = rm->flags;
crm->has_host = has_host;
if (has_host) {
crm->host = host;
}
crm->method = method;
}
GPR_ASSERT(slots <= UINT32_MAX);
registered_method_max_probes_ = max_probes;
}
// Publish channel.
{
MutexLock lock(&server_->mu_global_);
server_->channels_.push_front(this);
list_position_ = server_->channels_.begin();
}
// Start accept_stream transport op.
grpc_transport_op* op = grpc_make_transport_op(nullptr);
op->set_accept_stream = true;
op->set_accept_stream_fn = AcceptStream;
op->set_accept_stream_user_data = this;
op->start_connectivity_watch = MakeOrphanable<ConnectivityWatcher>(this);
if (server_->ShutdownCalled()) {
op->disconnect_with_error =
GRPC_ERROR_CREATE_FROM_STATIC_STRING("Server shutdown");
}
grpc_transport_perform_op(transport, op);
}
Server::ChannelRegisteredMethod* Server::ChannelData::GetRegisteredMethod(
const grpc_slice& host, const grpc_slice& path, bool is_idempotent) {
if (registered_methods_ == nullptr) return nullptr;
/* TODO(ctiller): unify these two searches */
/* check for an exact match with host */
uint32_t hash = GRPC_MDSTR_KV_HASH(grpc_slice_hash_internal(host),
grpc_slice_hash_internal(path));
for (size_t i = 0; i <= registered_method_max_probes_; i++) {
ChannelRegisteredMethod* rm =
&(*registered_methods_)[(hash + i) % registered_methods_->size()];
if (rm->server_registered_method == nullptr) break;
if (!rm->has_host) continue;
if (rm->host != host) continue;
if (rm->method != path) continue;
if ((rm->flags & GRPC_INITIAL_METADATA_IDEMPOTENT_REQUEST) &&
!is_idempotent) {
continue;
}
return rm;
}
/* check for a wildcard method definition (no host set) */
hash = GRPC_MDSTR_KV_HASH(0, grpc_slice_hash_internal(path));
for (size_t i = 0; i <= registered_method_max_probes_; i++) {
ChannelRegisteredMethod* rm =
&(*registered_methods_)[(hash + i) % registered_methods_->size()];
if (rm->server_registered_method == nullptr) break;
if (rm->has_host) continue;
if (rm->method != path) continue;
if ((rm->flags & GRPC_INITIAL_METADATA_IDEMPOTENT_REQUEST) &&
!is_idempotent) {
continue;
}
return rm;
}
return nullptr;
}
void Server::ChannelData::AcceptStream(void* arg, grpc_transport* /*transport*/,
const void* transport_server_data) {
auto* chand = static_cast<Server::ChannelData*>(arg);
/* create a call */
grpc_call_create_args args;
args.channel = chand->channel_;
args.server = chand->server_.get();
args.parent = nullptr;
args.propagation_mask = 0;
args.cq = nullptr;
args.pollset_set_alternative = nullptr;
args.server_transport_data = transport_server_data;
args.add_initial_metadata = nullptr;
args.add_initial_metadata_count = 0;
args.send_deadline = GRPC_MILLIS_INF_FUTURE;
grpc_call* call;
grpc_error_handle error = grpc_call_create(&args, &call);
grpc_call_element* elem =
grpc_call_stack_element(grpc_call_get_call_stack(call), 0);
auto* calld = static_cast<Server::CallData*>(elem->call_data);
if (error != GRPC_ERROR_NONE) {
GRPC_ERROR_UNREF(error);
calld->FailCallCreation();
return;
}
calld->Start(elem);
}
void Server::ChannelData::FinishDestroy(void* arg,
grpc_error_handle /*error*/) {
auto* chand = static_cast<Server::ChannelData*>(arg);
Server* server = chand->server_.get();
GRPC_CHANNEL_INTERNAL_UNREF(chand->channel_, "server");
server->Unref();
}
void Server::ChannelData::Destroy() {
if (!list_position_.has_value()) return;
GPR_ASSERT(server_ != nullptr);
server_->channels_.erase(*list_position_);
list_position_.reset();
server_->Ref().release();
server_->MaybeFinishShutdown();
GRPC_CLOSURE_INIT(&finish_destroy_channel_closure_, FinishDestroy, this,
grpc_schedule_on_exec_ctx);
if (GRPC_TRACE_FLAG_ENABLED(grpc_server_channel_trace)) {
gpr_log(GPR_INFO, "Disconnected client");
}
grpc_transport_op* op =
grpc_make_transport_op(&finish_destroy_channel_closure_);
op->set_accept_stream = true;
grpc_channel_next_op(
grpc_channel_stack_element(grpc_channel_get_channel_stack(channel_), 0),
op);
}
grpc_error_handle Server::ChannelData::InitChannelElement(
grpc_channel_element* elem, grpc_channel_element_args* args) {
GPR_ASSERT(args->is_first);
GPR_ASSERT(!args->is_last);
new (elem->channel_data) ChannelData();
return GRPC_ERROR_NONE;
}
void Server::ChannelData::DestroyChannelElement(grpc_channel_element* elem) {
auto* chand = static_cast<ChannelData*>(elem->channel_data);
chand->~ChannelData();
}
//
// Server::CallData
//
Server::CallData::CallData(grpc_call_element* elem,
const grpc_call_element_args& args,
RefCountedPtr<Server> server)
: server_(std::move(server)),
call_(grpc_call_from_top_element(elem)),
call_combiner_(args.call_combiner) {
GRPC_CLOSURE_INIT(&recv_initial_metadata_ready_, RecvInitialMetadataReady,
elem, grpc_schedule_on_exec_ctx);
GRPC_CLOSURE_INIT(&recv_trailing_metadata_ready_, RecvTrailingMetadataReady,
elem, grpc_schedule_on_exec_ctx);
}
Server::CallData::~CallData() {
GPR_ASSERT(state_.Load(MemoryOrder::RELAXED) != CallState::PENDING);
GRPC_ERROR_UNREF(recv_initial_metadata_error_);
if (host_.has_value()) {
grpc_slice_unref_internal(*host_);
}
if (path_.has_value()) {
grpc_slice_unref_internal(*path_);
}
grpc_metadata_array_destroy(&initial_metadata_);
grpc_byte_buffer_destroy(payload_);
}
void Server::CallData::SetState(CallState state) {
state_.Store(state, MemoryOrder::RELAXED);
}
bool Server::CallData::MaybeActivate() {
CallState expected = CallState::PENDING;
return state_.CompareExchangeStrong(&expected, CallState::ACTIVATED,
MemoryOrder::ACQ_REL,
MemoryOrder::RELAXED);
}
void Server::CallData::FailCallCreation() {
CallState expected_not_started = CallState::NOT_STARTED;
CallState expected_pending = CallState::PENDING;
if (state_.CompareExchangeStrong(&expected_not_started, CallState::ZOMBIED,
MemoryOrder::ACQ_REL,
MemoryOrder::ACQUIRE)) {
KillZombie();
} else if (state_.CompareExchangeStrong(&expected_pending, CallState::ZOMBIED,
MemoryOrder::ACQ_REL,
MemoryOrder::RELAXED)) {
// Zombied call will be destroyed when it's removed from the pending
// queue... later.
}
}
void Server::CallData::Start(grpc_call_element* elem) {
grpc_op op;
op.op = GRPC_OP_RECV_INITIAL_METADATA;
op.flags = 0;
op.reserved = nullptr;
op.data.recv_initial_metadata.recv_initial_metadata = &initial_metadata_;
GRPC_CLOSURE_INIT(&recv_initial_metadata_batch_complete_,
RecvInitialMetadataBatchComplete, elem,
grpc_schedule_on_exec_ctx);
grpc_call_start_batch_and_execute(call_, &op, 1,
&recv_initial_metadata_batch_complete_);
}
void Server::CallData::Publish(size_t cq_idx, RequestedCall* rc) {
grpc_call_set_completion_queue(call_, rc->cq_bound_to_call);
*rc->call = call_;
cq_new_ = server_->cqs_[cq_idx];
GPR_SWAP(grpc_metadata_array, *rc->initial_metadata, initial_metadata_);
switch (rc->type) {
case RequestedCall::Type::BATCH_CALL:
GPR_ASSERT(host_.has_value());
GPR_ASSERT(path_.has_value());
rc->data.batch.details->host = grpc_slice_ref_internal(*host_);
rc->data.batch.details->method = grpc_slice_ref_internal(*path_);
rc->data.batch.details->deadline =
grpc_millis_to_timespec(deadline_, GPR_CLOCK_MONOTONIC);
rc->data.batch.details->flags = recv_initial_metadata_flags_;
break;
case RequestedCall::Type::REGISTERED_CALL:
*rc->data.registered.deadline =
grpc_millis_to_timespec(deadline_, GPR_CLOCK_MONOTONIC);
if (rc->data.registered.optional_payload != nullptr) {
*rc->data.registered.optional_payload = payload_;
payload_ = nullptr;
}
break;
default:
GPR_UNREACHABLE_CODE(return );
}
grpc_cq_end_op(cq_new_, rc->tag, GRPC_ERROR_NONE, Server::DoneRequestEvent,
rc, &rc->completion, true);
}
void Server::CallData::PublishNewRpc(void* arg, grpc_error_handle error) {
grpc_call_element* call_elem = static_cast<grpc_call_element*>(arg);
auto* calld = static_cast<Server::CallData*>(call_elem->call_data);
auto* chand = static_cast<Server::ChannelData*>(call_elem->channel_data);
RequestMatcherInterface* rm = calld->matcher_;
Server* server = rm->server();
if (error != GRPC_ERROR_NONE || server->ShutdownCalled()) {
calld->state_.Store(CallState::ZOMBIED, MemoryOrder::RELAXED);
calld->KillZombie();
return;
}
rm->MatchOrQueue(chand->cq_idx(), calld);
}
namespace {
void KillZombieClosure(void* call, grpc_error_handle /*error*/) {
grpc_call_unref(static_cast<grpc_call*>(call));
}
} // namespace
void Server::CallData::KillZombie() {
GRPC_CLOSURE_INIT(&kill_zombie_closure_, KillZombieClosure, call_,
grpc_schedule_on_exec_ctx);
ExecCtx::Run(DEBUG_LOCATION, &kill_zombie_closure_, GRPC_ERROR_NONE);
}
void Server::CallData::StartNewRpc(grpc_call_element* elem) {
auto* chand = static_cast<ChannelData*>(elem->channel_data);
if (server_->ShutdownCalled()) {
state_.Store(CallState::ZOMBIED, MemoryOrder::RELAXED);
KillZombie();
return;
}
// Find request matcher.
matcher_ = server_->unregistered_request_matcher_.get();
grpc_server_register_method_payload_handling payload_handling =
GRPC_SRM_PAYLOAD_NONE;
if (path_.has_value() && host_.has_value()) {
ChannelRegisteredMethod* rm =
chand->GetRegisteredMethod(*host_, *path_,
(recv_initial_metadata_flags_ &
GRPC_INITIAL_METADATA_IDEMPOTENT_REQUEST));
if (rm != nullptr) {
matcher_ = rm->server_registered_method->matcher.get();
payload_handling = rm->server_registered_method->payload_handling;
}
}
// Start recv_message op if needed.
switch (payload_handling) {
case GRPC_SRM_PAYLOAD_NONE:
PublishNewRpc(elem, GRPC_ERROR_NONE);
break;
case GRPC_SRM_PAYLOAD_READ_INITIAL_BYTE_BUFFER: {
grpc_op op;
op.op = GRPC_OP_RECV_MESSAGE;
op.flags = 0;
op.reserved = nullptr;
op.data.recv_message.recv_message = &payload_;
GRPC_CLOSURE_INIT(&publish_, PublishNewRpc, elem,
grpc_schedule_on_exec_ctx);
grpc_call_start_batch_and_execute(call_, &op, 1, &publish_);
break;
}
}
}
void Server::CallData::RecvInitialMetadataBatchComplete(
void* arg, grpc_error_handle error) {
grpc_call_element* elem = static_cast<grpc_call_element*>(arg);
auto* calld = static_cast<Server::CallData*>(elem->call_data);
if (error != GRPC_ERROR_NONE) {
calld->FailCallCreation();
return;
}
calld->StartNewRpc(elem);
}
void Server::CallData::StartTransportStreamOpBatchImpl(
grpc_call_element* elem, grpc_transport_stream_op_batch* batch) {
if (batch->recv_initial_metadata) {
GPR_ASSERT(batch->payload->recv_initial_metadata.recv_flags == nullptr);
recv_initial_metadata_ =
batch->payload->recv_initial_metadata.recv_initial_metadata;
original_recv_initial_metadata_ready_ =
batch->payload->recv_initial_metadata.recv_initial_metadata_ready;
batch->payload->recv_initial_metadata.recv_initial_metadata_ready =
&recv_initial_metadata_ready_;
batch->payload->recv_initial_metadata.recv_flags =
&recv_initial_metadata_flags_;
}
if (batch->recv_trailing_metadata) {
original_recv_trailing_metadata_ready_ =
batch->payload->recv_trailing_metadata.recv_trailing_metadata_ready;
batch->payload->recv_trailing_metadata.recv_trailing_metadata_ready =
&recv_trailing_metadata_ready_;
}
grpc_call_next_op(elem, batch);
}
void Server::CallData::RecvInitialMetadataReady(void* arg,
grpc_error_handle error) {
grpc_call_element* elem = static_cast<grpc_call_element*>(arg);
CallData* calld = static_cast<CallData*>(elem->call_data);
grpc_millis op_deadline;
if (error == GRPC_ERROR_NONE) {
GPR_DEBUG_ASSERT(calld->recv_initial_metadata_->idx.named.path != nullptr);
GPR_DEBUG_ASSERT(calld->recv_initial_metadata_->idx.named.authority !=
nullptr);
calld->path_.emplace(grpc_slice_ref_internal(
GRPC_MDVALUE(calld->recv_initial_metadata_->idx.named.path->md)));
calld->host_.emplace(grpc_slice_ref_internal(
GRPC_MDVALUE(calld->recv_initial_metadata_->idx.named.authority->md)));
grpc_metadata_batch_remove(calld->recv_initial_metadata_, GRPC_BATCH_PATH);
grpc_metadata_batch_remove(calld->recv_initial_metadata_,
GRPC_BATCH_AUTHORITY);
} else {
GRPC_ERROR_REF(error);
}
op_deadline = calld->recv_initial_metadata_->deadline;
if (op_deadline != GRPC_MILLIS_INF_FUTURE) {
calld->deadline_ = op_deadline;
}
if (calld->host_.has_value() && calld->path_.has_value()) {
/* do nothing */
} else {
/* Pass the error reference to calld->recv_initial_metadata_error */
grpc_error_handle src_error = error;
error = GRPC_ERROR_CREATE_REFERENCING_FROM_STATIC_STRING(
"Missing :authority or :path", &src_error, 1);
GRPC_ERROR_UNREF(src_error);
calld->recv_initial_metadata_error_ = GRPC_ERROR_REF(error);
}
grpc_closure* closure = calld->original_recv_initial_metadata_ready_;
calld->original_recv_initial_metadata_ready_ = nullptr;
if (calld->seen_recv_trailing_metadata_ready_) {
GRPC_CALL_COMBINER_START(calld->call_combiner_,
&calld->recv_trailing_metadata_ready_,
calld->recv_trailing_metadata_error_,
"continue server recv_trailing_metadata_ready");
}
Closure::Run(DEBUG_LOCATION, closure, error);
}
void Server::CallData::RecvTrailingMetadataReady(void* arg,
grpc_error_handle error) {
grpc_call_element* elem = static_cast<grpc_call_element*>(arg);
CallData* calld = static_cast<CallData*>(elem->call_data);
if (calld->original_recv_initial_metadata_ready_ != nullptr) {
calld->recv_trailing_metadata_error_ = GRPC_ERROR_REF(error);
calld->seen_recv_trailing_metadata_ready_ = true;
GRPC_CLOSURE_INIT(&calld->recv_trailing_metadata_ready_,
RecvTrailingMetadataReady, elem,
grpc_schedule_on_exec_ctx);
GRPC_CALL_COMBINER_STOP(calld->call_combiner_,
"deferring server recv_trailing_metadata_ready "
"until after recv_initial_metadata_ready");
return;
}
error =
grpc_error_add_child(GRPC_ERROR_REF(error),
GRPC_ERROR_REF(calld->recv_initial_metadata_error_));
Closure::Run(DEBUG_LOCATION, calld->original_recv_trailing_metadata_ready_,
error);
}
grpc_error_handle Server::CallData::InitCallElement(
grpc_call_element* elem, const grpc_call_element_args* args) {
auto* chand = static_cast<ChannelData*>(elem->channel_data);
new (elem->call_data) Server::CallData(elem, *args, chand->server());
return GRPC_ERROR_NONE;
}
void Server::CallData::DestroyCallElement(
grpc_call_element* elem, const grpc_call_final_info* /*final_info*/,
grpc_closure* /*ignored*/) {
auto* calld = static_cast<CallData*>(elem->call_data);
calld->~CallData();
}
void Server::CallData::StartTransportStreamOpBatch(
grpc_call_element* elem, grpc_transport_stream_op_batch* batch) {
auto* calld = static_cast<CallData*>(elem->call_data);
calld->StartTransportStreamOpBatchImpl(elem, batch);
}
} // namespace grpc_core
//
// C-core API
//
grpc_server* grpc_server_create(const grpc_channel_args* args, void* reserved) {
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_create(%p, %p)", 2, (args, reserved));
grpc_server* c_server = new grpc_server;
c_server->core_server = grpc_core::MakeOrphanable<grpc_core::Server>(args);
return c_server;
}
void grpc_server_register_completion_queue(grpc_server* server,
grpc_completion_queue* cq,
void* reserved) {
GRPC_API_TRACE(
"grpc_server_register_completion_queue(server=%p, cq=%p, reserved=%p)", 3,
(server, cq, reserved));
GPR_ASSERT(!reserved);
auto cq_type = grpc_get_cq_completion_type(cq);
if (cq_type != GRPC_CQ_NEXT && cq_type != GRPC_CQ_CALLBACK) {
gpr_log(GPR_INFO,
"Completion queue of type %d is being registered as a "
"server-completion-queue",
static_cast<int>(cq_type));
/* Ideally we should log an error and abort but ruby-wrapped-language API
calls grpc_completion_queue_pluck() on server completion queues */
}
server->core_server->RegisterCompletionQueue(cq);
}
void* grpc_server_register_method(
grpc_server* server, const char* method, const char* host,
grpc_server_register_method_payload_handling payload_handling,
uint32_t flags) {
GRPC_API_TRACE(
"grpc_server_register_method(server=%p, method=%s, host=%s, "
"flags=0x%08x)",
4, (server, method, host, flags));
return server->core_server->RegisterMethod(method, host, payload_handling,
flags);
}
void grpc_server_start(grpc_server* server) {
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_start(server=%p)", 1, (server));
server->core_server->Start();
}
void grpc_server_shutdown_and_notify(grpc_server* server,
grpc_completion_queue* cq, void* tag) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_shutdown_and_notify(server=%p, cq=%p, tag=%p)", 3,
(server, cq, tag));
server->core_server->ShutdownAndNotify(cq, tag);
}
void grpc_server_cancel_all_calls(grpc_server* server) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_cancel_all_calls(server=%p)", 1, (server));
server->core_server->CancelAllCalls();
}
void grpc_server_destroy(grpc_server* server) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_destroy(server=%p)", 1, (server));
delete server;
}
grpc_call_error grpc_server_request_call(
grpc_server* server, grpc_call** call, grpc_call_details* details,
grpc_metadata_array* request_metadata,
grpc_completion_queue* cq_bound_to_call,
grpc_completion_queue* cq_for_notification, void* tag) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_STATS_INC_SERVER_REQUESTED_CALLS();
GRPC_API_TRACE(
"grpc_server_request_call("
"server=%p, call=%p, details=%p, initial_metadata=%p, "
"cq_bound_to_call=%p, cq_for_notification=%p, tag=%p)",
7,
(server, call, details, request_metadata, cq_bound_to_call,
cq_for_notification, tag));
return server->core_server->RequestCall(call, details, request_metadata,
cq_bound_to_call, cq_for_notification,
tag);
}
grpc_call_error grpc_server_request_registered_call(
grpc_server* server, void* registered_method, grpc_call** call,
gpr_timespec* deadline, grpc_metadata_array* request_metadata,
grpc_byte_buffer** optional_payload,
grpc_completion_queue* cq_bound_to_call,
grpc_completion_queue* cq_for_notification, void* tag_new) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_STATS_INC_SERVER_REQUESTED_CALLS();
auto* rm =
static_cast<grpc_core::Server::RegisteredMethod*>(registered_method);
GRPC_API_TRACE(
"grpc_server_request_registered_call("
"server=%p, registered_method=%p, call=%p, deadline=%p, "
"request_metadata=%p, "
"optional_payload=%p, cq_bound_to_call=%p, cq_for_notification=%p, "
"tag=%p)",
9,
(server, registered_method, call, deadline, request_metadata,
optional_payload, cq_bound_to_call, cq_for_notification, tag_new));
return server->core_server->RequestRegisteredCall(
rm, call, deadline, request_metadata, optional_payload, cq_bound_to_call,
cq_for_notification, tag_new);
}
void grpc_server_set_config_fetcher(
grpc_server* server, grpc_server_config_fetcher* server_config_fetcher) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_set_config_fetcher(server=%p, config_fetcher=%p)",
2, (server, server_config_fetcher));
server->core_server->set_config_fetcher(
std::unique_ptr<grpc_server_config_fetcher>(server_config_fetcher));
}
void grpc_server_config_fetcher_destroy(
grpc_server_config_fetcher* server_config_fetcher) {
grpc_core::ApplicationCallbackExecCtx callback_exec_ctx;
grpc_core::ExecCtx exec_ctx;
GRPC_API_TRACE("grpc_server_config_fetcher_destroy(config_fetcher=%p)", 1,
(server_config_fetcher));
delete server_config_fetcher;
}